

1	Low Z Elements of High Grade Metamorphic Rocks by PIXE Analysis-
2	A Comprehensive Review
3 4 5 6 7	Avupati Venkata Surya Satyanarayana ¹ , Mokka. Jagannadha Rao ² , Byreddy Seetharami Reddy ³ , 1 Department of Engineering Physics, Andhra University, Visakhapatnam, AP, India. 2 Department of Geology, Andhra University, Visakhapatnam, AP, India.
8 9	3 Department of Nuclear Physics, Andhra University, Visakhapatnam, AP, India.

10

Correspondence; Avupati. V. S. Satyanarayana, E-mail; savs.viit@gmail.com

11 Abstract

12 The majority of PIXE analytical study on geosciences has used 3 MeV proton beams for excitation and these 13 studies generally uses the K-X-rays for low Z elements and L-X-rays for high Z elements. The present study of 14 resulting spectra of metamorphic high grade rocks like charnockite can require striping techniques to resolve 15 interference problems between low and high Z elements on the applications of light energy-PIXE using Si (Li) 16 detector. In all forms of X-ray analysis, including thick-target light energy-PIXE, the X-ray signal is a dependent of 17 the ionization cross section and for low-energy protons, the cross section is high for the K shells of light elements 18 and the L shells of heavy elements in charnockite rock providing sufficient fluorescent yield for analytical purposes. 19 For Z > 55, 3 MeV protons cannot ionize K-shell electrons and analysis depends on the use of L-X-ray lines in 20 charnockite rock. Such L-X-ray spectra are complicated and can be affected by interferences K-X-rays from low Z 21 elements. The low Z elements present in the charnockite were identified by previous complementary analytical 22 techniques, but not identified in this study due to the above PIXE experiment limitations, and also particularly due to 23 the dimensions of Si (Li) detector because of low energy K-X-rays of the elements absorbed by the detector 24 window. Both interferences complexity and detector efficiency can lead to difficulties and ambiguity in the 25 interpretation of spectra of low Z charnockite composition, a problem that is exacerbated by uncertainty in relative 26 K-X-ray line intensities of low Z elements. From this investigation, the light energy-PIXE is ideal for the analysis of 27 low Z<55 elements except lower K-X-rays of Z<17 elements using K-X-ray lines without high Z elements present 28 in charnockite samples.

Keywords;- Metamorphic high grade rock, Thick-target LE-PIXE, Low Z elements, Complexity, Spectral overlap,
 Detector efficiency, Review.

31 Introduction

32 It has already been shown that the mineralogy and petrography of the charnockitie gneiss in the study area are 33 similar to that of metamorphosed igneous rocks with a basic affinity. Presence of characteristic minerals like 34 almandine garnet, pyroxenes indicates that the charnockitie gneiss is a high grade metamorphic rock., In this section 35 it is proposed to study its major and. trace element chemistry with an object of understanding more about its genesis. 36 Pyroxene granulites are reported in all Precambrian high grade terrains, but little is known about the chemical 37 characteristics of these rocks and their precursors. In the limited studies published on this problem both igneous and 38 sedimentary origins were reported from the Eastern Ghats granulites belt, India and have described the pyroxene 39 granulites from Visakhapatnam and also presented the minor, major and REE data in inferring the tectonic 40 environment and nature of magma. However, the present investigation supplements in establishing is the origin of 41 pyroxene granulites based on minor, major and trace element geochemistry using discriminate functions. .

2 | Page

42 Application of research tools such as X-ray diffraction, Electron Micro Probe Analysis, Scanning Electron 43 Microscopy, Particle Induced Gamma ray Emission, Neutron Activation Analysis, X-ray Fluorescence etc. on 44 routine basis are important supplements to present microscopic studies and analysis, although it should be stressed 45 that these traditional methods remain essential in any study. More recently other innovative beam technique PIXE 46 playing an important role in case of interesting geo chemical evaluation. Such technique permits detection limits of 47 trace elements in geological materials not believed possible some years ago, and with increasingly good resolution, 48 precision, accuracy and nondestructive. Very few researches were undertaken in geochemical analysis of geological 49 material by using PIXE analysis and a survey of previous literature shows that the PIXE technique has been used by 50 few several researchers for the multi elemental analysis of geological materials.

51 Some of geological materials are generally complex forms with mineral grains and inclusions. Geo-chemical 52 nature of the different regions has been significant for explaining the fundamental process of formation. The 53 characterization of mineral composition in terms of their texture chemical nature, morphology, and other physical 54 attributes is playing an important role in studies of mineral deposits of all types. The growing need for complete idea 55 about the mineralogical composition of a deposit determines that mineral characterization studies from an integral 56 and often critical part of investigations of deposits. In many instances these are very important advantages in trace 57 elements, minor and major elements while contracting models of the genesis of geological system, non destructive 58 techniques include atomic and nuclear processes.

59 H. Moseley experimented out the characteristic X-rays induced when materials were bombarded with cathode 60 rays. Since electrons are particles too, this is the first report of Particle Induced X-ray Emission. In the first 61 described the spectrometer and pointed out that his elemental samples were contaminated with impurities saying 62 presciently. The prevalence of X-ray lines due to impurities suggests that this may prove a powerful chemical 63 analysis. In his second, he systematically measured K and L line wavelengths or energies. But Charles Barkla is 64 responsible for the first recognition of characteristic X-ray lines of elements, it was in his paper that he first named 65 X-ray "fluorescence", and introduced the "K" and "L" notation: mid alphabet letters being used since both longer 66 and shorter wave-lengths were expected. The first report of modern PIXE using Si (Li) detectors was by Johansson 67 and others who suggested that trace-element detection limits could be as low as ng/g, and analysed geological 68 materials.

