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Abstract. Air pollution is one of the world’s leading risk factors for death, with 6.5 million deaths per year worldwide attributed

to air pollution-related diseases. Understanding the behaviour of certain pollutants through air quality assessment can produce

improvements in air quality management that will translate to health and economic benefits. However problems with missing

data and uncertainty hinder that assessment.5

We are motivated by the need to enhance the air pollution data available. We focus on the problem of missing air pollutant

concentration data either because a limited set of pollutants is measured at a monitoring site or because an instrument is not

operating, so a particular pollutant is not measured for a period of time.

In our previous work, we have proposed models which can impute a whole missing time series to enhance air quality moni-

toring. Some of these models are based on a Multivariate Time Series (MVTS) clustering method. Here, we apply our method10

to real data and show how different graphical and statistical model evaluation functions enable us to select the imputation

model that produces the most plausible imputations. We then compare the Daily Air Quality Index (DAQI) values obtained af-

ter imputation with observed values incorporating missing data. Our results show that using an ensemble model that aggregates

the spatial similarity obtained by the geographical correlation between monitoring stations and the fused temporal similarity

between pollutants concentrations produced very good imputation results. Furthermore, the analysis enhances understanding15

of the different pollutant behaviours, and of the characteristics of different stations according to their environmental type.

1 Introduction

Time Series (TS) analysis has received much attention in recent decades due to its importance in many real-world applications

such as earthquake prediction (Di Bello et al., 1996), weather forecasting (Carbajal-Hernández et al., 2012), air pollution

forecasting (Du et al., 2020), or human activity recognition (Seto et al., 2015). Generally speaking, TS data can be described as20

a sequence of observations that a variable takes over time. When several variables are observed and recorded simultaneously,

this becomes a Multivariate Time Series (MVTS).
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The quality of the air in the UK is assessed based on five main pollutants. In this study we focus on the four main pollutants;

particulate matter less than 2.5 m in diameter (PM2.5) or less than 10 m in diameter (PM10), ozone (O3), and nitrogen dioxide

(NO2). These pollutants are measured hourly at various monitoring stations.25

The main challenge with analysing these pollutant TS is that not all the stations report all the pollutants. Even if a station

does, it may not measure a particular pollutant all the time due to instrument down-time. In our previous work (Alahamade

et al., 2021), we applied an intermediate fusion approach to fuse the distance between stations using the similarity of the four

pollutants. The similarity between pollutant TS was measured using Shape-Based Distance (SBD) between hourly pollutant

concentrations (TS), as we found that SBD is better than other measures on our dataset (Alahamade et al., 2020). Then we used30

the k-means clustering algorithm to cluster the stations based on the fused distance, we called that MVTS clustering. Our initial

clustering analysis showed that using the basic k-means with the fused distance gives very compact geographical clustering

that enhances our understanding of the UK’s air pollutants behaviours. Adding to that, using the fused distance to measure the

similarity between the pollutants helped us solve some of the uncertainty problems associated with missing pollutant values

as the MVTS clustering enables imputation even when no measurement is available for a given pollutant. This is because the35

multivariate nature of the clustering enabled a station to be allocated to a cluster based on the value of the other pollutants

measured.

Based on the clustering results and station geographical location, we proposed three models to impute the whole time series

for the missing pollutant at a given station. In this paper, we apply multiple model evaluation functions to assess which model

gives best results and to demonstrate the validity of our models.40

Our long-term goal is to reduce the uncertainty in air quality assessment by imputing all missing pollutants in the monitoring

stations. This will allow us to calculate new air quality indices that may/may not agree with the previous indices, that is the

observed indices that incorporate missing data. This in turn will help us to identify where more measurements can be beneficial.

We refer to our approach as time series imputation because we used the observed time series to impute missing time series

(whole TS) in stations where one pollutant is not measured but other pollutants are. In this process, we are not filling the miss-45

ing values within the time series (e.g. interpolating) but imputing a new TS. Also, we do not use predictive models hence we do

not consider this a prediction task. However, it could be argued that our task is close to spatial interpolation (Lam, 1983) even

though it is not completely based on spatial information, that is, we did not use any geographical information within the pro-

posed MVTS time series clustering. Geographical information, however, is used in the Nearest Neighbour approaches, which

are used in the ensemble proposed. Nevertheless, the main goal of the spatial interpolation is to fill in the gaps (points/locations50

with unknown measurements) using points with known values to cover a certain geographical area (Lam, 1983). Our goal is to

impute unmeasured pollutants (whole TS) in several stations where they are not measured using the fused similarity between

stations of other pollutants or using an ensemble of techniques including the MVTS clustering approach. We would argue that

our imputation approach incorporates some uncertainty by using a combination of values (within the clustering process and

within the ensemble) to produce the imputed value.55

The paper’s structure is as follows: Section 2 discusses some of the existing TS clustering methods and their application in

the air quality field. Section 3 gives a brief introduction of the air quality assessment in the UK and its challenges. Section
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4 discusses in detail all the methods we used to impute the missing pollutants and evaluate our proposed solutions. Finally,

in Section 5, we analyse the results of our imputation models. Then, we conclude the work with some final remarks and

indication for further developments in Section 6.60

2 Related work

In this section, we briefly review some representative research in clustering techniques and its application in air pollution

modelling. Data mining techniques have been widely applied to study the air pollution data; however, most of this research

focuses only on a single pollutant (univariate TS), while clustering multivariate time series remains a challenging task (Liao,

2005). Partitioning algorithms such as k-means and k-medoids are very common among works related to TS clustering and65

have been applied in many papers (e.g. Ignaccolo et al. (2008); Austin et al. (2013); Tuysuzoglu et al. (2019))

Austin et al. (2013) used the k-means algorithm to identify spatial patterns in air pollution data to cluster the USA cities

based on the similarity of their PM2.5 composition profiles, then characterise these clusters based on chemical characteristics,

emission profiles, geographic locations and population density. Ignaccolo et al. (2008) transformed the TS of pollutant daily

observations into a functional form to smooth the TS, then classified the air quality monitoring network in Northern Italy70

using the Partitioning Around Medoids algorithm (PAM) to cluster three individual pollutants, namely NO2, PM10, and O3.

Tuysuzoglu et al. (2019) applied different clustering algorithms such as k-means, Expectation Maximisation, and Canopy for

each air pollutants in the dataset (NO, NO2, SO2, PM10, and O3), then aggregated the clustering results based on majority

voting to identify one clustering solution for similar regions in terms of air quality.

