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Abstract. Fluxgate magnetometers are widely used for in-situ magnetic field measurements in the context of geophysical and

solar system studies. Like in most of experimental studies, magnetic field measurements using the fluxgate magnetometers are

constrained to the associated uncertainties. To evaluate the performance of magnetometers, the measurement uncertainties of

calibrated magnetic field data are quantitatively studied for a spinning spacecraft. The uncertainties are derived analytically

by perturbing the calibration parameters, and are simplified into the first-order expression including the offset errors and the5

coupling of calibration parameter errors with the ambient magnetic field. The error study shows how the uncertainty sources

combine through the calibration process. The final error depends on (1) the magnitude of magnetic field with respect to the

offset error and (2) the angle of magnetic field to the spacecraft spin axis. The offset uncertainties are the major factor in a

low-field environment, while the angle uncertainties (rotation angle in the spin plane, sensor non-orthogonality, and sensor

misalignment to the spacecraft reference directions) become more important in a high-field environment in a proportional way10

to the magnetic field. The error formulas serve as a useful tool in designing high-precision magnetometers in future spacecraft

missions as well as in data analysis methods in geophysical and solar system science.

1 Introduction

Fluxgate magnetometers perform measurements from DC (direct current) to low-frequency magnetic field vectors (typically

up to 10–100 Hz), and are widely applied to in situ spacecraft observations for space plasma, magnetospheric, and heliospheric15

research (Acuña, 2002). The fluxgate magnetometers can be mounted on a spinning spacecraft or three-axis stabilized one,

depending on the individual mission concept. In particular, in-flight calibration benefits from the spacecraft spin, since 8 of 12

calibration parameters are determined by making use of the spacecraft spin. Detailed procedure for the in-flight calibration on

a spinning spacecraft are presented by, e.g., Kepko et al. (1996) and Plaschke et al. (2019).

The goal of the current paper is to give an outline of systematic errors of calibrated fluxgate magnetometer data on a spinning20

spacecraft. The error of magnetic field data occurs due to the uncertainties of the calibration parameters. The error sources may

combine with one another through the calibration process. We derive the full expression of calibration errors as well as a more

practical, simplified expression by truncating at the first order of relative errors. The scope of our work is the error estimate

of calibrated magnetometer data in a low-field environment. In practice, more effects need to be taken into account, including
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sensor nonlinearities, temperature dependence (temperature drift effect), and jumps in the data associated with the change in25

operational modes.

2 Systematic error on in-flight calibration

For a spin-stabilized spacecraft, the magnetometer in-flight calibration is performed by correcting for offsets (including the

spacecraft DC field), gains, deviations from the ideal orthogonal coordinate system, spacecraft spin axis direction with respect

to the sensor reference direction and rotation angle around the spacecraft spin axis. For a nearly-orthogonal unit-gain sensor30

system, the measured magnetic field is transformed into a de-spun coordinate system, and is expanded into a Fourier series

over the frequencies as

Bi(t) =

N−1∑
n=0

Fi(ω) einωt (1)

for the i-th component of magnetic field. Fi is the Fourier coefficient, i the imaginary unit, ω the de-spinning frequency (as

angular frequency), N the number of data points, and t the time in the data.35

The magnetic field vector measured by the three sensors (sensor output) is related to the ambient field by taking account of

spacecraft spin-axis direction, spacecraft spin phase, sensor-axes directions, sensitivities (or gains) of the sensors, and offsets

(Kepko et al., 1996; Plaschke et al., 2019). The relation is constructed in the following fashion.

1. The true or model ambient field is set in the inertial (i.e., non-spinning) orthogonal spacecraft spin axis-aligned co-

ordinate system (the coord-1 system in Fig. 1) with the spin-plane component in the X direction (BX =Bp) and the40

spin-axis component in the Z direction (BZ =Ba). There is no magnetic field in the rest spin-plane component, BY = 0,

because the coord-1 system spans the spacecraft spin axis (in the Z direction) and the ambient field in the X–Z plane.