69 Among various elemental analytic tools (Olabanji, et. al., 1996, Felix, et. al., 2017) PIXE is the most 70 significant which are based on the use of the material to be quantified as a target for a beam of accelerated particles. 71 The determination of the characteristic energy emitted by the incident beam is then used to identify and quantify the 72 presence of the various elements in the material. In PIXE (Christopher, et. al., 2016) what are exploited are, in 73 particular, the X-rays emitted from the target material, whose energies are characteristic of the emitting atomic 74 species. A technical description then follows of how proper beams for PIXE are produced and of the experimental 75 setups commonly used. The X-ray detector characteristics, the electronics for constructing the energy spectra, and 76 the software processes for their deconvolution, leading to the extraction of quantitative data, are then briefly 77 described in case of analysis of low Z elements of Charnockite composition.

78 Moseley employed good resolution technique, wavelength dispersive spectroscopy which is a quite suitable of 79 detection differences in the atomic electron structure due to different bonding states. This valence information is 80 routinely used in the electron spectroscopy and absorption spectroscopy. It can also be used in PIXE, if a high 81 resolution detector is used which could be WDX or one of high resolution calorimetric EDS detectors. Of course 82 high resolution also allows disentangling of overlapping peaks which often accuse, especially for the L lines and is 83 one main reason of the degradation of sensitivity. Three physical effects have to be quantified to use PIXE for 84 analysis. 1) Ionisation cross-section 2) Fluorescence probability and 3) Mass absorption; these are all quite 85 complex and need describing separately. To this needs to be added the energy loss of the incident particles in the 86 sample, which is of course exactly the same as for the particle reaction technique. We should note here that PIXE

3 | Page

has its own ionisation physics but shares the fluorescence (or, equivalently, Auger) probabilities with the otheratomic excitation methods.

89 Among all the previous analytical methods, PIXE technique has its own merits and demerits (Javier, 2016) over 90 the other techniques. Using the analysis of the present study, it could be concluded the level of working of PIXE 91 (Satyanarayana, et. al., 2019) at low Z elements with respect to previous analytical tools of same location of the 92 charnockite samples by comparisons. An attempt also made to present the genetic aspect of the charnockites studied 93 by obtaining geo chemical data through review of the PIXE spectrum compare with previous analytical methods. 94 The aim of the present investigation is calculating the quantification values of all elements and also review in matrix 95 Precambrian samples of low Z elements in charnockite samples of hill near Visakhapatnam airport using particle 96 induced X-ray emission technique with 3 MeV.

97 2. Experimental Details

98 For PIXE analysis is at ion beam laboratory energy proton created by using 3 MV pelletron accelerator 99 facilities at institute of physics, Bhubaneswar, India. A 3 MeV, X-ray proton beam is magnetically focused proton 100 beam of 2 mm diameters beam current to as proton the line surface of the target. The samples are mounted on an 101 aluminum target holder with a ladder arrangement. Then the target holder is inserted into the scattering chamber and 102 the irradiation is carried out in vacuum conditions. The beam current is kept at 20 nA and this spot which may be 103 treated under box magnification is ultimately viewed optically by a 300 x microscope equipped with a change 104 completed device television camera. A large area 80 mm² X-ray detecting nominal resolution 160 eV at 5.9 keV is placed as close as possible to the specimen (25 mm). The specimen stage insulated to permit integration of the 105 106 incident beam charge.

107 With respect to the proton beam direction, the samples which are to be excited are positioned on the target 108 holder at an angle of 45⁰ in this scattering chamber. The target position with respect to the beam direction is adjusted 109 properly by viewing through a window beryllium of 0.1 mm thickness provided on the scattering chamber. The 110 direction is placed at an angle of 90⁰ with respect to the beam direction also placed in the chamber at an angle of 111 135⁰ with respect to the beam direction. The Si (Li) X-ray detection output is connected to system of data 112 acquisition which gathers the X-ray spectrum. The spectrum of each sample is noted for a sufficiently enough time 113 so as to achieve valuable statistics.

114 The Guelph PIXE (GUPIX) (Maxwell, et. al., 1995) software package is employed to analyze the spectrums 115 utilizing a standard Marquardt non-linear least square fitting procedure. This software package advantages is to 116 identify different elemental quantifications present in the target material and to calculate their relative intensities. 117 Using this GUPIX software package the X-ray intensities of different elements are changed into the respective 118 quantifications using a standardized technique involving fundamental parameters, pre-determined instrument 119 constants and input parameters such as solid angle, beam current etc. Comparing the quantification values of 120 Yttrium achieved in the present work with the known concentration of Yttrium added to the sample, the working 121 condition of a various experimental factors of input are verified (Satyanarayana, et. al., 2016).

To know the performance of experimental system and other parameters, in the similar experimental conditions, the PIXE spectrum is recorded with USGS standard certified reference material and the relative quantifications of multi-elements are quantified using Guelph PIXE software package. The relative quantifications of different elements in the present experiments are determined. The above standard samples are compared with the certified quantifications supplied by USGS. Good agreement at the performance of present experimental system and use GUPIX software package in the data analysis. (Kabir, 2007).