On the other hand, there has been some research into similarity within MVTS. For example, Fontes and Budman (2017)75

proposed a MVTS clustering method based on extracted features from the univariate TS. In their work, Principal Component

Analysis (PCA) is used to measure the similarity between MVTS, and fuzzy k-means is used to cluster these TS. This clustering

approach was used for fault detection in a gas turbine. Zhou and Chan (2014) developed an algorithm for clustering MVTS by

discovering each TS’s temporal patterns. Their algorithm is based on k-means and aims to groups MVTS with similar temporal

patterns together into the same cluster. D’Urso et al. (2018) proposed robust fuzzy clustering models for MVTS based on an80

exponential transformation of the dissimilarities. This algorithm was applied to real-world data on the concentrations of three

pollutants (NO, NO2, and PM10) in the Metropolitan City of Rome for the problem of detecting pollution alarms.

In our previous work (Alahamade et al., 2020), we compared different TS distance measures and imputation techniques to

impute the missing observations and missing pollutants (TS). We found that using Shape-Based Distance (SBD) gives better

separated cluster than Dynamic Time Warping (DTW). Also, using MICE to impute the TS missing observations is better85

than using some single imputation methods such as Simple Moving Average (SMA). We used a univariate TS clustering using

k-medoids (PAM) to cluster stations and imputed the missing pollutants using the cluster average. In this work, we use the

k-means clustering algorithm and include a number of pollutants in the clustering, which make it MVTS clustering. This

clustering algorithm was proposed in Alahamade et al. (2021) where more details can be found. Here we extend that work
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by applying the imputation solution to real data and using extensive evaluation methods to demonstrate its effectiveness. This90

enables us to extend our understanding of pollutant behaviour.

3 Air Quality Assessment

We will study air pollution using the concentrations measured at the Automatic Urban and Rural Network (AURN) around the

UK. The stations in the network are automatic and produce hourly pollutant concentrations. The data is collected and stored,

then made directly available via the Web (DEFRA , 2021). There are 167 stations with different environmental types: rural,95

urban, suburban background, roadside, and industrial.

The Daily Air Quality Index (DAQI) represents air pollution levels in the UK. This index is reported based on the highest

individual DAQI derived for each of the five major air pollutants (O3, NO2, PM10, PM2.5, and SO2) based on their concen-

trations. If concentration data for some of these pollutants is not available, the DAQI is based on those pollutants for which

data is available. The DAQI is used to provide an indication of the air quality, and some associated information that may be100

used by at-risk groups as well as the general population (DEFRA , 2021). The DAQI is numbered from 1 to 10, and divided

into four bands; ‘low’ (1–3), ‘moderate’ (4–6), ‘high’ (7–9) and ‘very high’ (10). The air quality is negatively correlated with

DAQI index, meaning that a higher DAQI index represents worse air quality.

4 Methods

The MVTS clustering algorithm and our proposed imputation models were implemented in R, Version (3.5.2) and are fully105

explained in previous work (Alahamade et al., 2021). To provide a more robust testing scenario, we separate the ’model

building’ stage from the imputation testing stage. We use an initial data period of three years (2015-2017) as a training set to

build the clustering, and then impute on the next year (2018) of the TS to evaluate the goodness of fit.

4.1 Imputation Models of Missing Pollutant TS

For evaluation purposes, we assume each pollutant from each station is missing entirely and impute it. For any given station,110

j, to impute the values of missing pollutant P j
i , where i represents the different pollutants (1≤ i≤ 4), we use different models

under two main similarity criteria: the similarity using clustering solutions and the similarity using geographical distance.

The k-means clustering algorithm is used to group the stations based on their temporal similarity, which is the similarity

in time between the hourly pollutant concentrations using SBD as the temporal distance measure. This distance function is

implemented in ’dtwclust’ Package in R (Sarda-Espinosa et al., 2017). The geographical distance is used to find the spatial115

similarity between station locations. Adding to that, we use an ensemble model which calculates the median of all the previous

imputation models; this model aggregates the temporal and the spatial imputation using both the time series clustering and the

geographical location similarity. Then, we evaluate these models to select the one that gives the highest similarity to the real

values which are known. We explain these models in detail in the following sections:
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4.1.1 Imputation models using clustering results:120

Once a clustering of our stations is obtained, we can use the clustering solution to impute missing TS (pollutants). If station j

belongs to cluster Cx, (1≤ x≤ k, where k is the number of clusters) given the measured pollutants over time, then, to impute

pollutant Pi based on the clustering results, we use three models:

1. We impute the average of pollutant Pi in cluster Cx, which is the hourly average of pollutant Pi in all the stations that

fall in this cluster. We call this method Cluster Average (CA).125

2. We impute the average of pollutant Pi in cluster Cx, but using only stations with the same environment type to station

j within the cluster, such as ‘Background Rural’, ‘Background Urban’,‘Traffic’, or ‘Industrial’. We call this method

(CA+ENV). This is in recognition that the type of station may be important and result more similar pollutant concentra-

tions.

3. We impute the average of pollutant Pi in cluster Cx, for stations that belong to the same region. As defined by Defra130

(DEFRA , 2021) there are 16 regions in the UK for air quality assessment, such as Eastern, North Wales, East Midlands,

and the other UK regions; this method is called (CA+REG).

4.1.2 Imputation models by similarity using geographical distance:

First, we measure the geographic distance using Harvison metric, which calculates geographic distance on earth based on

longitude and latitude. We calculate the distance between station j and all other stations that measure pollutant Pi. Then to135

impute pollutant Pi for station j we use:

1. The nearest neighbour (1NN) using the Harvison based distance to station j; this method is called (1NN).

2. The average of the two nearest neighbours (2NN) to station j; this method is called (2NN).

4.1.3 Imputation model by ensemble:

In this approach, for a given station j, to impute pollutant Pi, we use the median value of all the imputed values from the140

previous models. Those are cluster average (CA), cluster average considering the station type (CA+ENV), cluster average

considering the region (CA+REG), first nearest neighbour (1NN), and the average of the two nearest neighbours (2NN). This

method is called (Median). This imputation approach may be computationally the most expensive as it needs for all others to

be computed, but ensembles have the potential to provide very powerful solutions by combining predictions.