The magnetic field modeled in the coord-1 system as

Bc1 =


BX

BY

BZ

=


Bp

0

Ba

 . (2)

45

2. The model ambient field in the coord-1 system is transformed into the spinning orthogonal spin-axis-aligned system

(the coord-2 system in Fig. 1) with the magnetic field components Bx, By, and Bz by referring to the spin axis as the

z direction and rotating the spin plane around the spin axis by the spacecraft spin phase −ωt (here ω is defined as the

de-spinning frequency and −ω as the spin frequency; t the time) as

Bx = BX cos(−ωt) (3)50

By = BY sin(−ωt) (4)

Bz = BZ. (5)
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The magnetic field vector in the coord-2 system is symbolically related to that in the coord-1 system as

Bc2 = Ω−1 Bc1, (6)

where Ω−1 is the spin rotation matrix Note that Ω is defined as the de-spinning matrix here.55

3. The field is then transformed into the spinning, orthogonal sensor package system (the coord-3 system in Fig. 1) first

by rotating around the spin axis by correcting for the magnetometer boom extension and a possible misalignment of the

fluxgate sensor in the spin plane (with the rotation angle φa in the xy-plane around the spin axis in the coord-2 system)

and then by orienting the Pz axis in the sensor-3 direction with the spin axis tilt angles σPx and σPy (with respect to the

Pz axis) to obtain the magnetic field components as BPx, BPy, and BPz (here, P in the subscript stands for the sensor60

package). Here, σPy is the angle between the Pz axis and the projection of the spin axis on the (Pz,Py)-plane. σPx is

the angle between the spin axis and the (Pz,Py)-plane. The magnetic field vector in the coord-3 system is symbolically

related to that in the coord-2 system as

Bc3 = Σ−1 Φ−1 Bc2, (7)

where Φ−1 is the azimuthal rotation matrix in the spin plane (around the spin axis in the coord-2 system) and Σ−1 is the65

transformation matrix to orient the z axis in the direction to the sensor package Pz direction. Again the matrices without

inversion are used for the reconstruction of the model magnetic field in the calibration.

4. The field is further transformed into the spinning, non-orthogonal sensor-axis-aligned system (the coord-4 system in

Fig. 1) by correcting for the elevation angles θ1 (between the sensor-1 and the sensor-3 directions) and θ2 (between the

sensor-2 and the sensor-3 directions) and also for the azimuthal separation angle φ12 (between the sensor-1 and sensor-270

projected onto the plane normal to the sensor-3 direction) to obtain the magnetic field components B1, B2, and B3 in

the directions of the sensor axes including the gains and the offsets. The magnetic field vector in the coord-4 system is

symbolically related to that in the coord-3 system as

Bc4 = G−1Γ−1 Bc3 +Os, (8)

where Γ−1 is the transformation matrix using three angles (θ1, θ2, and φ12), G−1 is the gain matrix, and Os is the offset75

vector.

5. Finally, in the calibration procedure, the above transformations are inverted to estimate the ambient field from the sensor

output. The estimated or reconstructed field is expressed the de-spun inertial coordinate system (the coord-5 system in

Fig. 1) with the spin-plane primary component (BX′ ), spin-plane residual component (BY′), and spin-axis component

(BZ′ ). The primed field expression in the coord-5 system (BX′ , BY′ , and BZ′ ) is identical to the model ambient field80
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BX, BY, and BZ in the coord-1 system if the calibration parameters are all accurately known. The model magnetic field

is reconstructed from the sensor magnetic field as

Bc5 = Ω Φ Σ Γ G(Bc4−Os) . (9)

If the calibration parameters are all known, the reconstructed field Bc5 restores the model field Bc1.

Note that the forward transformation is defined for the conversion of the sensor output (in the coord-4 system) into the magnetic85

field in the physically relevant system (the coord-1 system). In the error estimate study, the inverse transformation from the

coord-1 system to the coord-4 system is more instructive in order to compare the calibrated magnetic field vector in the coord-5

system with the model ambient field in the coord-1 system.
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Figure 1. Coordinate systems used in the magnetometer calibration error estimate.

The relation between the sensor-output magnetic field Bs = Bc4 (introduced in the coord-4 system) and the model ambient

field in the spinning frame Bc2 (introduced in the coord-2 system, Eqs. 3–5) is expressed by a set of transformation matrices90

G−1 Γ−1 Σ−1 Φ−1 and an offset vector Os as (Plaschke et al., 2019)

Bs = G−1 Γ−1 Σ−1 Φ−1Bc2 +Os. (10)

Here, the set of transformation matrices is composed of (1) the inverse rotation matrix around the spin axis Φ−1 by the rota-

tion angle φa, (2) the inverse rotation matrix Σ−1 correcting for the tilt of spacecraft spin axis to the Pz direction (transforming95

the coord-2 system into the coord-3 system), (3) the inverse conversion matrix Γ−1 (transforming the coord-3 system into the
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coord-4 system) and (4) the inverse gain matrix G−1. The sensor-output field is then corrected for the offset vector Os in the

sensor-axes directions. The matrices are constructed as follows (Plaschke et al., 2019).

