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Abstract.  

For measuring internal stresses in rock and soil masses, specifically on unstable slopes, the fiber Bragg grating (FBG) and 

optical time-domain reflectometer (OTDR) methods based on fiber sensing technology have disadvantages such as low 

spatial resolution, low measurement accuracy, and non-distributed measurements. This paper presents a quasi-distributed 10 

thrust measurement system based on an optical frequency domain reflectometer (OFDR). First, the optical fiber stress 

sensing head was designed based on the micro-bending effect of the optical fiber, the cubic spline interpolation method was 

then used to compensate for the nonlinear effects of the OFDR stress sensing system, the compensation effects of different 

software methods were compared and analyzed simultaneously, which significantly improved the resolution and spatial-

positioning capabilities of the OFDR sensing system, and error calibration was then performed through laboratory 15 

experiments of lateral stress. The test results showed that the OFDR sensing system achieved a spatial resolution of 20 cm 

using a 500 m test fiber (the resolution of an OTDR sensing system is generally approximately 1 m), the maximum 

measurement pressure can reach 1.059 MPa and the maximum relative error is 8.9%. Finally, the field engineering 

application was carried out in the Chenjiagou landslide in Fengjie County, Chongqing City, Three Gorges Dam, China. The 

application results showed that the system can accurately locate six fiber optic micro-bending stress sensors installed within 20 

the landslide body over a range of 0~420 m and can obtain the pressure values of their lateral thrusts. This system is a quasi-

distributed stress monitoring instrument that provides long measurement distances, high spatial resolutions, high sensitivities, 

and fast responses that can be used for unstable slopes, slope engineering, water conservation and hydropower dams, and 

tunnel chambers, and thus, has good engineering application prospects in the safety monitoring field. 

1 Introduction 25 

For monitoring of unstable slopes, slope projects, water conservation hydropower dams, and tunnel chambers, surface 

displacement monitoring and underground deep displacement and stress monitoring methods are predominantly used 

domestically and abroad (Tang et al., 2012; Bellotti et al., 2014; Scaioni, 2015). GNNS and InSAR, close-range 

photogrammetry, and 3D laser scanning methods are surface monitoring methods used for unstable slopes (Gili et al., 2000; 

Wright, 2004; Werner et al., 2007; Liu, 2014). These methods provide only basic data for the study of regional surface 30 

deformations of unstable slopes and the instability criteria for these methods are mostly based on displacement and 

deformation monitoring systems that cannot reflect the deformation and stress characteristics of deep rock and soil bodies. 

The deformation and development of a monitored body is a multi-dimensional and complex process. It is difficult to 

accurately detect the potential sliding position of an unstable slope and establish the corresponding relationships between the 

time parameters, displacements and force changes. Therefore, early warning and prediction of the disaster body movement 35 

cannot be accurately achieved. 

When increased deformation or a large local deformation of rock and soil occurs, inclinometer tubes deform sharply and 

drilling inclinometers cannot work using conventional monitoring methods. However, the sensing fiber in an optical fiber 

sensing system is able to work normally as long as it is not cut off; the sensing fiber contains many pressure-sensing points 
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in series. Moreover, the sensing fiber has strong resistance to scraping (Naruse et al., 2007). Among various methods, the 40 

optical time-domain reflectometer (OTDR), Brillouin time-domain reflection (BOTDR), and fiber Bragg grating (FBG) 

technologies have been applied for bridges, hydraulic engineering, construction, and geological hazard monitoring (Kee et 

al., 2000; Bao et al., 2002; Bernini et al., 2006). Kihara et al. placed optical fibers on the embankments of the Niyodo and 