4 | Page

129 3. Related work

130 The first known occurrence of allanite from charnockite hill, Eastern Ghats, Visakhapatnam, India is reported. 131 X-ray powder data, chemical and spectrographic analysis (Rao and Babu, 1978) are presented. The allanite belongs 132 to a late paragenetic sequence in the coarse palingenetic charnockites and charnockite pegmatites which are derived 133 during granulite-grade metamorphism from the structurally emplaced igneous charnockites. Porphyritic basic 134 charnockite has been observed within the 'charnockite region' of the Eastern Ghats of the Precambrian formations of 135 India. From the X-ray and chemical data (Rao., et. al., 1969) the phenocrysts are considered, based on petrographic 136 and chemical evidence it is inferred that the basic charnockites of Chipurupalli area in Visakhapatnam district are 137 formed from tholeiitic magma as a gabbroic mass under deep seated plutonic conditions.

138 High energy proton induced X-ray emission (HE-PIXE) for samples in which high Z elements, all K X-ray lines 139 are well-resolved in the energy range of 60-80 keV and is not suitable for low Z elements due to the cross section 140 problems of light elements. When more heavy elements are present in the composition, K-lines of light elements 141 overlap with L-X-rays of high Z elements occurs, but the resolution of all K-line components for each element 142 should allow quantitative relative intensities to be derived. Additional complications also can arise from nuclear 143 reactions within a sample. Previous evaluations have overestimated the problems associated with .X-ray generation 144 in high-energy particle bombardment of geological materials. A brief comparison of low energy PIXE, high-energy 145 PIXE (Norman, et. al., 1995) indicates that high-energy PIXE (HE-PIXE) should be a useful to the methods of high 146 Z-element in geological material analysis only.

A high resolution Si (Li) detector (160eV FWHM at 5.9 keV energy) is employed in the experimental work
and to analyse the spectra, the Guelph PIXE (GUPIX) software package is used. The elemental quantification
identified in this Precambrian charnockite rock are Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Y, Zr,
Nb, Mo, Ru, Ag, Pb. From this observation (Satyanarayana., et. al., 2016) these minerals are proto crustal rocks.
These samples are to belong to a very important geological phase and further work at problematic elements like low
Z elements in geology of the metamorphic rock is indeed to firmly establish its exact ppm range.

153

154 It has been concluded that some of the elements present in charnockite samples by using PIXE analysis are 155 completely measured or could not be measured at all, due to various experimental factors including the matrix 156 composition [5]. It is felt that a proper study needs to be explaining the limitation of PIXE in certain low Z elements. 157 The high-grade metamorphic charnockite rocks selected are analyzed both by PIXE as well as complimentary 158 previous technique and the results are authenticated by using a USGS Basalt reference material and studies of 159 charnockite literature. It is believed that the accuracy of problematic low Z elements (Satyanarayana, et. al., 2019), 160 especially from high grade rock can be improved and the conditions of PIXE can be standardized for various 161 elements under different combinations. The reasons behind the working condition at low Z elements using Proton 162 Induced X- ray Emission have been established.

PIXE is one of the nuclear analytic tools employed to analyze the samples of geological materials routinely, but its validity in case of simple non-matrix materials may given good results depending on elements present in composition. The applicability in case of complex matrix material rocks, the validity of results is not accurate if target contains a wide range of elements and results obtained by PIXE as single methodologies, should compare with other analytic nuclear technique (Satyanarayana, et. al., 2020). Simultaneously, to obtain a wide range of results of the complex geological material by using any nuclear technique like PIXE, complimentary techniques should apply to the analysis in case of complex geological materials.

171

¹⁶³

173 **4. Results and Discussions**

Table-1; USGS Standard reference material (verified by PIXE)

Element	Certified Values ppm	±	Measured value ppm	±
Al	71600	800	-	
Ca	81700	1200	7834.26	93
Fe	86300	400	7982	74
K	64300	100	9830	80
Mg	43600	700	-	-
Na	16400	600	-	-
Р	61200	100	-	-
Si	233000	3000	-	-
Ti	16300	2000	3286	64
Ba	130	13	-	-
Ce	38	2	-	
La	15	1	-	-
Со	45	3	10.5	1
Cr	280	19	295.2	25
Си	127	7	133.23	10.14
Ga	21.7	0.9	22.52	2.6
Hf	4.1	0.3	-	-
Mn	1290	40	42	1.8
Nd	25	1.8	-	-
Ni	119	1.8	41.2	2
Rb	9.8	1.0	8.62	1.2
Sc	3.2	1	3.11	1
Sr	389	23	97.8	17
V	317	11	26.4	1.8
Y	26	2	8.27	2.1
Zn	103	6	119.48	8.1
Zr	172	11	67.48	3.9
Nb	18	2	13.46	3.1