Φ−1 =


1 φa 0

−φa 1 0

0 0 1

 (11)

Σ−1 =


1 0 σPx

0 1 σPy

−σPx −σPy 1

 (12)100

Γ−1 =


1 0 −δθ1

−δφ12 1 −δθ2
0 0 1

 (13)

G−1 =


(gGp)−1 0 0

0 g−1Gp 0

0 0 G−1a

 . (14)

The calibrated magnetic field vectors depend on the ambient magnetic field (Bp in the spin plane andBa along the spin axis)

and the following calibration parameters:

– gain ratio g between the two spin-plane sensors105

– absolute gains in the spin plane Gp and that in the spin axis direction Ga

– offsets in the three sensor directions, O1, O2, and O3

– spin axis tilt angles σPx and σPy to the angles in sensor package system (σPy is the angle between the sensor-3 direction

and the projection of the spin axis onto the sensor package Py–Pz plane; σPx is the angle of spin axis and the sensor

package Py–Pz plane)110

– deviation of elevation angles from 90◦ defined as δθ1 and δθ2, for the sensors 1 and 2, respectively

– deviation of azimuthal angle from 90◦ defined as δφ12

– rotation angle φa in the spin plane

Note that the orthogonality nearly holds such that the elevation and azimuthal angles exhibit only a small deviation from 90

degree,115

δθ1 = θ1−
π

2
∼ 0 (15)

δθ2 = θ2−
π

2
∼ 0 (16)

δφ12 = φ12−
π

2
∼ 0. (17)
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Also the tilt angles are small and close to zero,

σPx ∼ 0 (18)120

σPy ∼ 0. (19)

The relative gain and the two absolute gains are close to unity,

g ∼ 1 (20)

Gp ∼ 1 (21)

Ga ∼ 1. (22)125

The sensor output in the de-spun coordinate system (including the temperature dependence) is expressed up to the second

lowest-order of the spin frequency as (Eqs. 24–26 in Plaschke et al., 2019):

BX′ =
Bp(1 + g2)

2gGp

+

[
O1 +

Ba(σPx− δθ1)

gGp

]
cosωt

−
[
O2 +

gBa(σPy− δθ2)

Gp

]
sinωt130

+

[
Bp(1− g2)

2gGp

]
cos2ωt

+
Bp

2Gp

[
gφa−

φa
g

+ g δφ12

]
sin2ωt (23)

BY′ = − Bp

2Gp

[
1 + g2

g
φa + g δφ12

]
+

[
O2 +

gBa(σPy− δθ2)

Gp

]
cosωt135

+

[
O1 +

Ba(σPx− δθ1)

gGp

]
sinωt

− Bp

2Gp

[
gφa−

φa
g

+ g δφ12

]
cos2ωt

+

[
Bp(1− g2)

2gGp

]
sin2ωt (24)

BZ′ =
Ba

Ga
+O3−

BpσPx

Ga
cosωt+

BpσPy

Ga
sinωt (25)140

Here, the magnetic field vector (BX′ , BY′ , BZ′) is represented in the coord-5 system and hence ideally reproduce the model

magnetic field in the coord-1 system. That is, the z-component is in the direction of spacecraft spin axis, the x-component is is

in the spin plane. The y-component is also in the spin plane but should ideally not contain the ambient field. If the calibration

parameters were all accurately known, the residual component (BY′ ) would be zero, and the ambient field reproduced or
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reconstructed by the calibration has the spin-plane component (BX′ ) and the spin-axis component (BZ′ ). The directions of145

the three components are orthogonal if the calibration is accurate. Non-orthogonality may arise due to the uncertainties in the

calibration parameters. The spacecraft spin frequency ω (as angular frequency) is assumed to be well known. t denotes the time

in Eqs. (23)–(25). We also assume that the calibration parameters do not change over the time or along the spacecraft orbit.