Sendai Rivers in Japan and used polarized time-domain reflection to monitor the landslide displacements of the 

embankments and achieved good results (Kihara et al., 2002). Dehua Liu et al. established a mechanical model of the FBG 45 

structure substrate-protective, layer-sensing fiber, analyzed the factors affecting the measurement accuracy of the FBG 

sensor, theoretically deduced the strain transfer relationship between the structural matrix and the fiber optic sensor under the 

action of tension and three-point pressure, obtained an analytical solution, and then proposed measures to improve the 

measurement accuracy (Liu et al., 2006). The University of Electronic Science and Technology in China has used the OTDR 

technology to accomplish quasi-distributed monitoring of the inner thrusts of landslides and has conducted large-scale 50 

landslide monitoring in the Three Gorges Dam area (Zhang et al., 2006). Klar et al. used a distributed optical fiber 

component monitoring network to automatically detect disturbances, settlements, and other phenomena caused by tunnel 

excavation processes, and this optical fiber monitoring network provides a large amount of spatial distribution data and the 

tunnel mechanical model is analyzed and verified indoors using the measured optical fiber data (Klar et al., 2010). Surre et al. 

placed distributed optical fibers on the surface of a steel bridge in the form of steel fiber ribbons; the sensing unit included a 55 

bare fiber sensor and a new bonded fiberglass tape with embedded fiber strain measurement capability and thermal 

compensation; the AQ8603 BOTDR strain analyzer was used to test the strain and stress distribution of the bridge during the 

loading process (Surre et al., 2013). Bin Shi et al. conducted monitoring analyses and health diagnoses of a tunnel using a 

BOTDR fiber strain gauge, proposed the installation of sensor fibers and temperature compensation methods, and discussed 

the influence of environmental factors such as temperature and vibration on the measurement results (Shi et al., 2005). 60 

Minardo et al. used a BOTDR fiber strain gauge to perform static load tests on highway bridges and compared the data 

collected by fiber measurements with finite-element simulations and vibration-wire strain gauges to verify the effectiveness 

of the BOTDR method for monitoring large structural deformations (Minardo et al., 2011). 

At present, the main problems of the OTDR technology are lower spatial resolution, lower sensitivity, and lower 

measurement accuracies. Compared with the OTDR, BOTDR technology can achieve simultaneous measurements of strain 65 

and temperature and has the advantages of high sensitivity, high measurement accuracy, and distributed measurements. 

However, its optical path structure is complex, signal adjustment is difficult, and the cost of the demodulator is expensive; 

therefore, the engineering practicality is poor and it is difficult to popularize. Compared with the OTDR and BOTDR, the 

optical frequency domain reflection (OFDR) presents the advantages of quasi-distributed monitoring, high spatial resolution, 

high measurement accuracy, reliable performance, and strong anti-interference ability; therefore, the OFDR is suitable for 70 

internal stress monitoring of rock and soil masses during the entire process from creep to accelerated deformation. 

In this paper, the OFDR technology is used to measure the inner stresses of rock and soil masses. First, a fiber optic micro-

bending stress sensor was designed as the stress detection device and a detuning filter algorithm was used to compensate for 

the spatial measurement errors created using the nonlinear sweep frequency band of the light source. In laboratory tests, 

quasi-distributed stress measurements were realized within a sensing distance of 500 m. The spatial resolution was less than 75 

20 cm, the maximum measurement pressure reached 1.059 MPa, and the maximum relative error did not exceed 8.9%. Field 

engineering application results show that the system can accurately sense stress locations and magnitudes. 
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1,480~1,640 nm. To compensate for the nonlinear frequency sweep effect of the light source, an auxiliary interferometer 120 

structure with a fixed delay is added to the main interferometer structure where the fiber under test is located; both the 

interferometer structures are MZ interferometer structures (Wang, 2015). To improve the signal-to-noise ratio of the 

coherent OFDR signals, the balanced detector used is a Thorlabs PDB430C with a bandwidth of 350 MHz; the acquisition 

card uses a Spectrum M4i.4421 with four channels and the highest sampling rate for each channel is 250 MHz. Additionally, 

to suppress the polarization fading effect of the single-mode fiber, a polarization diversity receiving device has been added, 125 