4.2 Imputation model evaluation145

We evaluate how plausible the imputation is using different models by comparing truth values to imputed values. The models

evaluation are based on the test dataset, which is the 2018 data. As earlier mentioned we do this by taking each existing

TS for which we have values, one at a time, and consider them missing. We impute the whole TS by various models and
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compare that to the ground truth. We are evaluating our models against the real concentrations which contain missing values,

hence, we ignore all the missing values in this evaluation. For each model, we can average the different imputation models’150

behaviour from all the stations to establish the one that provides imputed values closest to the real values. Hence, for our

experimental set up we take each existing TS for a given pollutant and station, P j
i in turn, and impute it by the various models

to obtain an imputed TS, PIji . We compare the real values to the imputed values using different statistical and graphical model

evaluation functions. The statistics function include Fraction of predictions within the factor of two (FAC2), Mean Bias (MB),

Normalised Mean Bias (NMB), Root Mean Squared Error (RMSE), Coefficient of correlation (R), and Index of Agreement155

(IOA). These measures are used to evaluate the temporal variation of air pollutants between imputed/modelled and observed

concentrations. The graphical functions include Conditional Quantile plot, Time Variation plot, and Taylor’s Diagram. These

are functions within the Openair Package, a freely available air quality data analysis tool in R (Carslaw and Ropkins, 2012),

that present comparisons between the modelled and measured air pollutant concentrations and their statistics graphically. We

use R packages ’openair’ (Carslaw and Ropkins, 2012), and ’tidyverse’ (Wickham and Wickham, 2017) for the evaluation.160

Model evaluation functions are beneficial when more than one model is involved in the comparison, and help us in under-

standing why a model does not perform well. The model that gives the lowest error on average, the highest correlation and

the highest degree of agreement between imputed and observed concentrations for all stations (i.e. imputed TS) is initially

considered the best model. However, extensive evaluation with various graphical functions enable us to much better assess the

model quality and how it reflects uncertainty. Note that the best model may change from one pollutant to another and may be165

affected by other factors such as station type (e.g. urban background, rural and roadside) or pollutant lifetime and spread.

4.3 DAQI calculation

In the UK, DAQI forecasts are issued on a national scale; they are produced by the Met Office in the morning for the current day

as well as for the next four days. The forecast is improved by incorporating the recent observations of air quality recorded at

the AURN stations. The overall air pollution index for a site or region is determined by the highest DAQI of the five pollutants.170

The regional DAQI is the highest index among all the stations at that region.

For our evaluation, we calculated the daily DAQI value using the observed data for each station. This is because the DAQI

value is not saved as part of the historical data available so we need to calculate it from the downloaded data. Defra has

published a guide for the implementation of DAQI (DEFRA , 2013), which explains how the value is calculated and we follow

that guidance. To calculate DAQI, each air pollutant is calculated as follows:175

– Ozone: the O3 is measured hourly. To determine the DAQI we need to calculate the daily maximum 8-hourly running

mean concentration. First, for each hour we calculate the running 8-hourly mean from the previous hours. Then we find

the maximum value of these 8-hourly running means. For this calculation 75% of the data must be captured to calculate

the 8-hourly mean.

– Nitrogen dioxide: the NO2 is measured based on hourly mean. We calculate the daily NO2 contribution to the DAQI by180

taking the maximum observation in 24 hours every day from 0:00 to 23:00.
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– Particles PM10 PM2.5: are measured hourly. The DAQI is based on the 24 hours mean, which we calculate by taking

the mean value from the hourly observations. For these pollutants 75% of the daily observations must be captured to

calculate the mean, otherwise, the pollutant is considered as missing that day.

– We define the daily index for each pollutant separately. Then, for a station, we take the highest air pollutant index to be185

the value of the DAQI at that station.

We called the DAQI that is calculated based on observation ‘observed DAQI’, and the DAQI that is calculated based on

imputation ’imputed DAQI’. We use the observed DAQI as a performance tool to evaluate our imputation model on its ability

to reproduce the daily air quality index. Note that although we produce only one imputation and not multiple imputations at

this stage, we believe they reflect the underlying uncertainty because they are based on a number of aggregated methods.190

5 Results

In this section, we first analyse the proposed pollutant imputation models using some statistical and graphical air pollution

modeling evaluation functions. Then, we evaluate the imputation model performance based on the comparison between the

observed and imputed DAQI.

5.1 Air pollution imputation modeling evaluation195

We first evaluate imputation models based on the statistical and then on the graphical analysis.

5.1.1 Model evaluation based on statistical analysis

Table. 1, shows the statistical analysis results. In this table N is the number of stations that measure each pollutant. The table

also shows the Fraction of predictions within the factor of two (FAC2), Mean Bias (MB), Normalised Mean Bias (NMB), Root

Mean Squared Error (RMSE), Coefficient of correlation (R), and Index of Agreement (IOA).200

In general, model 6 (Median), which is the model that uses the ensemble technique of other models, gives the lowest error

average (RMSE), the highest Pearson correlation coefficient (R), and the highest agreement between imputed and observed

concentrations (IOA) for O3, PM2.5, and PM10. However, NO2 shows different behaviour with model 2 (CA+ENV) achieving

slightly higher performance with an increase of the correlation coefficient (by 0.049) and decrease of error average (by 0.826)

compared to model 6 (Median). The Model Bias (MB) for model 2 is 50% higher than that of model 6. NO2 shows local205

patterns, as it is concentrated where it is emitted in urban areas and near to the roadside. Adding to that NO2 is shorter lived

than other pollutants and shows greater spatial variability, with concentrations being strongly influenced by the environment

type (e.g. roadside, urban background, rural). This changes the NO2 concentrations from one location to another based on the

environmental type (CenterForCities, 2020).

All the selected models performed well, with 71-89 % of their imputations falling within a factor of two of the observed210

concentrations as shown in the FAC2 values in Table. 1. According to Dick Derwent and Murrells (2010), an air quality model
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minimum requirement is that the FAC2 value is higher than 0.50 and NMB values should be in the range between -0.2 and

+0.2. Both are met by our models. NMB measures if the model under or over predict, as it estimates the difference between the

mean observed and imputed concentrations. Negative NMB means that the model under-predict and vice versa. All the models

have very small biases.215

5.1.2 Model evaluation based on Taylor’s diagram analysis

We use Taylor’s diagram to analyse three main statistics: correlation coefficient R, the standard deviation (sigma) and the root-

mean-square error (centred). These statistics can be plotted on one (2D) graph which can be represented through the Law of

Cosines (Taylor, 2001).