2.1 Spin-plane primary component

The systematic error of magnetic field data is analytically derived by perturbing the calibration equations (Eqs. 23–25). The150

error in the X′ component (spin-plane primary component) is denoted by ∆BX′ . The spin-plane primary component is assumed

to be aligned with the ambient field direction in the spin plane after calibration. On the assumption of the constant spin

frequency (ω = const.), the error ∆BX′ is derived by perturbing Eq. (23) as follows:

|∆BX′ | ≤ max(∆O1, ∆O2) +Bp ∆

(
1

2Gp

(
1

g
+ g

))
+Ba max

(
∆

(
1

gGp
|σPx− δθ1|

)
, ∆

(
g

Gp
|σPy− δθ2|

))
155

+Bp max

(
∆

(
1

2Gp

∣∣∣∣1g − g
∣∣∣∣) , ∆

(
1

2Gp

∣∣∣∣1g − g
∣∣∣∣φa + g δφ12

))
(26)

Here, the function max(x,y) returns the larger value from two variables, x and y, and is defined as

max(x,y) =
1

2
(x+ y+ |x− y|) (27)

The function max(x,y) takes the largest amplitude from an elliptically-shaped time series signal such as xcos(ωt)+y sin(ωt).

After differential calculus (see Appendix), the expression of error ∆B′X is arranged to that of calibration parameters (gains,160

offsets, and angles):

|∆BX′ | ≤ max(∆O1, ∆O2)

+Bp
1

2G2
p

[(
1

g
+ g

)
+

∣∣∣∣1g − g
∣∣∣∣ max(1, φa)

]
∆Gp

+Ba
1

G2
p

max

(
1

g
|σPx− δθ1| , g |σPy− δθ2|

)
∆Gp

+Bp

[
1

2Gp

∣∣∣∣1− 1

g2

∣∣∣∣+ 1

2Gp

(
1

g2
+ 1

)
max(1, φa) + δφ12

]
∆g165

+Ba
1

Gp
max

(
1

g2
|σPx− δθ1| , |σPy− δθ2|

)
∆g

+Ba
1

Gp
max

(
∆σPx

g
, g ∆σPy

)
+Ba

1

Gp
max

(
∆(δθ1)

g
, g ∆(δθ2)

)
+Bp

1

2Gp

∣∣∣∣g− 1

g

∣∣∣∣ ∆φa

+Bp g ∆(δφ12). (28)170
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It is useful to introduce the following variables to simplify the notations:

∆OS1/2 = max(∆O1,∆O2) (29)

∆σPx/y = max(∆σPx,∆σPy) (30)

∆(θS1/2) = max(∆(δθ1),∆(δθ2)) (31)

If the gains (both absolute and relative ones) are close to unity (g ' 1, Gp ' 1) and the misalignments are small (σPx� 1 rad,175

σPy� 1 rad, δθ1� 1 rad, δθ2� 1 rad, δφ12� 1 rad), Eq. (28) is simplified with the leading terms:

|∆BX′ | ≤ ∆OS1/2

+Bp (∆Gp + max(1, φa)∆g+ ∆(δφ12))

+Ba

(
∆σPx/y + ∆(δθS1/2)

)
. (32)

We assume max(1, φa) = 1 (which is realized when φa ≤ 1 holds), then Eq. (32) is further simplified into a more practical180

form:

|∆BX′ | ≤ ∆OS1/2

+Bp (∆Gp + ∆g+ ∆(δφ12))

+Ba

(
∆σPx/y + ∆(δθS1/2)

)
. (33)

2.2 Spin-plane residual component185

Derivation of the error in the Y′ component (which residual to the primary component after determination or reconstruction of

the ambient field in the spin plane) nearly follows that in the X′ component. Note that the Y′ component has only a tiny amount

of the ambient field because of its residual character. The Y′ component vanishes if the calibration is properly and accurately

done. After derivative calculations (see Appendix), the error of the residual component is estimated as

|∆BY′ | ≤ max(∆O1, ∆O2)190

+Bp ∆

(
1

2Gp

((
1

g
+ g

)
φa + g δφ12

))
+Ba max

(
∆

(
1

gGp
|σPx− δθ1|

)
, ∆

(
g

Gp
|σPy− δθ2|

))
+Bp max

(
∆

(
1

2Gp

∣∣∣∣1g − g
∣∣∣∣) , ∆

(
1

2Gp

∣∣∣∣1g − g
∣∣∣∣φa + g δφ12

))
(34)
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Equation (34) is sorted to the errors of calibration parameters as:

|∆BY′ | ≤ max(∆O1, ∆O2)195

+Bp
1

2G2
p

[(
1

g
+ g

)
φa +

∣∣∣∣1g − g
∣∣∣∣ max(1, φa)