175

176

Table-2; Analytical results of charnockites of present PIXE techniques

S.NO	Element	G1	G2	G3	G4	G5	G6	G7
1	Cl	394.1±16.5	399.6±17.1	379±16.5	403.5±19.5	546.9±23.5	383.7±16.7	462.6±20.6
2	K	4080±28.2	4187±25.1	4148±26.1	4246±29.3	6699±40.2	5458±27.1	5393±33.4
3	Ca	2229±25.9	2281±22.8	2637±25.6	2754±28.1	4120±23.5	2544±26.2	3091±32.1
4	Ti	1394±11.6	1271±9.3	1109±9.3	13.67±11.3	1590±13.8	1044±9.1	1510±12.4
5	V	17.92±4.8	23.69±4.1	7.85±4.0	BDL	37.78±6.0	10.79±4.0	11.55±12.4
6	Cr	16.63±2.3	38.53±2.1	15.16±2.1	16.93±2.5	17.71±3.1	9.118±2.1	14.13±2.6
7	Mn	18.62 ±3.9	34.71±3.7	34.31±3.7	33.68±4.1	47.43±5.3	27.36±3.5	27.03±4.5
8	Fe	5200±20.3	6575±21.0	5649±19.8	5838±22.2	7325±26.4	4905±17.7	6238±23.1
9	Ni	10.96±3.7	11.43±3.7	10.06±3.39	8.94±3.92	28.29±5.02	10.11±3.1644	16.5±4.3692
10	Cu	BDL	BDL	6.1±2.7	BDL	BDL	BDL	8.717±3.47
11	Zn	9.147±3.3	18.21±3.5	14.23±3.0	14.41±3.5	11.96. ±4.6	24.73±2.9	4.29±2.0
12	Se	6.3±65±2.5	BDL	BDL	0.9499±1.7	BDL	BDL	BDL
13	Br	4±2.2	12.17±2.93	11.82±2.85	13.47±6.2	10.32±4.031	8.61±2.455	9.08±3.503
14	Rb	48.87±6.0	42.08±6.1	62.73±6.0	34.71±6.2	56.14 ±7.9	34.58±5.3	52.46±7.1
15	Sr	38.5±5.4	28.6±4.6	44.61±4.9	27.65±5.2	38.02±6.5	33.91±4.9	35.53±6.1
16	Y	BDL	12.64±4.5	BDL	18.13±5.0	BDL	BDL	BDL
17	Zr	95.91±9.8	20.86±6.0	23.6±6.1	63.7±8.7	11.44±7.0	12.16±5.0	77.82±9.3
18	Nb	7.035±3.1	9.812±3.9	BDL	6.09±3.29	BDL	BDL	BDL±6. ±6.
19	Мо	BDL	24.34±6.3	BDL	10.84±4.04	BDL	BDL	BDL
20	Ru	BDL	BDL	BDL	BDL	BDL	9.977±3.59	BDL
21	Ag	BDL	12.36±9.0	BDL	BDL	BDL	BDL	BDL
22	Pb	32.93±15.6	38.35±17.3	17.68±7.7	28.82±11.2	41.58±14.48	BDL	24.49±12.5

177

178

181

Table-3; Analytical results of charnockites of same area of previous techniques and present PIXE

Element	Atomic	Present PIXE Analysis	Previous Chemical analysis of	Previous Chemical
Liement	Number	average of 7 samples	nyroxene granulites from	analysis of allanite from
	Rumber	average of 7 samples	charnockitic rocks	Air Port Hill charnockite
			Visakhapatnam (Rao, et. al.,	Visakhapatnam (Rao and
			1993)	Babu, 1978)
Li	3	ND	18.08ppm	-
Be	4	ND	-	<4
F	9	ND	0.400ppm	-
Na	11	ND	$Na_2O=1.591(Wt\%)$	-
Mg	12	ND	MgO=4.022(Wt%)	MgO=1.18(Wt%)
Al	13	ND	$Al_2O_3 = 18.137(Wt\%)$	$Al_2O_3 = = 14.79(Wt\%)$
Si	14	ND	$SiO_{2}=50.345(Wt\%)$	$SiO_{2}=31.24(Wt\%)$
P	15	ND	$P_2O_5=0.213(Wt\%)$	-
Cl	17	424.2+18.62ppm	0.130ppm	_
K	19	4887.28+29.91ppm	$K_2O=0.428(Wt\%)$	_
Са	20	2808+26.31ppm	$C_{a}O = 11.376(Wt\%)$	$C_{a}O=11.01(Wt\%)$
Sc	21	ND	23ppm	150ppm
Ti	22	1133.09+10.97ppm	$TiO_2=1.314(Wt\%)$	$TiO_{2}=1.62(Wt\%)$
V	23	18.26+5.88ppm	240ppm	$V_2 O_2 = 0.09 (Wt\%)$
Cr	24	18.31+2.4ppm	180ppm	70ppm
Mn	25	31.934+4.1ppm	MnO=0.089(Wt%)	MnO=0.28(Wt%)
Fe	26	5961.42+21.5ppm	$Fe_2O_3=1.123(Wt\%)$	$Fe_2O_3=5.10(Wt\%)$
10	20	5901.12_21.5ppm	FeO = 10.649(Wt%)	FeO=8.49 (Wt %)
Co	27	ND	74ppm	150ppm
Ni	28	13.755+3.89ppm	170ppm	66ppm
Cu	29	7.40+3.08ppm	262ppm	150ppm
Zn	30	13.85±3.25ppm	80ppm	140ppm
Ga	31	ND	36ppm	30ppm
Ge	32	ND	-	80ppm
Se	34	3.65±2.1ppm	-	-
Br	35	9.92±3.45ppm	-	-
Rb	37	47.36±6.37ppm	66.52ppm	-
Sr	38	35.26±5.37ppm	325ppm	480ppm
Y	39	15.385±4.75ppm	-	$*Y_2O_3 = 0.15$ (Wt%)
Zr	40	43.64±7.41ppm	78ppm	*ZrO ₂ =0.15(Wt%)
Nb	41	7.6±3.43ppm	-	900ppm
Мо	42	17.59±5.17ppm	-	60ppm
Ru	44	9.97±3.59ppm	-	-
Ag	47	12.36±9.0ppm	-	-
Sn	50	ND	-	*SnO ₂ =0.03(Wt%)
Ba	56	ND	338.40ppm	-
Hf	72	ND	3.23ppm	-
Та	73	ND	0.69ppm	-
W	74	ND	-	<40ppm
Au	79	ND	-	10ppm
Pb	82	30.64±13.13ppm	-	*PbO=0.04(Wt%)
Th	90	ND	7.07ppm	*ThO ₂ = 0.50(Wt%)
U	92	ND	2.83ppm	*U ₃ O ₈ =0.01 (Wt%)
REE	57 to71	ND	-	*(Ce,La,Nd) ₂ O ₃ =
				23.29(Wt%)