the splitting ratio of the optical couplers OC1 is 95/5, OC2 is 99/1, and OC3, OC4, and OC5 are all 3 dB optical couplers, 

meaning that the splitting ratios are 50/50 for these couplers (Malatesta et al., 2000). To ensure that the wavelength scanning 

of the light source is synchronized with the data acquisition, the TTL trigger signal of the TSL-710 can be used as an 

external trigger signal for the data acquisition card. Since the transmission of light in the optical path takes time, the data 

initially collected by the acquisition card are actually the data from the previous scan period, so the trigger delay needs to be 130 

set for the acquisition card. The trigger delay time is determined by the optical path delay time. 

3 Design of a Nonlinear Effect Compensation Algorithm 

To address the problem of low spatial resolution of the OFDR for long-distance measurements, this section uses the cubic 

spline interpolation method to perform accurate phase estimations for the light source outputs and a short-time Fourier 

algorithm to obtain the time-frequency curve to determine the length of the delay fiber in the auxiliary interferometer. The 135 

nonlinear phase is then estimated by a high-order Taylor expansion to obtain the nonlinear phase of the intrinsic light. 

3.1 Cubic Spline Interpolation Method 

The cubic spline interpolation method is a type of one-dimensional interpolation method that is an algorithm which 

constructs a simple function on known discrete data and facilitates calculations of some unknown points in the interval. The 

interpolation function curve constructed by this method is smoother but slower in terms of calculation speed (Song et al., 140 

2012). As shown in Figure 6, the specific process for the cubic nonlinear spline interpolation for OFDR light source 

compensation is as follows: 

(1) Obtain the discrete normalized instantaneous optical frequency information ν1, ν2, …, νn from the beat signal of the 

auxiliary interferometer. At this time, the intervals between ν1, ν2, …, νn are uneven. 

(2) One-dimensional interpolation is performed on the original beat frequency data point x(νn) obtained by the main 145 

interferometer to get an interpolation curve; new uniform optical frequency interval points ν’ 
1, ν

’ 
2, …, ν’ 

n are then selected and 

the obtained interpolation curve is resampled to obtain a new data point x(ν’ 
k) for a uniform optical frequency interval. This 

process is shown in Figure 6. 

(3) The new data point x(ν’ 
k) is transformed into the distance domain XG(zn) by a standard FFT. 

 150 
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Figure 6: Sampling diagram of the cubic spline interpolation (the red hollow circles are the primary data points of the main 
interferometer with a non-uniform optical frequency interval, the blue curve is a one-dimensional interpolation curve, and the 

green solid circles are the resampled points with a uniform optical frequency interval). 

3.2 Simulation Analysis 

To verify the effectiveness of the cubic spline interpolation method in compensating for the nonlinear frequency sweep 155 

effect of the light source, this section uses LabVIEW software for simulation and then compares this simulation with the 

laboratory experimental data. 

Assume that the nonlinear phase of the reference light is e(t) = An∙cos(2πfnt), and An and fn are the amplitude and frequency, 

respectively. The frequency sweep rate γ(t) can be written as γ(t) = γ0 − (2πfn)2∙An∙cos(2πfnt), where γ0 is the linear frequency 

sweep rate and a constant term, (2πfn)2∙An∙cos(2πfnt) changes with time as a sinusoid that is the interference term. To 160 

represent the degree of fluctuation of the frequency sweep rate γ(t), the ratio of the amplitude (2πfn)2 An of the interference 

term of γ(t) to the constant term γ0 is defined as K. The larger the K value, the greater the degree of fluctuation of γ(t), 

indicating that the linearity of the frequency sweep of the light source is worse. In the simulation, the linear frequency sweep 

rate is taken as a fixed value γ0 = 625 GHz/s and the corresponding wavelength sweep rate is 5 nm/s (the central wavelength 

is 1,550 nm). Simultaneously, it is assumed that a strong reflection peak exists at a certain position on the optical fiber to be 165 

tested and the simulation function is shown in Equation 1. 