]
∆Gp

+Ba
1

G2
p

max

(
1

g
|σPx− δθ1| , g |σPy− δθ2|

)
∆Gp

+Bp

[
1

2Gp

∣∣∣∣1− 1

g2

∣∣∣∣φa +
1

2Gp

(
1

g2
+ 1

)
max(1, φa) + 2 δφ12

]
∆g

+Ba
1

Gp
max

(
1

g2
|σPx− δθ1| , |σPy− δθ2|

)
∆g

+Ba
1

Gp
max

(
∆σPx

g
, g ∆σPy

)
200

+Ba
1

Gp
max

(
∆(δθ1)

g
, g ∆(δθ2)

)
+Bp

1

2Gp

[(
1

g
+ g

)
+

∣∣∣∣g− 1

g

∣∣∣∣] ∆φa

+Bp 2g ∆(δφ12). (35)

Again, as done in the calculation of the X′ component, we take the leading terms (the first order terms) and obtain a simplified

expression of the error of residual component as:205

|∆BY′ | ≤ ∆OS1/2

+Bp (∆Gp + ∆g+ 2 ∆(δφ12) + ∆φa)

+Ba

(
∆σPx/y + ∆(δθS1/2)

)
. (36)

The differences from ∆BX′ (Eq. 33) are 2∆(δφ12) and ∆φa in the second term in Eq. (36). The appearance of ∆φa means that

the uncertainty of the magnetometer boom extension angle (the spin-plane rotation angle) causes a finite residual component,210

that is, the spin-plane ambient field is erroneously projected to yield the residual component Y′ by an angle of ∆φa. The effect

of ∆φa on the spin-plane primary field component is of the second order, while that on the residual component is of the first

order. According to to our estimate of the calibration parameter errors (Tab. 1), the first-order errors are in the range between

10−2 and 10−4 and the second order errors (due to the couplings of calibration errors with the other small parameters) are in

the range between 10−5 and 10−8.215

9



2.3 Spin-axis component

The error of spin-axis component is derived from Eq. (25) in a straightforward fashion:

|∆BZ′ | ≤ ∆O3 +Ba ∆

(
1

Ga

)
+Bp max

(
∆

(
σPx

Ga

)
, ∆

(
σPy

Ga

))
(37)

≤ ∆O3

+Ba
1

G2
a

∆Ga220

+Bp
1

G2
a

max(σPx,σPy) ∆Ga

+Bp
1

Ga
max(∆σPx, ∆σPy) (38)

For a nearly unit gain in the axial direction (Ga ' 1) and small misalignments (σPx� 1, σPy� 1), the expression of error

estimate is simplified into:

|∆BZ′ | ≤ ∆O3 +Ba ∆Ga +Bp ∆σPx/y. (39)225

Equation (39) indicates that an error occurs in the spin-axis direction (1) when the offset ∆O3 is present, (2) when the axial

(absolute) gain Ga has an uncertainty, or (3) when the spin axis angle relative to the sensor Z direction has an uncertainty

(which introduces a mixing or projection of the spin-plane component by the spin-axis component).

3 Estimate of calibration parameter errors

Nominal errors (as upper limits) of calibration parameters are summarized in Tab. 1 as lessons from Earth-orbiting spinning230

spacecraft Cluster (Escoubet et al., 2001; Baloghet al., 2001), THEMIS (Angelopoulos, 2008; Auster et al., 2008), and MMS

(Burch et al., 2016; Russell et al., 2016). The spin-plane-related calibration parameters are assessed in detail by Plaschke et al.

(2019). The accuracy studies on the spin-axis offset are presented by Alconcel et al. (2014), Frühauff et al. (2017), Plaschke

(2019), and Schmid et al. (2020). In the following, we review the uncertainties of calibration parameters.

3.1 Offset error235

The offsets in the spin plane (O1 and O2) are determined by the in-flight calibration. The error of spin-plane offsets on in-flight

calibration is, after Plaschke et al. (2019), minimized down to the sum of (1) spin-plane component of natural fluctuation at

the spin frequency (denoted by Fp), (2) projection of spin-axis ambient field by an error of spin-axis angle Ba∆σPx/y, and (3)

projection of spin-axis ambient field by an error sensor elevation angle Ba∆(δθS1/2):

∆OS1/2 ' Fp +Ba∆σPx/y +Ba∆(δθS1/2). (40)240

The lesson from the in-flight calibration for the THEMIS magnetometer data indicates that an offset value of about 0.1 nT or

better (i.e., smaller) can be reached using spacecraft spin (Plaschke et al., 2019).
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Table 1. Nominal errors of calibration parameters. Five lines from the top (spin axis angles, gain ratio, azimuthal angle, spin-plane offsets, and

elevation angles) represent the in-flight calibration for THEMIS (Plaschke et al., 2019). Nominal error of spin-axis offset may vary between

0.2 nT in the solar wind (Plaschke, 2019) and 1 nT in the magnetosphere from temperature drift studies by Alconcel et al. (2014) and Frühauff

et al. (2017). Absolute gains in the spin plane and along the spin axis are taken from the ground calibration experience. Spin-plane rotation

angle is taken from the magnetometer boom design for BepiColombo Mio.