The standard deviation represents the variability between modelled and observed concentrations. The observed variability220

is plotted on the x-axis. The magnitude of the variability is measured as the radial distance from the plot’s origin. The black

dashed line shows this for the observed value. The grey lines are isopleths for the correlation coefficient (R) as indicated by

the arc shaped axis; the correlation increases along the arc towards the x-axis. The centred root-mean square error (RMS)

is represented by the concentric brown dashed lines. The furthest the points/models are from the observed value the worst

performance they have (Carslaw and Ropkins, 2012). Fig. 1 shows Taylor Diagram plots for all models with all pollutants.225

In almost all cases the models exhibit less variability than the observed, indicated by the points being closer to the origin

than the black dashed line. In general, Model 4 (1NN) followed by Model 5 (2NN) show variability that is most similar to the

observations as indicated by their relative closeness to the black dashed line. However, these models tend to have the lowest

correlation coefficients, indicated by the grey lines, and the greatest RMSE, indicated by the brown dashed lines. Models 4 and

5 use the concentrations from a single site (i.e. the nearest stations) in the imputation, where as the other models use a cluster230

average (CA, CA+REG, CA+ENV) or a model ensemble average (Median), so it is reasonable for model 4 and 5 to have fairly

similar variability to the observed concentrations. All the other models display less variability than the observed concentrations

(as indicated by their points being further from the black dashed line) which may be consistent with their derivation methods

which may smooth out some of the variability.

Model 6 (Median), regardless of its ability to capture variability, is confirmed as having the highest correlation coefficient,235

and the lowest centred root means squared with all the pollutants except NO2, for which it is the second best behind Model 2

(CA+ENV).

5.1.3 Model evaluation based on conditional quantile analysis

We analyse the spread of the modelled and observed pollutant concentrations using conditional quantile plots. Fig. 2 and 3 show

the conditional quantile plots for the six imputation models (panels A to F). This visualisation splits the concentrations into240

bins according to values of the modelled concentrations. The median line of these values and the 25/75th and 10/90th quantile

values are plotted together with a blue line showing a “perfect” model. Also shown are histograms of modelled concentrations

(shaded grey bars) and histograms of observed concentrations (blue outline bars).

8



Table 1. Performance of the hourly pollutant concentrations imputation models based on statistical measures. Best values in bold for FAC2,

RMSE, R and IOA

Imputation models N FAC2 MB NMB RMSE R IOA

O3

model 1 (CA) 71 0.867 -0.008 0 15.267 0.794 0.712

model 2 (CA+ENV) 71 0.877 1.113 0.022 14.627 0.815 0.729

model 3 (CA+REG) 71 0.872 -0.011 0 15.014 0.807 0.723

model 4 (1NN) 71 0.831 -1.179 -0.024 17.494 0.757 0.681

model 5 (2NN) 71 0.871 -0.835 -0.017 15.159 0.808 0.721

model 6 (Median) 71 0.888 -0.373 -0.008 13.776 0.837 0.745

NO2

model 1 (CA) 157 0.628 0.009 0 18.33 0.514 0.599

model 2 (CA+ENV) 157 0.708 0.247 0.01 15.989 0.665 0.661

model 3 (CA+REG) 157 0.63 0.171 0.007 18.364 0.527 0.6

model 4 (1NN) 157 0.605 2.277 0.095 22.591 0.464 0.533

model 5 (2NN) 157 0.618 2.774 0.116 20.46 0.494 0.558

model 6 (Median) 157 0.675 0.108 0.005 16.815 0.616 0.642

PM2.5

model 1 (CA) 77 0.835 -0.118 -0.012 5.265 0.787 0.713

model 2 (CA+ENV) 77 0.814 -0.064 -0.006 5.6 0.76 0.695

model 3 (CA+REG) 77 0.838 -0.064 -0.006 5.056 0.809 0.725

model 4 (1NN) 77 0.791 0.058 0.006 5.536 0.79 0.7

model 5 (2NN) 77 0.823 0.02 0.002 4.952 0.823 0.726

model 6 (Median) 77 0.854 -0.144 -0.014 4.745 0.831 0.743

PM10

model 1 (CA) 75 0.86 -0.163 -0.01 8.747 0.668 0.667

model 2 (CA+ENV) 75 0.851 -0.148 -0.009 9.031 0.65 0.662

model 3 (CA+REG) 75 0.861 -0.043 -0.003 8.797 0.673 0.67

model 4 (1NN) 75 0.816 0.113 0.007 10.363 0.608 0.627

model 5 (2NN) 75 0.858 0.106 0.006 9.23 0.661 0.668

model 6 (Median) 75 0.882 -0.216 -0.013 8.224 0.715 0.697
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Figure 1. Taylor diagrams comparing modelled and observed concentrations for O3, NO2, PM2.5, and PM10.

These plots show how the modelled concentrations compare with the observed concentrations and how the models capture

the variability in the concentrations. The spread of the modelled concentrations around the perfect model line (blue line) are245

shown by the shaded portions/quantile intervals. If narrow, it indicates high agreement/precision between the modelled and

observed concentrations. The quantile intervals also represent the uncertainty bands. In some cases these intervals do not

extend along with the median line due to insufficient concentrations to calculate them. The model with good performance is

obtained when the median (red line) coincides with the perfect model (blue line) and when the spread in the percentile is as

narrow as possible.250

From these plots, in general, the histograms indicate that model 4 (1NN) (Panel D) has better estimation of the variability

between the observed and modelled concentrations, as observed before, even though the median line does not match the perfect

model. This model is positively biased at high concentrations, as shown by the departure of the median line below the blue

line for all pollutants. This result supports our analysis from the Taylor diagram that model 4 (1NN) has the lowest variability

between modelled and observed concentrations, but with lower correlation coefficient and the highest-centred root means255

squared for all pollutants.

10



Figure 2. Conditional quantile plot of modelled and observed pollutants concentrations of O3 (left plot) and NO2 (Right) for proposed

imputation models; (A) model 1 (CA), (B) model 2 (CA+ENV), (C) model 3 (CA+REG), (D) model 4 (1NN), (E) model 5 (2NN), (F) model

6 (Median).

In Fig. 2, (left plot) the O3 models show that most modelled concentrations match the observations well for a wide range of

values. The histograms indicate underestimation in general at the extreme low and high concentrations. In general, the cluster

and median imputation methods (i.e. that use averaging) will tend to struggle to reproduce the lowest and highest concentrations

since they take an average approach. Moreover, the highest concentrations are typically limited to relative few data points. The260

cases of the high ozone concentrations typically occur during specific meteorological conditions and are episodic in nature,

and there may be small differences in timings of the peak concentrations at different sites. The very low ozone concentrations

are likely to occur at specific sites (near to roads where emissions of nitric oxide are large) and so may not be reproduced in

the models which take a cluster average or where a nearest neighbour site is not a similar type of site.