8 | Page

183

184 The PIXE analysis of the charnockite samples G1 to G7 collected from the interior of the Charnockite hill are 185 obtained by Si (Li) detector. These quantification values are presented with errors in table-2 assuming standard 186 deviation values (n) = 7 and BDL (Below Detection Limit). The results obtained from PIXE analysis-charnockite 187 composition compared with the previously experimented analytical tools (Rao, et. al., 1969, Rao, et. al., 1978, 188 Kamineni, et. al., 1982, Rao, et.al., 1993) shown in table-3 for review (Mac Arthur and Xin-Pei, 1991) of low Z 189 elements present in the complex matrix charnockite composition.

In this, an attempt is made to evaluate the working condition of PIXE at light atomic number elements with respect to the geochemistry of previously analyses charnockite samples. The results of charnockite obtained by PIXE analytical method for the elements testing have been authenticated by comparing these values with that of USGS standard material Basalt. The analysis of USGS standard, each element has been compared with USGS particularly low Z elements. So, the following table-1 presents the elements which are near to USGS standard elements having moderate error values and elements which are highly erroneous values not detected.

In the previous analytical results, the low Z elements in charnockite composition are started from analysis Li and Be, but these are not detected in this present PIXE at 3MeV spectrum because of low energy K X-rays induced from low Z elements in charnockite, and these are absorbed by detector window of the Si (Li) detection and in general PIXE experiments fit the elements for K X-rays, Z=6 to Z=60 nearly, for L-X-rays, Z=22 to 92, for M-Xrays, Z=72 to 83.

201

202 The smooth Si (Li) detection volume ranges from order of 10 mm diameter, and order of 5 inch thickness 203 depend on the achieved application. The smaller diameter detectors given good energy resolution of elements at low 204 characteristic X-ray energies, and the thicker detectors have higher detection efficiency at energies above 20 keV of 205 the charcteristic X-rays. The X-ray enters the cryostat through a thin Be window to reach the detector. The beryllium 206 windows of detection are typically range of 8-25.4 pm thick. The thickness of the window sets the lower energy 207 limit for photons that can be detection by the detector. The induced X-rays of the order of 2 keV energies of low Z 208 elements can be determined using this Si (Li) detector with the window thickness. Recently instead of beryllium 209 foils, very thin films of the order of 0.5 p of polycarbonate have been used which can withstand greater pressure, and 210 is resistant to environmental degradation. With these windows low Z elements like carbon (0.282 keV K X-rays) has 211 been measured (Szegedi, et. al., 1996).

212 The element Li have no X-ray and Be with X-ray energy $K\alpha = 0.108$ keV are not detected even though these 213 elements are previously detected in chemical analysis of charnockites. The next element F is a trace or minor 214 element in composition, the elements F emit the X-ray energy $K\alpha$ =0.677 keV (Satynarayana, et. al., 2020) but not 215 trace out in this PIXE analysis due to the low characteristic X-ray energy less than 2 keV and Na (K α =1.040 keV) to 216 P (K α =2.010 keV) are also not detected in the present study due to above detection limits, but these elements 217 analyses by previous analytical methods. Actually, the analysis is started in the PIXE spectrum from element S 218 $(K\alpha=2.309)$ with the present detector, but S is not present in charnockite composition. Similarly the major elements 219 Na, Mg, Al, Si, and minor or trace P are present in the composition of charnockite by previous analytical techniques, 220 but not detected in this investigation due to PIXE experiment limitations and hence low characteristic energy K-X 221 rays of the elements absorbed by the detection window.

222 Therefore, PIXE unable to detect the low Z elements present like, Li, B, F, Na, Mg, Al, Si and minor P in 223 charnockite composition due to detector limits. X-rays below or near the chlorine are not identified because they are 224 absorbed in either the detector window atmosphere or though any filter used. A possible limitation to running in this 225 configuration is that low energy X-rays from low Z elements attenuated in air. The spectrum in above started from 226 peak of Cl because K α = 2.622 keV, because detector configrated limits starts from Cl element. From the element Cl

9 | Page

onwards, all the elements within the detector limits of X-rays, and all are detected in above spectrum of chanockitesample by using PIXE.

229

230 From this investigation of charnockite matrix composition, the idea of production cross sections of X-ray for 231 low Z elements is required for quantitative analysis by PIXE method. This is a simplest and basic widely accepted 232 universal expression of ionization cross-section for proton induced X-ray emission. The cross-sections of K and L 233 shell ionization basing of incident proton energy and target atoms. In this, the K-shell X-ray production cross section 234 should take an account for low-Z elements in the composition, are comparable when bombarded by incident slow 235 protons with energies. All these results have significant for fundamental physics considerations as well as for low-236 energy PIXE (probably 1MeV-3MeV) and in general, for application in which thick targets need to be used. The 237 applicability of these energies has certain advantages, especially when analyzing light elements because the 238 bremsstrahlung background in the spectra is much lower and better within this proton energy region.