Parameter Symbol Error upper limit

Spin axis angle (x or y directions) ∆σPx/y 10−4 rad

Gain ratio ∆g 10−4

Azimuthal angle ∆(δφ12) 10−4 rad

Spin-plane offset S1 or S2 ∆OS1/2 0.1 nT

Elevation angle S1 or S2 ∆(δθS1/2) 10−3 rad

Spin-axis offset S3 (solar wind) ∆O
(sw)
3 0.2 nT

Spin-axis offset S3 (magnetosphere) ∆O
(ms)
3 1 nT

Spin-plane absolute gain ∆Gp 10−3

Spin-axis absolute gain ∆Ga 10−3

Spin-plane rotation angle ∆φa 10−2 rad

The offset in the spin-axis direction cannot be determined from the spacecraft spin, but needs to be determined in different

ways, for example, using additional measurements such as absolute magnetic field magnitude (Nakamura et al., 2014; Plaschke

et al., 2014) or using plasma physical properties such as the nearly-incompressible fluctuation nature in the solar wind (Hedge-245

cock, 1975; Leinweber et al., 2008), the highly-compressible fluctuation nature in which the fluctuations are nearly aligned

with the ambient field (Plaschke and Narita, 2016; Plaschke et al., 2017), or the magnetic null environment in diamagnetic

cavities around comets (Goetz et al., 2016a, b). The uncertainty in the spin-axis offset can empirically be minimized to 0.2 nT

when using the solar wind fluctuations (Plaschke, 2019) and the mirror-mode fluctuations (Plaschke and Narita, 2016; Frühauff

et al., 2017). The accuracy of spin-axis offset determination can be improved when a larger amount of data is available. An250

accuracy of 0.5 nT or 1.0 nT is considered as representative using the mirror-mode fluctuations (Schmid et al., 2020). It is also

worth noting that the offset drift is up to 1 nT per year as lessons from Cluster (Alconcel et al., 2014) and THEMIS (Frühauff

et al., 2017), which may be used as a nominal value of spin-axis offset error when the spacecraft stays in the magnetosphere

and the in-situ offset determination using solar wind or mirror-mode fluctuations is not possible.

3.2 Gain error255

The error of gain ratio in the spin plane is minimized to the natural fluctuation amplitude at the second harmonic of spin

frequency in the spin plane (denoted by F2p) relative to the spin-plane ambient field Bp (Plaschke et al., 2019):

∆g ' F2p

Bp
(41)
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The gain ratio can be determined to a reasonably accurate level using the spacecraft spin, down to an uncertainty of about 10−4

(Plaschke et al., 2019). It is true that the gain ratio in the spin plane g is related to the sensitivity measurements during the260

ground calibration through:

g2 =
Sx

Sy
, (42)

where Sx and Sy are the sensitivity (absolute gain) of the two spin-plane sensors, but the gain ratio obtained from the in-flight

calibration is sufficiently accurate (∆g ' 10−4) in practical applications.

3.3 Sensor axis non-orthogonality265

Sensor axis non-orthogonality includes errors of the elevation angles ∆(δθ1) and ∆(δθ2) and azimuthal angles between S1

and S2 ∆(δφ12). The error of elevation angles ∆(δθ1) and ∆(δθ2) is, after Plaschke et al. (2019), minimized to the sum of (1)

natural frequency at the spin frequency relative to the ambient spin-axial field, (2) offset error relative to the ambient spin-axial

field, and (3) uncertainty of the spin-axis angle as

∆(δθS1/2)' Fp

Ba
+

∆OS1/2

Ba
+ ∆σPx/y. (43)270

The elevation angles ∆(δθ1) and ∆(δθ2) are the angles between the sensors S1 and S3, and that between S2 and S3, respec-

tively. The angle uncertainties∆(δθ1) and ∆(δθ2) can be obtained both from the ground calibration and from the in-flight

calibration. Errors of the elevation angles are about 10−3 in the in-flight calibration (Plaschke et al., 2019).