   2
0 0 0

1
( ) cos 2 cos 2 cos 2

2 n n n nI t t A f t A f t                      
  (1) 

To facilitate the simulation calculations, the amplitude I(t) is taken as 1. During the simulation, I(t) needs to be discretized; 

the sampling rate is set to 1 MS/s and the sampling time is 1 s. Additionally, it is assumed that the position of the strong 

reflection point along the optical fiber to be measured is at 20.55 m, and the corresponding group delay is τ = 2 × 10−7 s. 170 

According to the magnitude of the nonlinear effect, it is discussed as follows: 

(1) let An = 5 × 106, fn = 25 Hz and the group delay τ is still 6 × 10−7 s, corresponding to the fiber position 61.65 m; at this 

time the K value is still 0.2 and the other parameters are unchanged. The effect of the one-dimensional interpolation method 

before and after compensation is shown in Figure 7. Comparing Figures 7(a) and (b), it can be seen that the reflection peak 

broadens considerably when it is not compensated, and its interval is approximately 49.5~73.5 m. However, the reflection 175 

peak after compensation is extremely sharp, indicating that the spatial resolution of the system has been greatly improved. 

 

Figure 7: The one-dimensional interpolation method to compensate for nonlinear single points, An = 5 × 106, fn = 25 Hz, 
and τ = 6 × 10−7 s. (a) distance domain signal of the main interferometer without compensation; (b) distance domain 

signal of the main interferometer after compensation. 180 

(2) To test the compensation effect of the one-dimensional interpolation method for multiple reflection points, a second 

strong reflection peak position is added, namely τ1 = 4 × 10−7 s and τ2 = 6 × 10−7 s. At this time, the preset reflection point 
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positions are now at 41.10 m and 61.65 m. When uncompensated, as shown in Figure 8(a), the two reflection peaks overlap 

and the overlapping interval is observed at approximately 33.0–73.5 m. The position information of the two reflection points 

cannot be obtained at all and the system spatial resolution is seriously degraded. After compensation by the one-dimensional 185 

interpolation method, as shown in Figure 8 (b), the two reflection points are separate and the widths of their reflection peaks 

are significantly narrower. The corresponding fiber positions are also consistent with the preset positions. It is thus 

demonstrated that the cubic spline interpolation method effectively removes the phase noise in the light source and the 

compensation effect for multiple reflection points is still significant. 

 190 

Figure 8: One-dimensional interpolation method to compensate nonlinear double points, An = 5 × 106, fn = 25 Hz, τ1 = 4 
× 10−7 s, and τ2 = 6 × 10−7 s (a) the distance domain signal of the main interferometer without compensation (b) the 

distance domain signal of the main interferometer after compensation. 

For the case of the same simulation model, in the face of more severe nonlinear frequency sweeping effects of the light 

source, the one-dimensional interpolation method greatly improves the spatial resolution of the system, narrows the width of 195 

the reflection peaks significantly, and obtains the position information of the reflection points. As with single-point 

compensation, one-dimensional interpolation is performed on the same set of experimental data. Figure 9 shows the effects 

before and after compensation. 

 

Figure 9: The one-dimensional interpolation method compensates for the nonlinearity of the light source and the 200 
position of the reflection point of the test fiber is approximately 56 m. (a) distance domain signal of the main 

interferometer without compensation; (b) distance domain signal of the main interferometer after compensation. 

Figure 9(b) shows that after the cubic spline interpolation method, the problem of reflection peak expansion has been solved. 