Model 6 (Median) (Panel F) has the best performance indicated by an overlapping median line with the blue line. This model265

has the lowest mean bias and the highest degree of agreement indicated by the narrow spread of the modelled concentration

quantile intervals.
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Figure 3. Conditional quantile plot of modelled and observed pollutants concentrations of PM2.5 (left plot) and PM10 (right plot) for proposed

imputation models; (A) model 1 (CA), (B) model 2 (CA+ENV), (C) model 3 (CA+REG), (D) model 4 (1NN), (E) model 5 (2NN), (F) model

6 (Median).

In the same figure (right plot), NO2 models show different behaviours from this analysis. Even though the statistical analysis

shows that model 2 (CA+ENV)(Panel B) gives the best performance, it is clear that in this model, the modelled concentrations

tend to be lower than observations for most concentration levels (the medians are under the blue line) and the width of the270

10/75th and 10/90th percentiles is quite broad. The only advantage of using this model is its ability to capture a wide range of

concentrations. Model 4 (1NN) (Panel D) compared to other models can reproduce the higher concentrations (higher than 125

µg m−3) as it does not take an average approach. However, this model is positively biased (NMB = 0.095), which is shown by

the departure of the median line from the blue one.

The variation between PM2.5 models in Fig.3 (left plot) show similar performance for the different models. The quantile275

intervals are wider within the area of high concentrations ≤ 60µgm−3, and all models underestimate the high concentrations

≤ 80µgm−3, note that these concentrations are very low frequency events.
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Figure 4. Monthly average concentrations of observed NO2 for each environmental types for year 2018.

Model 6 (Median) (Panel F) gives better performance indicated by the narrow spread of the modelled concentration quantile

intervals and minimal bias, indicated by the overlaps between the red and blue lines compared to other models. Models for

PM10 (right plot) show similar performance to PM2.5.280

5.1.4 Model evaluation based on conditional quantile analysis and station environmental types

In this analysis, we focus on the performance of model 6 (Median) and model 2 (CA+ENV), as those performed best for the

different pollutants in the previous section, but now we break down the analysis for the six environmental types (background

rural, background urban, background suburban, and industrial urban, industrial suburban, and traffic urban) to which stations

belong. Notice that a pollutant may/may not be measured in all stations and the number of stations of each type is different as285

shown in Table 2. We also use conditional quantiles to analyse our model’s performance within each environmental type.

First, we show the monthly average concentrations for each pollutant under each environment type in our test dataset (year

2018), to help understand the normal variation of the pollutant concentrations in different environment types. Figs. 5, 7, 9, and

11 show conditional quantile plots by the environmental types for the selected models. Table 2 shows the statistical measures

of performance also broken down by environment type.290

The most common sources for NO2 are roads, however NO2 concentrations are influenced by traffic density, road locations,

and meteorological conditions, which cause variation from one roadside location to another. Fig. 4 shows that high NO2

concentrations are found at traffic urban followed by industrial suburban, then background urban sites, while the background

rural sites have the lowest NO2 concentrations.
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Figure 5. Conditional quantile plot of modelled and observed pollutants concentrations of NO2 based on model 2 (CA+ENV) for all station

environmental types, (A) background rural, (B) background suburban, (C) background urban, (D) industrial suburban, (E) industrial urban

and (F) traffic urban.

Fig.5 shows the conditional quantile plots by station type for NO2 imputation using model 2 (CA+ENV). Here, we see that295

modelled concentrations are higher than observed concentrations with all environmental types. This is confirmed by all the

statistical model quality measures presented in Table 2 where we can observe positive mean bias for NO2.

As NO2 distributions in general are skewed to the lower values, and our selected model model 2 (CA+ENV) is based on the

average concentrations, the model performs better with lower concentrations.

From Table 2 based on model RMSE, the model’s best performance is associated with background rural stations, while300

the worst performance is shown for traffic urban stations. Contrasting this with quantile plots, Fig.5 (Panel A) shows that for

background rural stations the histogram and the median line show better performance with lower concentrations (less than

30 µg m−3). On the other hand, for traffic urban stations (Panel F), the quantile intervals are wider within the area of high

concentrations (higher than 25 µg m−3), and the modelled concentrations tend to be lower than observed concentrations.

For O3, Fig. 6 shows the monthly average concentrations of observed O3 concentrations at each environment type. From305

that we can see that ozone in all environment types follow a similar trend. However, background rural stations have the
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Figure 6. Monthly average concentrations of observed O3 for each environmental types for year 2018.

highest concentrations and traffic urban have the lowest, consistent with depletion of ozone due to rapid reaction with fresh

emissions of nitric oxide from vehicles. Looking at model 6 (Median) performance in Table 2 based on the RMSE, the best

model performance is associated with industrial urban stations and its average performance is associated with background rural

stations (those with higher concentrations in Fig. 6), while its worst performance is associated with traffic urban stations (those310

with lower concentrations in Fig. 6).

Conditional quantile analysis in Fig. 7, shows the performance of model 6 (Median) for imputing O3 for the six environ-

mental types (Panels A to F). The model shows similar performance for industrial suburban (Panel D) and background rural

stations (Panel A). For both types, the model is negatively biased (see also Table 2), meaning that the modelled concentrations

tend to be lower than observed concentrations (the median lines are above the blue lines).315

The worst performance based on the RMSE is associated with traffic urban stations (Panel F), which are the stations located

at the roadsides. With those stations, the modelled concentrations are higher than observed concentrations, i.e. the modelled

histogram is shifted to the right. This is indicated by the model positive bias (0.503). The median line also extends beyond the

blue line, which means that some modelled concentrations are much higher than observed measurements.

The best model performance is associated with industrial urban stations (Panel E) according to the RSME, even though320

background urban stations (Panel C) appear to have the best performance by looking at the conditional quantile plots. The

histogram of Panel C indicates that the distribution of the observed and modelled concentrations tend to be closer to each other

for higher concentrations. However, the model overestimates the average concentrations at these stations (between 25 to 70 µg

m−3) and underestimates the very low concentrations.