In thick-target LE-PIXE (E: 2-5 MeV), and all forms of X-ray analysis, the X-ray induced is a function of the ionization cross section for the K, L, and, M electron shells. Numerical values of cross-sections for ionization measured data of protons are available in the literature. The cross-section values coming from ECPSSR theory for K-shell ionization are generally used in PIXE. The L-shell case is relatively more problematic than the K-shell case. It is required to convert calculating X-ray production cross-section to ionization cross-sections using L-sub shell fluorescence and Coster-Kronig yield.

245 For protons with low energy, the cross section is high for the K shells of low Z elements and the L shells of 246 high Z elements, providing sufficient fluorescent yield for analytical purposes. For heavy elements (Z > 55), protons 247 with low energy cannot ionize K-shell electrons (Hajivaliei, et. al., 1993) and analysis depends on the use of L X-ray 248 lines from the above results. Such L X-ray spectra (Z > 55) are complicated and can be affected by interferences K 249 X-rays from lighter elements greater than Z=20 in the above results of chanockite samples. Both spectral 250 interferences (Pantelica, et. al., 2011) and complexity can lead to problematic and ambiguity in the interpretation of 251 K-line spectra of low Z>20 elements, a problem that is exacerbated by uncertainty in relative L X-ray line intensities 252 of hiher Z elements. Also in thick-target light energy-PIXE, the proton beam is stopped by the sample, producing an 253 important background radiation from proton scattering and matrix effects; this can obscure X-ray signals from 254 elements present in low concentrations. Light energy-PIXE probes can provide in situ analysis with less spatial 255 resolution, and lower limits of detection than that obtained by previous charnockite electron probe microanalysis. 256 From the above results discussion of charnockite samples, light energy-PIXE is ideal for the analysis of trace 257 elements (Z < 55) except above Z<17 using K X-ray lines of elements present in the above charnockite samples.

258 The K lines are used for elements 17 < Z < 55 in the above charnockite, and L X-ray lines are used for Z >55. 259 Below Fe, the minimum detection levelincreases due to the increasing attenuation of the X-rays with low energy 260 3MeV protons. At the beginning of Z>55, the minimum detection level increases due to decreasing efficiency of 261 detection with increasing X-ray energy, compounded by decreasing X-ray yield with increasing Z. Normally PIXE 262 is experimented out with energy dispersive spectrometers since micro beams of protons are not intense enough to 263 exploit wave length dispersive spectrometers effectively. In order to protect the energy dispersive spectroscopy 264 detector from radiation damage by the scattered proton beam, an absorber has been placed in front of the detector, 265 which limits the detectable element to Z > 11 from previous literature. The greater penetration depth > 20 microns of 266 3 MeV energy protons typically used for PIXE also simplifies the X-ray yield measurements and self-absorption 267 corrections. The 20 nA beam currents of proton required for analysis do not usually cause important damage to the 268 specimens. Hence PIXE analytical method is a capable tool in its readily quantified, non-destructive, in situ multi-269 element analytical ability, with ppm sensitivity. PIXE commonly is in the 1 ppm range from the table-2 results and 270 less spatial resolution for various elements in matrix composition when compared to other techniques.

10 | Page

271 In general, for low Z elements, the PIXE experiments-geological materials, two X-ray detectors placed at 135° 272 geometry relative to the incident proton beam were used to detect the characteristic X-rays. Si (Li) detection with 273 AP.3 ultra-thin polymer window (SGX Sensortech) with active surface area 30 mm2 was employed to detect low 274 and medium Z elements energy X-rays (0.2-12 keV, Z > 5). A detector is protected by permanent magnet from the 275 scattered protons. Si (Li) with Gresham type Be windowed X-ray detection with an active surface area 30 mm2 276 equipped, adding kapton filter of thickness 125 µm was employed to measure the medium and high Z energy X-rays 277 (3-30 keV, Z < 19). The detection limit values decreased from 300 to 30 ppm in the Na to Ca range and for the trace 278 elements, the limit of detection varied from 10 to 50 ppm, which is typical for this arrangement.

At first, the composition of the matrix was calculated from the spectrum of the Si (Li) detector using the iterative matrix solution method, and then the spectrum of the Be windowed detector was analyses in trace element mode, using the previously obtained matrix and the measured irradiation dose. The X-ray energy range of 3.0–8.5 keV is common for the two PIXE detectors, therefore intensive X-ray lines within this range (e.g. Cl – below Ba) were used to normalize the elemental concentrations. Analyses of reference materials were carried out in the beginning and at the end of the measurement work in order to check the accuracy of the dose calculation and of the precision and accuracy of the PIXE system.

In the mineral prospecting-geo chemistry, using PIXE and complementary techniques, PIXE showed better results at middle Z elements except interferences, along with other complementary analytical tools (Satyanarayana, et. al., 2020). PIXE is very well suitable for the analysis of geo samples except few situations for low Z element analysis and high Z elements due to cross sections, the substituted analytic technique of particle-induced γ -ray emission (PIGE) or NRA used at the low Z elements (Ene, et. al., 2005).

291 5. Conclusions

From the investigation of PIXE, low Z elements detection is possible through K-X-rays. But these K-X-rays at low Z elements have less energetic which are lies in between 0 to 2 keV and detection is not possible in the above study though the Si (Li) detectors. Si (Li) detector with low diameter detection provide better energy resolution of elements at low characteristic X-ray energies, and the thicker detectors have better detection efficiency at energies of the X-rays above about 20 keV. The X-ray enters the cryostat through a thin beryllium window to reach the detector. The Be windows of detectors are typically 8-25.4 pm thick. The thickness of the window sets the lower energy limit for photons that can be detected by the detector.