There is an extremely sharp reflection peak at 56 m, the energy is concentrated, and the system spatial resolution is greatly 
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Figure 11: Distance domain images of the OFDR signals under different stresses as follows: (a) 5 kg, (b) 10 kg, (c) 15 
kg, (d) 20 kg, (e) 30 kg, (f) 54 kg, and (g) 77.5 kg. 230 

Due to the stress application, a reflection peak appears at this position, the loss difference can be obtained by averaging the 

amplitudes of the 100 points to the left and right of the reflection peak and subtracting them. The figure shows that with the 

continuous increase of the mass of the weight, the fiber is squeezed more by the pressing teeth, the larger the bending 

curvature radius generated, the more the Rayleigh scattering signal decreases. Simultaneously, greater stresses produce 

higher peak values for the reflection peak caused by the bending, which reduces the optical power received by the 235 

subsequent optical fiber and causes the overall reflection peak generated at the end of the fiber to decrease in amplitude. It 

can also be seen from Figure 11(g) that when the mass of the weight reaches 77.5 kg, the amplitude of the Rayleigh 

scattering spectrum after the stress application point is still greater than the noise amplitude, indicating that the measurement 

range of the system has not reached its limit. As the mass of the weight continues to increase, the Rayleigh scattering 
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The test results of the stress positions show good agreement with the positions of the sensors installed along the sensing fiber 

(the actual installation positions of the sensor are 40 m, 65 m, 90 m, 110 m, 140 m, and 160 m). Table 2 shows that there are 

six stress sensors along the testing fiber, and the measured positions and pressure values for each sensor are shown in Table 

2. 

Table2. Positions and measured pressure values of sensors of TL-01 305 

No. Installation position (m) Measured position (m) Location error (m) Measured pressure (MPa) 

1 40 41.752 1.752 0.04026 

2 65 66.213 1.213 0.05627 

3 90 88.910 1.090 0.0589 

4 110 109.585 0.425 0.04215 

5 140 139.518 0.498 0.09072 

6 160 161.501 1.501 0.08539 

5.2.2 Data analysis of the TK-02 monitoring site 

Figure 18 shows the OFDR signal measured by the TK-02 fiber that is connected to the fiber jumper. The start and stop 

positions of the testing fiber are 222.053 m and 421.506 m, respectively, and the length of the testing fiber is 199.453 m. The 

positions of the OFDR sensors and the pressure values subjected to lateral thrust can be obtained by processing the data of 

the OFDR signals, as shown in Figure 19. 310 

 

Figure 18: OFDR signal of the TK-02 testing fiber. 

 

Figure 19: Pressure positions and their values for the TK-02 testing fiber. 

Figures 18 and 19 show that the testing fiber exhibits obvious signal strength differences at the six positions that are 255.952 315 

m, 276.255 m, 296.933 m, 322.125 m, 352.520 m, and 378.568 m (including the 220 m optical fiber jumpers). There are 

obvious signal intensity differences at these locations and these are the differences caused by the stresses on the sensors. The 

signal strength difference with a strong reflection peak at 425.075 m is caused by Fresnel reflection at the end of the sensing 

fiber. 
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one-dimensional interpolation method discussed in Section 3. During the simulation process, I(t) needs to be discretized 345 

while considering the size of the nonlinear effect. 

(1) When the short-distance measurement is in the range 0–40 m, the nonlinear frequency sweep effect of the light source 

becomes larger without compensation as shown in Figure 21(a). When the NUFFT method is used for compensation, Figure 

21(b) shows that broadening phenomenon of the reflection peak owing to the nonlinear effect is greatly improved and there 

is a significant reflection peak at 20.55 m. Therefore, under short-range measurement conditions, the NUFFT method can 350 

effectively compensate for the nonlinear frequency sweep effect of the light source and improve the spatial resolution of the 

system. 

 

Figure 21: NUFFT method to compensate for the nonlinearity of the light source under short-range measurement 
conditions: An = 5 × 106, fn = 25 Hz, and τ = 4 × 10−7 s. (a) distance domain signal of the main interferometer without 355 

compensation; (b) distance domain signal of the main interferometer after compensation. 