Fig. 8, shows PM2.5 concentrations at rural areas are lower that those at suburban, urban background and traffic urban areas.325

That is consistent with the model performance at these sites. Fig. 9 shows corresponding conditional quantile plots by station
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Figure 7. Conditional quantile plot of modelled and observed pollutants concentrations of O3 based on model 6 (Median) for station envi-

ronmental types, (A) background rural, (B) background suburban, (C) background urban, (D) industrial suburban, (E) industrial urban and

(F) traffic urban.

types. Imputing PM2.5 concentrations using model 6 (Median) gives similar performance for the different station types. In

general, the model underestimates the concentrations of PM2.5 especially for high concentration levels. Table 2, shows that

the model underestimates high concentrations at suburban, urban background and traffic urban areas, indicated by the model

negative biases, while it overestimates the concentrations at industrial urban and background rural sites. The model shows330

worst performance for traffic urban (panel E), and this is also indicated by the highest RMSE (5.098) shown in Table 2. The

model underestimates the concentrations at these stations, which is confirmed by the model bias (-0.073) in Table 2. On the

other hand, the model’s best performance is associated with background suburban sites (Fig. 9 (panel B)), even though it

underestimates PM2.5 concentrations with a mean bias of (-0.013).

Finally, PM10 levels at background rural and urban areas are lower than those at industrial and traffic urban areas as shown335

in Fig. 10. For PM10, imputation performance shown in Fig.11 is similar for background urban and background rural sites

(panels A and B). The model overestimates the concentrations of PM10 that are ≤ 10µgm−3, while it underestimates the high
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Figure 8. Monthly average concentrations of observed PM2.5 for each environmental types for year 2018.

concentrations of PM10 at industrial urban (slightly) and traffic urban sites (panels C and D). That is confirmed by the model

mean bias at these sites (-0.002, -0.106 ) as shown on Table 2.

Next, we show some examples of our imputed TS compared to the real TS for each pollutant using the selected imputation340

models in some stations. The following examples in Figs. 12, 13, 14, and 15 show the observed and imputed hourly pollutants

concentrations for the four pollutants using the selected imputation model that gave better imputation. We also apply the models

where there is a period of missing values in the observed concentrations to give some idea of how the models work for the

whole TS including when real values do not exist.

Fig. 12, compares the observed hourly concentrations of PM2.5 (red) at ’London Eltham’ station for 1/1/2018 to 15/1/2018345

with imputed concentrations (black) using model 6 (median). As we can see, the variation between the imputed and the real

TS is very small and the imputed TS reproduces the trend very well, even though, there is a period of missing concentrations

within the observed TS (red). Similarly Fig. 13 represents the observed hourly concentrations of PM10 (red) at ’Oxford St

Ebbes’ station for the same period of time with imputed concentrations using model 6. We can see that model 6 underestimates

the high concentrations and overestimates the very low concentrations of PM10 and PM2.5, as mentioned previously in the350

analysis in Sec. 5.1.3. However, there is still a good match of the trend.

Fig. 14 shows a comparison of imputed (black) and observed (red) TS for NO2 concentrations at ’Birmingham Acocks

Green’ station for the same period of time (1/1/2018 to 15/1/2018), but produced by a different imputation model (model 3

(CA+ENV)) that gives better imputation than others for NO2. It is known that NO2 has greater spatial variability than other

pollutants and it is very complex to impute, the variation between the imputed and the real TS is slightly higher when compared355

to the previous examples.
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Figure 9. Conditional quantile plot of modelled and observed pollutants concentrations of PM2.5 based on model 6 (Median) for station

environmental types, (A) background rural, (B) background suburban, (C) background urban, (D) industrial suburban, (E) traffic urban.

Fig.15 shows a comparison of the imputed (black) and observed (red) TS for O3 concentrations at ’Birmingham Acocks

Green’ station for the period (16/1/2018 to 23/1/2018), produced by model 6 (median). The imputation underestimate the

concentrations but represents the trends of high and low values.

5.2 Evaluating the imputed concentrations based on the Daily Air Quality Index (DAQI)360

After imputing the measured pollutants in all the stations, we calculate DAQI from the imputed data, as explained in Section.

4.3. Then we compare it with the DAQI from the observed data to see our selected models’ performances. The selected models

are model 6 (Median) for O3, PM2.5, and PM10 and Model 2 (CA+ENV) for NO2.

We compare the imputed DAQI with the observed DAQI based on RMSE, and the number of days where there are agreements

and disagreements. The total number of days in our data set is 60,955 days (167 stations * 365 days), there are 2,212 days with365

missing observed DAQI (DAQI = 0) that have resulted from missing observations on those days. The total number of days to

compare is 58,743 days.
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Figure 10. Monthly average concentrations of observed PM10 for each environmental types for year 2018.

In general, the total average of RMSE from all days in all stations is (0.55). As the station type and the region may affect

our imputation, Fig. 16 shows the average RMSE based on air quality regions in the UK (Panel A), and station environmental

types (Panel B); the size of the circles are the number of stations at each type. Panel A shows that stations classed as Traffic370

Urban are associated with the highest RMSE (0.62), while Industrial Suburban stations have the lowest RMSE (0.36). Panel B

shows that the North East region is associated with the lowest RMSE (0.44), while South Wales has the highest RMSE (0.74)

between imputed and observed DAQI.

We also study the correlation between number of measured pollutants in a station and the agreement between modelled and

observed DAQI to see if number of measured pollutants impacts our model’s performance.375

First, we classify stations based on number of measured pollutants to: stations that measured one, two, three and all four

pollutants, as shown in Table 3. Each row in this table represents one group. The second column is the total number of days

with associated DAQI from all stations in each group. The RMSE and index of agreement (IOA) are the average of errors and

the degree of agreement between observed and modelled DAQI from all stations in each group, then the percentage of each

pollutant in each group. Based on this table, we find that stations that measure four pollutants have the lowest RMSE (0.506)380

and the highest (IOA) (0.806), while stations that measured one pollutant have the worst performance. The majority of stations

with one pollutant are stations that measure NO2 with (87%) of total number of station in this group (50 stations).