The azimuthal angle deviation δφ12 is also related to the ground-calibrated sensor angles ξ12, ξ13, and ξ23. It is straightfor-

ward to show, by using the trigonometric relations, that the relation is275

sin(δφ12) = sin(δξ12) + sin(δξ13)sin(δξ23) (44)

For smaller deviation angles of φS12, ξ12, ξ13, and ξ23 (i.e., if the sensors are nearly orthogonal to one another), the relation is

simplified into

∆(δφS12)'∆(δξ12). (45)

The azimuthal angle δφS12 can thus be obtained both from the ground calibration and from the in-flight calibration, and its280

uncertainty can be sufficiently minimized down to about 10−4 rad in the in-flight calibration (Plaschke et al., 2019).

3.4 Misalignment to the spacecraft reference direction

Angular deviation of the the spin axis from the normal direction of the sensor x–y plane is characterized by two angles, σPx

and σPy. The error of misalignment angles σPx and σPy is estimated as the ratio of the spin-axis natural fluctuation amplitude

at the spin frequency to the spin-plane ambient field,285

σPx/y '
Fa

Bp
, (46)
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and the value of σPx/y is empirically about 10−4 rad (Plaschke et al., 2019). The angles σPx and σPy need the determination

or knowledge of spacecraft spin axis, and cannot usually be evaluated during the ground calibration of the sensors.

The remaining angle is the rotation angle in the spin plane The rotation angle can be determined in flight using Earth’s

magnetic field model in the case of Earth-orbiting spacecraft, and the method works better in a high-field environment. For290

example, the rotation angle is determined to an accuracy of 0.5◦ or better when using the magnetic field data around the perigee

with a field magnitude of about 8000 nT. In-flight determination of the rotation angle is meaningful when the accuracy in the

in-flight method is better than the knowledge from the boom design with ground verification. We take the case of BepiColombo

Mio magnetometer because the magnetometer boom extension direction is known to be within an uncertainty of 0.5◦ (which

gives ∆φa = 8.7×10−3 rad' 10−2 rad) from the spacecraft design and ground verification. As we will see in the next section,295

the uncertainty of rotation angle in the spin plane plays an important role in the final error estimate in a high-field environment.

4 Combined errors of calibrated magnetometer data

The individual error sources are combined using the first-order expressions (Eqs. 33, 36, and 39) to evaluate the error of

calibrated magnetometer data for the nominal parameters (Tab. 1). Here, the errors represent the upper limits of the three

magnetic field data in three directions (spin-plane primary, spin-plane residual, and spin-axis components). For a practical300

purpose, the combined errors in Eqs. (33), (36), and (39) are reformulated in an approximate form using the values given in

Tab. 1:

|∆Bx′ | ≤ 0.1 [nT] + (Bp +Ba)× 10−2 (47)

|∆By′ | ≤ 0.1 [nT] + (10Bp +Ba)× 10−3 (48)

|∆Bz′ | ≤ 0.2 [nT] + (Bp +Ba)× 10−3. (49)305

The combined errors are graphically displayed in Fig. 2 as a function of the ambient magnetic field in the spin-axis direction

(0◦, data curves in black) and spin-plane direction (90◦, data curves in gray). Equations (33), (36), and (39) and Fig. 2 indicate

that the calibration error has two distinct domains: (1) the offset dominant domain in a low-field, up to an ambient field of about

1 nT when the field is along the spin axis (curves in black in Fig. 2), and up to 10 nT when the field is in the spin plane (curves

in gray in Fig. 2), and (2) the ambient field-dependent domain in a high field (above 1 or 10 nT). In the low-field case, the offset310

dominates the magnetometer data error and the offset value is expected in the range between 0.1 to 1 nT. In the high-field case,

the error grows linearly with the ambient field, and the relative error is expected between 1% (which comes from ∆φa) and

0.1% (which comes from the absolute gain error and the elevation angle error).