299 The limitation of PIXE at 3 MeV is that below or near the Cl from spectrums of PIXE are not detected at all in 300 this work due to low energy X-rays from low Z elements, because they are absorbed in either the detector window, 301 atmosphere or through any filter used. Therefore the elements Li, Be, F, Na, Mg, Al, Si and P present in 302 Charnockites are not detected due to the above explanation.

303 In case of PIXE analysis, maximum number of the elements present in charnockites, interference is encountered 304 between the K α of next element X-ray and the K β of previous element X-ray, which have virtually the near or same 305 energy and also between the X-ray K lines of media elements and X-ray L lines of heavy elements. PIXE 306 experimental work on minerals has used 3 MeV proton beams for excitation and low-energy normally uses the K-X 307 rays for low Z and L X-rays for high Z analysis. The present resulting spectra of charnockite rock can require 308 striping techniques to resolve overlap problems between light and heavy elements on the applications of light 309 energy-PIXE using Si (Li) detector.

310 Si (Li) detection with AP.3 ultra-thin polymer window (SGX Sensortech) with active surface area 30 mm2 was 311 employed to detect low and medium Z elements energy X-rays (0.2–12 keV, Z > 5). A detector is protected by 312 permanent magnet from the scattered protons. Si (Li) with Gresham type Be windowed X-ray detection with 30

11 | Page

mm2 active surface area equipped adding kapton filter of thickness 125 μm was employed to detect the medium and
 high Z energy X-rays (3–30 keV, Z < 19).

Both complexity due to the interferences and detector efficiency can lead to problematic and ambiguity in the conclusion of spectra, a problem that is exacerbated by uncertainty in relative K X-ray line intensities of low Z elements. From this experimental investigation, the LE-PIXE is suitable for the analysis of low Z < 55 elements except very low Z elements (Z<17) only using K X-ray lines without high Z elements present in geological samples. PIXE is very well suited for the analysis of geological samples except few conditions like above and for low Z element analysis, hence the complementary technique of particle-induced γ -ray emission or NRA is required at complex matrix composition- low Z elements.

322 Acknowledgment

I deem it a privilege to express my deep sense of gratitude and heartiest thanks to my research director. I am
thankful to Prof A. Durga Prasad Rao, Head of the Department, Department of Nuclear Physics, Andhra University,
Visakhapatnam and teaching staff. The deep sense of gratitude and heartiest thank to my Prof. Y. Rama Krishna,
Head of the Department, Engineering Physics, Andhra University, Visakhapatnam and Prof. K. Chandra Mouli,
Senior Professor, Engineering Physics Department. I thank Dr. D. P. Mahapatro, Director, Institute of Physics, and
Bhubaneswar, providing accelerator facility to carry out the research work and for all amenities provided during our
stay at the institute of physics.

330

331 References

[1] Christopher, M. Heirwesh., John, L. Campbell., Gerald, K. Czamanske., (2016) Refinement of major, minor
element PIXE analysis of rocks and mineral. Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms. 366, pp. 40-50.

[2] Ene. A., Popescu, I. V., Badica, T., Besliu, C., (2005) Comparative study of PIGE, PIXE and NAA analytical
techniques for the determination of minor elements in steels. Romanian Reports in Physics. 51(5-6), pp. 595.

[3] Felix, S Olise., Oyediran, K Owoade., Solomon, A Adekola., Hezekiah, B Olaniyi., Christopher, B Mtshali.,
Wojciech, J Przybylowicz,, Carlos, A PVargas., Malik, Maaza, (2017) A combination of μ-PIXE, XRF, SEM-EDS
and XRD Techniques in the Analyses of Sn-Mine Tailings. Journal of Radiation and Nuclear Applications. 2, No. 3,
pp. 95-102.

[4] Hajivaliei, M., Adam, J., Green, T H., and Sie, S H., (1993) Proton microscope determined partitioning of Rb,
Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicates melts with variable F content.
Chem. Geol. 109, 29-49.

Javier, M., (1996) Low energy PIXE: advantages, drawbacks, and applications. Nuclear Instruments and
 Methods in Physics Research B: Beam Interactions with Materials and Atoms. 118, pp. 346-351.

[6] Kamineni, D.C., Bandari, M., Rao, A.T, (1982) Halogen-bearing minerals from Airport Hill, Visakhapatnam,
 India. American Mineralogist. 67, pp. 1001-1004.

[7] Kabir, M.H., (2007) Particle Induced X-ray Emission (PIXE) Setup and Quantitative Elemental Analysis (Ph.D.
Dissertation) Kochi University of Technology Japan.

[8] Mac Arthur, J. D., and Xin-Pei, Ma., (1991) A review of Particle Induced X-ray Emission in geology.
International PIXE. 1, pp. 311-338.