We also compare the imputed and the observed DAQI based on the number of days where the imputed DAQI agrees and

disagrees with the observed DAQI. Table. 4, shows those results and the percentage of time that these situations occurred,

means when agreement/disagreement is found for each DAQI. The total number of days where the imputed DAQI agrees with385

the observed DAQI is 43,906 day (75%), while there is 14,837 (25%) days of disagreement. We classify the disagreement

into two types: the imputed DAQI is higher or lower than the observed DAQI. We find that there are 10,916 days, where
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Figure 11. Conditional quantile plot of modelled and observed pollutants concentrations of PM10 based on model 6 (Median) for station

environmental types, (A) background rural, (B) background urban, (C) industrial urban, (D) traffic urban.

the imputed DAQI is lower than the observed DAQI, and 3,921 days, where the imputed DAQI is higher than the observed

DAQI. In most cases, the imputed DAQI is lower than the observed DAQI, in accordance with our analysis of the imputation

models that showed underestimation of the pollutant concentrations. From this table, we can see that the highest percentage of390

disagreement is 42.96% of total number of disagreement (14837) when observed DAQI is 2 and imputed DAQI is 1, followed

by 21.35% of disagreement when observed DAQI is 3 and imputed DAQI is 2.

6 Discussion and Conclusions

In this work, we evaluated our proposed models to impute missing pollutants in a station based on statistical and graphical

model evaluation functions (Taylor’s diagrams and Conditional quantile plots), that are designed to evaluate air pollution395

modelling. We found that the best imputation model based on statistical analysis is model 6 (Median) for O3, PM10, and PM2.5

and Model 2 (CA+ENV) for NO2 imputation. The station environmental type plays an essential role with NO2 imputation,

because NO2 shows local patterns, as it is concentrated where it is emitted in urban areas and near to the roadside. Adding
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Table 2. Performance of the hourly pollutant concentrations imputation models using model 6 (Median) for O3, PM2.5, and PM10 and Model

2 (CA+ENV) for NO2 based on statistical measures for all station environment types for all pollutants.

Imputation models Environment Type N MB NMB RMSE

O3

model 6 (Median) Background Rural 19 -7.648 -0.130 14.967

model 6 (Median) Background Suburban 3 0.133 0.003 12.530

model 6 (Median) Background Urban 39 1.578 0.034 12.780

model 6 (Median) Industrial Suburban 2 -1.392 -0.030 11.311

model 6 (Median) Industrial Urban 4 1.561 0.033 11.273

model 6 (Median) Traffic Urban 3 16.456 0.503 21.580

NO2

model 2 (CA+ENV) Background Rural 15 0.060 0.008 6.699

model 2 (CA+ENV) Background Suburban 5 6.590 0.470 13.576

model 2 (CA+ENV) Background Urban 58 0.025 0.001 12.442

model 2 (CA+ENV) Industrial Suburban 4 3.929 0.181 11.939

model 2 (CA+ENV) Industrial Urban 11 0.235 0.013 10.481

model 2 (CA+ENV) Traffic Urban 65 -0.014 0.000 20.500

PM2.5

model 6 (Median) Background Rural 5 2.167 0.292 5.004

model 6 (Median) Background Suburban 2 -0.143 -0.013 3.434

model 6 (Median) Background Urban 41 -0.072 -0.007 4.685

model 6 (Median) Industrial Urban 6 0.080 0.009 3.982

model 6 (Median) Traffic Urban 23 -0.781 -0.073 5.098

PM10

model 6 (Median) Background Rural 5 4.205 0.369 8.036

model 6 (Median) Background Urban 26 1.236 0.082 7.097

model 6 (Median) Industrial Urban 7 -0.037 -0.002 10.027

model 6 (Median) Traffic Urban 37 -1.939 -0.106 8.586

to that NO2 is shorter lived than other pollutants and shows greater spatial variability, with concentrations being strongly

influenced by the environment type (e.g. roadside, urban background, rural). This changes the NO2 concentrations from one400

location to another based on the environmental type (CenterForCities, 2020).

On the other hand, the graphical model evaluation functions showed these models’ performance based on the distribution

of the concentrations and the degree of agreement between imputed/modelled and observed concentrations. These functions
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Figure 12. Imputed (black) and real (red) TS comparison for PM2.5 at ’London Eltham’ station from 1/1/2018 to 15/1/2018.

Figure 13. Imputed (black) and real (red) TS comparison for PM10 at ’Oxford St Ebbes’ station from 1/1/2018 to 15/1/2018.

help us to understand the relationship between the distributions of the observations and the model’s performance. From the

histograms in Figs. 2 and 3 we noted that the overall distribution of the observed concentrations of NO2, PM2.5, and PM10405

are skewed to the lower values, while O3 has a more normal distribution. From these histograms, we also noticed that the

distributions of the modelled O3 concentrations are shifted to lower values, while other pollutants modelled concentrations are

shifted to higher values. Hence the model is not always able to reproduce the edges of the distribution correctly. The skewness
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Figure 14. Imputed (black) and real (red) TS comparison for NO2 at ’Birmingham Acocks Green’ station from 1/1/2018 to 15/1/2018.

Figure 15. Imputed (black) and real (red) TS comparison for O3 at ’Birmingham Acocks Green’ station from 16/1/2018 to 23/1/2018.

in modelled values is mostly associated with model 1 (CA). As a consequence, this shows the greatest difference in skewness

between the distributions of the observed and modelled values. However, model 1 (CA) in combination with others, as part of410

model 6 (Median), reduces the skewness in modelled values and generates better imputation, resulting in the lowest RMSE.

Model 6 (Median) is based on the median concentrations from stations with temporal and spatial similarity, so this model’s

expected performance is to underestimate the highest values and overestimate the lowest values with a normal distributed
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Figure 16. The model performance based on DAQI RMSE: (A) the average of the RMSE based on station environmental types, (B) the

average of the RMSE based on air quality regions.

Table 3. Comparing observed and modelled DAQI based on number of measured pollutants in stations.

Number of measured Number of days in Number of RMSE IOA Percentage Percentage Percentage Percentage

pollutants all stations Stations (O3) (NO2) (PM2.5) (PM10)

1 15684 50 0.542 0.769 6.1 87.8 2.0 4.1

2 17581 48 0.583 0.756 24.5 48.0 8.2 19.4

3 15443 43 0.516 0.814 14.0 31.8 32.6 21.7

4 9398 26 0.496 0.814 25.0 25.0 25.0 25.0

dataset. We found that the models performance can vary based on the environmental type and the nature of the pollutant, as

shown in our analysis of model performance and DAQI RMSE.415

Through our analysis, we also found that the variation of the model’s performance with different environmental types is due

to the pollutant behaviour and its emitted sources.