(2) When the measurement distance increases to 80 m, a comparison of Figure 21(a) and Figure 22(a) shows that the width 

of the broadened reflection peak (with no compensation) further increases, indicating that when the measurement distance 

increases, the linear effect grows stronger. Figure 22(b) shows the result after NUFFT compensation. It can be seen that 

NUFFT effectively eliminates the phase noise of the light source and can clearly distinguish a strong reflection point around 360 

61.65 m. 

 

Figure 22: NUFFT method to compensate for light source nonlinearity under longer-distance conditions (a) distance 
domain signal of the main interferometer without compensation (b) distance domain signal of the main 

interferometer after compensation. 365 
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However, Figure 22(b) shows that the light source signal exhibits drastically changing noise after 76 m that may indicate the 

need for deconvolution when performing NUFFT operations. As shown in Figure 23, the Gaussian function spectrum W(zn) 

is the dividend in Equation (2) that shows a good concentration. Therefore, its value is small and is close to zero at long 

distances (e.g., after 76 m) and the divisor XG(zn) in Equation (2) is also close to zero at this distance. When two extremely 

small numbers are divided, this operation may cause major errors and even exceed the actual nonlinear phase noise. 370 

 

Figure 23: The form of the Gaussian function distance domain in the NUFFT. 

Similarly, the NUFFT method is used to compensate for the single and double reflection points. From the simulation results, 

we know that within a short measurement range (generally no greater than 40 m), the main interferometer shows a narrow 

reflection peak in the distance domain signal, which means the system spatial resolution has greatly improved. However, 375 

when the measurement distance exceeds 40 m, two minimal vectors, W(zn) and XG(zn), will occur for division when the 

NUFFT is deconvolved. There will be side-lobes around the reflection peak indicating that the phase noise has not been 

completely eliminated; therefore, using the NUFFT method for light source compensation will generate larger errors and 

risks in the long-distance measurements. 

Both the NUFFT and one-dimensional interpolation algorithms are resampling methods. These methods can achieve high 380 

spatial resolution for measurements over short distances. However, when the test distance increases, the difference between 

the test point delay on the main interferometer and the auxiliary interferometer delay becomes too large. Compared with the 

dechirp filter algorithm, the compensation effect is not as effective. When using the dechirp filter algorithm, the spatial 

resolution cannot be as high as when using resampling at short distances. Therefore, a compensation method combining a 

resampling method and de-slope filtering algorithm should be studied in the future work to improve the nonlinear 385 

compensation effects for the OFDR light source that can achieve higher spatial resolutions for both short and long-distance 

measurements. 

7 Conclusions 

This paper proposes a quasi-distributed thrust measurement system based on OFDR. By designing an optical fiber stress 

sensor based on the optical micro-bending effect, combined with a high-resolution and high-precision OFDR demodulator, 390 

and after a field engineering application on a landslide in the Three Gorges Dam area, quasi-distributed stress monitoring is 

accomplished with long measurement distances, high spatial resolutions, high sensitivities, and rapid responses. This paper 

provides a new concept and method for inner stress testing of rock and soil masses and can be extended to such safety-

related monitoring fields as unstable slopes, slope engineering, water conservation and hydropower dams, and tunnel 

chambers that have great practical value and application prospects. 395 
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The highlights of this paper are as follows: 

(1) Cubic spline interpolation is used to improve the spatial resolution of the OFDR sensor components. This algorithm 

compensates for the nonlinear effects of the light source, improves the resolution and spatial-positioning capability of the 

sensing system, and also improves the signal-to-noise ratio of the system. LabVIEW simulations and laboratory tests show 

that the OFDR sensing system achieves a spatial resolution of 20 cm in a 500 m testing fiber. 400 

(2) The OFDR sensing system is calibrated by conducting a lateral stress laboratory experiment. The maximum 

measurement pressure reaches 1.059 MPa and the maximum relative error is 8.9%. The field engineering application for the 

Chenjiagou landslide shows that the system can accurately locate multiple fiber micro-bending stress sensors installed in the 

landslide body within a range of 0–420 m and can obtain the pressure values of the lateral thrust. 

 405 
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