- [9] Maxwell, J. A., Teesdale, W., Campbell, J.L., (1995) The Guelph PIXE software package II. Nuclear
 Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms. 95, pp. 407-421.
- [10] Norman, M. Halden., John, L. Campbell., William, J. Teesdale (1995) PIXE analysis in mineralogy and
 geochemistry, The Canadian Mineralogist. 33, pp. 293-302.
- 356 [11] Olabanji, S.O., Haque, A. M. I., Zandolin, S., Ajay, T., Buoso, M. C., Ceccato, D., Cherubini., R.,
- 357 Zafiropoulos, D., Moschini, G., (1996) Applications of PIXE, PIGE, SEM and EDAX techniques to the study of
- geological samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with
 Materials and Atoms. 109-110, pp. 262-265.
- [12] Pantelica, Ana., Ene, Antoaneta., Gugiu, M., Ciortea, C., Constantinescu, O., (2011) PIXE Analysis of some vegetable species. Romanian Reports in Physics. 63, No. 4, pp. 997–1008.
- [13] Rao, A.T., and Babu., V.R.R.M., (1978) Allanite in Charnockites rock airport hill near Visakhapatnam, Andhra
 Pradesh. American Mineralogist. 63, pp. 330-331.
- [14] Rao, K. S. R., Rao, A.T., and Sriramada, A., (1969) Porphyritic plagioclase-hornblende-pyroxene granulite
 from charnockitic rocks of Chipurupalli, Visakhapatnam district, Andhra Pradesh, South India, Mineral Geological
 Magazine. 37, No. 288.
- 367 [15] Rao, A. T., Rao, J. U., Yoshida, Masaru., (1993) Geochemistry and Tectonic Evolution of the Pyroxene
 368 Granulites from Visakhapatnam Area in the Eastern Ghats Granulite Belt, India Journal of Geosciences, Osaka City
 369 University. 36(7), p. 135-150.
- 370 [16] Satyanarayana, A. V. S., Ravi Kumar, S., Sharma, S. V. R. A. N., (2016) An application of PIXE technique to
- **371** Proto Crustal Rocks: Geo chemical evaluation of Granulitic Charnockites of Eastern Ghats, Andhra Pradesh, India.
- **372** Journal of Nuclear Physics, Material Sciences, Radiation and Applications. *3*(2), 147-155.
- [17] Satyanarayana, A. V. S., Jagannadhara, M., Chandra Mouli, K., Seetarami reddy, B., (2019) The Performance
 of PIXE Technique through a Geochemical Analysis of High Grade Rocks. Journal of Nuclear Physics, Material
 Sciences, Radiation and Applications. 7(1), 13-28.
- 376 [18] Satyanarayana, A. V. S., Jagannadha Rao, M., Chandra Mouli, K., Sai Satya Mounika, K., (2020) Performance
 377 of PIXE Technique at Elemental Analysis of Halogens in Charnockite Matrix, International Journal of Scientific
 378 Research in Physics and Applied Sciences. 8(4), pp.1-6.
- [19] Satyanarayana, A. V. S., Jagannadha Rao, M., Sai Satya Mounika, K., (2020) Need of Complementary
 Analytical Technique at PIXE-Complex Matrix Composition Analysis, International Journal of Scientific Research
 in Physics and Applied Sciences. 8(.3), pp.36-40.
- [20] Szegedi, S., Ibrahim, S. M., (1996) J. Radioanal. Nucl. Chem., Possible use of low voltage accelerators in PIXE
 analysis. pp. 201-210.

384 Conflict of Interest; Authors have no conflict of interest

385 Code and Data Availability;

- Satyanarayana, A V S., Jagannadharao, M., Chandra Mouli, K., Seetarami Reddy, B. (2020). The Performance of
 PIXE Technique through a Geochemical Analysis of High Grade Rocks. Journal of Nuclear Physics, Material
- Sciences, Radiation and Applications, 7(1), 13-28. https://doi.org/10.15415/jnp.2019.71002

Satyanarayana, A V S. Ravi Kumar, S and Sharma, S.V.R.A.N. (2016) An application of PIXE technique to Proto
Crustal Rocks: Geo chemical evaluation of Granulitic Charnockites of Eastern Ghats, Andhra Pradesh, India.
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 3(2), 147-155.
https://doi.org/10.15415/jnp.2016.32016

393 Competing interests;-

Sir, this is a part of research work at Andhra University, Visakhapatnam, and Andhra Pradesh, India. The topic related to material analysis by using PIXE technique and also the limitations of technique. The limitation arises due to selecting material which is very complex matrix material. Also it gives the idea where the PIXE fails to determine the elements, simultaneously gives the idea of another complementary technique which is used to give the complete analysis of the complex materials.

- 399 Authors have no conflict of interest
- 400 Funding;-
- 401 No funding, it is my own research work under the guidance of Prof. M. Jagannadha Rao

402 Authors' contributions;-

The first author Dr. A.V.S. Satyanarayana, being a Nuclear Physics graduate he is instrumental in the design of the experiment, sample preparation, selection of appropriate standards for the PIXE analysis, having discussions with the scientists of PIXE facility to come up with standard analytical conditions for the rock with complex matrix to be analyzed that is charnockite and compared with complementary present AAS & previous others. He contributed all the technical aspects of PIXE analytical work, including physically working with experts at PIXE facility.

409 The second author Prof. M. Jagannadha Rao is a Geologist having vast knowledge of Eastern Ghats from which 410 the analyzed Rock samples of charnockites are collected. His contribution is selection of standard samples from 411 field keeping in mind the sample location which is very important in understanding its genesis, based on the 412 geochemical data obtained from PIXE. He also suggested suitable international standards which are close to the 413 charnockite. Both the authors together finalized the data, including error calculation, interpretation and formatting 414 the paper.

415 The third author Prof. B. Seetharami Reddy is a Physicist having vast knowledge of Nuclear Techniques especially 416 in PIXE from which the analyzed Rock samples of charnockites are collected. His contribution is selection of 417 standard samples and analysis from field keeping in mind the sample location which is very important in 418 understanding its genesis, based on the geochemical data obtained from PIXE spectrum and experimental factors. 419 He also suggested suitable international standards which are close to the charnockite.

- 420
- 421
- 422
- 423
- 424
- 425