Model 6 (Median) performance with O3 imputation changes from one environmental type to another due to the ozone’s

behaviour at these locations. As we know, ozone is not directly emitted into the air, but it is formed as a secondary pollutant

by chemistry involving nitrogen oxides (NOx), the sum of NO2, nitric oxide (NO) and volatile organic compounds (VOCs) in420

the presence of sunlight (Diaz et al., 2020). This chemistry is non-linear and newly emitted NO can react with O3 leading to

reductions in O3 concentrations close to sources of NO (e.g. in urban areas and in particular, close to roads). Consequently,

ozone concentrations in urban areas are often lower than those at rural areas (H. Khan et al., 2017), as shown in Fig. 6.

Fig. 7 (Panel A), shows see that the model produces a distribution shifted to the left toward lower values, not capturing

the ozone for rural areas that are associated with higher concentrations of O3. Similarly, industrial suburban stations (Panel425

D) have a higher frequency of high concentrations (higher than 25 µg m−3), as shown in the histogram (Panel D). Note that
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Table 4. Number of days where imputed DAQI agrees/disagrees with observed DAQI.

Index Agreement

Observed DAQI Imputed DAQI Number of days Percentage of Days Observed DAQI Imputed DAQI Number of days Percentage of Days

1 1 18920 43.09 5 5 110 0.25

2 2 16351 37.24 6 6 19 0.04

3 3 7969 18.15 7 7 5 0.01

4 4 525 1.20 8 8 7 0.02

Total agreement 43906

Total Percentage 74.743

Index Disagreement

Observed DAQI Imputed DAQI Number of days Percentage of Days Observed DAQI Imputed DAQI Number of days Percentage of Days

1 2 1818 12.25 5 2 6 0.04

1 3 255 1.72 5 3 54 0.36

1 4 11 0.07 5 4 203 1.37

1 5 2 0.01 5 6 12 0.08

1 8 1 0.01 6 7 4 0.03

2 8 1 0.01 6 2 2 0.01

2 1 6374 42.96 6 3 5 0.03

2 3 1479 9.97 6 4 31 0.21

2 4 10 0.07 6 5 45 0.30

2 5 4 0.03 7 8 1 0.01

3 1 337 2.27 7 2 1 0.01

3 2 3168 21.35 7 3 2 0.01

3 4 241 1.62 7 4 1 0.01

3 5 18 0.12 7 5 10 0.07

3 6 2 0.01 7 6 11 0.07

4 1 17 0.11 8 7 3 0.02

4 2 38 0.26 8 9 1 0.01

4 3 598 4.03 8 3 2 0.01

4 5 58 0.39 8 6 1 0.01

4 6 2 0.01 9 8 2 0.01

5 7 1 0.01 10 7 2 0.01

5 1 2 0.01 10 8 1 0.01

Total disagreement 14837

Total Percentage 25.257

majority of stations measuring O3 are background rural or background urban, with few stations in other categories. While with

traffic urban (Panel F), where the model performs the worst, some modelled concentrations are much higher than observed

measurements. This lack of fit may be explained because ozone is suppressed by new emissions of NO close to sources (traffic)

which reduce the amount of O3 in those station types.430

From the same figure (Panel C), as shown in the histogram for background urban stations, there is a high frequency of low

concentrations (less than 10 µg m−3) at these stations that the model does not capture. This is consistent with the reaction of

newly emitted NO from urban roadside that reduces the concentrations of ozone at urban areas. Based on the RMSE and NMB,

the model is a middle performing model. As shown in Table 2, the majority of stations measuring O3 belong to this type.

As, we mentioned earlier that NO2 is short lived so it has large differences between sites near sources (roadside) and those435

further away. Based on the RMSE Model 2 (CA+ENV) performs better with lower NO2 concentrations than high values, and

since these high NO2 values exist near to traffic, the model performs the worst with traffic urban stations as shown in Fig.

25



5 (Panel F). In contrast, the model best performance is associated with background rural stations that have the lowest NO2

concentrations.

PM2.5 and PM10 have many varied sources so in roads and industrial sites it can be associated with local sources, for example440

widespread primary sources (direct emissions) and diffused secondary sources (i.e. produced in the atmosphere following

emissions of precursor gases). Whilst PM concentrations are often greater at roadside (DEFRA LAQM , 2021), the particles

can have lifetimes of several days in the atmosphere, meaning that they can be distributed widely. The larger particles are subject

to greater loss via sedimentation, so PM2.5 is more evenly distributed than PM10 (National Statistics, 2020). This behaviour

can also be observed with Model 6 (Median) performance, where there are less variation with the model performance under445

different environment types compared to the variation of NO2 and O3, as shown in Table 2.

We also observed that the distributions of NO2, PM2.5 and PM10 are skewed to lower concentrations which impact model

performance at higher concentrations. All models perform worse for high concentrations with NO2, PM2.5 and PM10 than O3,

indicated by the width of the quantiles at high values as shown in Figs. 2 and 3. Similarly, for lower concentrations, these

models tend to perform better for NO2, PM2.5, and PM10 than for O3. However, our selected models (model 6 (Median) and450

model 2 (CA+ENV)) are able to overcome this impact slightly.

Our approach enables us to impute/estimate plausible concentrations of multiple pollutants at stations across the UK, and the

modelled concentrations from the selected models correlated well with the observed concentrations. The performance of these

models is very good with a slight underestimation in model 6 (Median), especially with high concentrations. At the opposite

end, Model 2 (CA+ENV) slightly overestimates the NO2 concentrations, due to the regional behaviour of this pollutant.455

We also analysed the performance of these models based on the daily modelled concentrations under different weather types

using Lamb Weather Types (LWTs), which are a synoptic classification of daily weather patterns across the UK Lamb (1972).

We found that these models work equally well for all LWTs, so we did not include this analysis in this work.

In conclusion, MVTS clustering enables imputation even when no measurement is available for a given pollutant since the

station can be allocated to a cluster based on the value of the other pollutants measured. Our proposed imputation models,460

model 6 (Median) for O3, PM10, and PM2.5 and Model 2 (CA+ENV), give the best performance for imputing these pollutants.

The advantage of these model is that they aggregate the spatial and temporal imputation. The spatial imputation is obtained

from the nearest stations and the temporal imputation is obtained by MVTS clustering that clusters the stations based on

similarity in time.

In our future work, we aim to improve our imputation by considering more information about the stations, such as station al-465

titude and location in relation to the weather effects. We may also consider the correlation between pollutants in our imputation,

and include further analysis for the daily air quality index (DAQI), especially for those days when there is a variation between

imputed and observed DAQI. Finally, we need to study all possible uncertainty associated with this type of application, since

the pollution level may change from year to year due to some pollution episodes caused by high temperature, wind, wildfire or

other reasons.470
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