The error depends on the angle between the ambient field and the spacecraft spin axis. The gain errors, azimuthal angle error,

and boom misalignment are coupled to the spin-plane ambient field in the spin-plane components (Eqs. 33 and 36). The spin315

axis misalignment and elevation angle errors are coupled to the spin-axis field. The axial gain and the spin axis misalignment

are coupled to the spin-axis and spin-plane ambient field, respectively, in the expression of spin-axis component (Eq. 39).
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Figure 2. Error of in-flight calibrated magnetometer data for an error of magnetometer boom angle δφa ≤ 0.5◦ ∼ 10−2 rad (the case for the

BepiColombo Mio magnetometer) Curves in black and in gray represent for the axial ambient magnetic field (0◦ to the spin axis) and the

spin-plane ambient field (90◦), respectively.

The residual component has the largest uncertainty in Fig. 2, which comes from the uncertainty of spin-plane rotation angle

∆φa. For the reference purpose, Figure 3 exhibits the combined error estimate for the error of azimuthal angle smaller than

that for Fig. 2 by an order of magnitude, δφa ∼ 10−3 rad. In that case, the angle errors in the calibration parameters fall onto320

the nearly same order (between 10−4 rad and 10−3 rad). The final error is then below 1 nT (up to an ambient field of 300 nT)

even when the ambient field is along the spin axis.

The graphical representation of the error estimates is extended to an ambient field of up to 10,000 nT, and is plotted again

for different values of rotation angle (∆φa = 10−2 rad and ∆φa = 10−3 rad) in Figs. 4 and 5, respectively,

5 Conclusions325

Fluxgate magnetometers are widely used in a wide range of spacecraft missions for the studies of Earth’s and planetary mag-

netospheres, solar system bodies, and heliosphere. Magnetometer and the associated calibration process are necessarily ac-

companied by uncertainties that arise from various error sources. We conclude the error estimate on magnetometer in-flight

calibration as follows.

1. Errors appear both as absolute ones (which are the offsets) and as relative ones (angle errors, gain errors). First-order330

expressions (Eqs. 33–39) (also graphically displayed in Figs. 2–5) are of practical use, and show that the offset errors
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Figure 3. The same plot style as Fig. 2 but for the improved error of magnetometer boom angle δφa ≤ 0.05◦ ∼ 10−3 rad.

Figure 4. The same plot style as Fig. 2 but for an extended ambient field up to 10,000 nT.

dominate in a low ambient field (typically below 10 nT) while the relative errors (proportional to the ambient field)

dominate in a high ambient field.

15



Figure 5. The same plot style as Fig. 3 but for an extended ambient field up to 10,000 nT.

2. The largest uncertainty sources are (1) the spin-axis offset error and (2) the spin-plane rotation angle error. The offset

error appears as the dominant error in the low-field environment The spin-plane rotation angle error plays a major role335

in a high-field environment, particularly when the ambient field is aligned in the spin plane.

The uncertainties are obtained by perturbing the calibration parameters proposed by Plaschke et al. (2019). When simplified

into the first-order expression, the magnetometer data errors primarily represent the offset errors as constant and the errors of

gains and angles as relative error to the ambient field. Our derivation shows how the uncertainty sources combine through the

calibration process both linearly (which is dominant) and non-linearly through coupling of calibration parameter errors (which340

is of only secondary importance when the errors of calibration parameters are small). The error formulas are presented with

analytical expressions (Eqs. 33, 36, and 39), and are expected to serve as a useful tool in various applications, for example, to

further minimize the final error in designing a magnetometer with a boom and verifying the error thoroughly in the ground cali-

bration (particularly the spin-plane rotation angle) and to report the error of scientific studies which are based on magnetometer

data.345

It should be noted that the calibration parameters are treated as time independent in our study. In reality, however, the

calibration parameters (such as offsets and gains) depend on the temperature and can evolve along the orbit. Time-dependent

picture of the calibration parameters needs an extensive in-flight calibration experience.

The errors associated with the uncertainties in calibration parameters are studied in this paper. In a low-field environment

such as in interplanetary space the sensor nonlinearity (which originates in the nonlinearity of gain) is usually considered350

negligible. In a low Earth orbit the situation may be different. Modern sensors which are often double wound, and even triple

16



wound have excellent linearity (typically to an accuracy of about 10−4 per axis), but this is not always the case. The MAGSAT

single-wound sensor (Acuña, 1980; Langel et al., 1982), for example, suffered from about 1% nonlinearity, and the same sensor

design was used more recently on MESSENGER (Solomon et al., 2007; Anderson et al., 2007). With present thinking about

the possibility of deploying large fleets of small magnetometer cubesats with just as small sensors one might ask whether355

nonlinearity issues can rise again.
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Appendix A: Derivatives

Detailed derivative calculations in section 2 are presented here.

∆
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