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Abstract. The main objective of this study is to apply Discrete Mathematical Analysis (DMA) to the 

development of the methodology of cyclostratigraphy. This aim is supported by exploring the magnetic 15 

properties of rocks, the lithology of sediments and obtained geochronological reference definitions. The 

analysis was based on measurements of the variability of the magnetic susceptibility of rocks, which 

reflects climate variations. Astronomical cycles are global; this makes it possible to carry out a 

correlation analysis over a large area and on different facial types of sediments, considering their 

lithology and other sedimentary features. The introduction of modern methods of mathematical 20 

processing of geological data is one of the prospective areas for investigation and development in 

geoscience. Astronomical cycles can be revealed from measurements of scalar magnetic parameters of 

rocks (magnetic susceptibility as presented by the authors). Specific software developed by the authors 

allows the processing of measurement data and assessment of the presence of stable oscillation cycles 

based on the obtained measurement base. The present study attempts to apply mathematical methods to 25 

magnetic data using the existing PAST program, which allows spectral analysis of primary data with the 

construction of Lomb-Scargle and REDFIT periodograms. We interpret the spectral analysis data based 

on paleomagnetic determinations, considering the available dates for the boundaries of direct and 

reverse polarity chrons on a general stratigraphic scale. 

1. Introduction 30 

In recent years, the rapid development of various techniques to study Earth processes has 

contributed to the generation of large amounts of heterogeneous data. Therefore, Earth Science urgently 

requires new methods and approaches to analyse these large datasets . This is especially true for 

describing complex phenomena and explaining some global events, such as paleoenvironmental 

changes, sedimentation rates, and fluctuations in insolation. 35 

The Miocene stratigraphic scale of the Black Sea region is based on the determination of 

mollusc fauna, along with dates of the boundaries of regional stages and their subdivisions derived from 

various geochronology methods. However, some uncertainties remain. This problem provokes heated 
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disputes and impedes the performance of full-scale interregional comparisons and paleogeographic 

reconstructions. Current efforts to solve the problem include improving the stratigraphic dissection of 40 

the studied sediments and modernising methods for dating rocks. These methods include one of the new 

directions in geology: cyclostratigraphy (dating of strata by astronomical cyclicity, recorded in scalar 

magnetic parameters), which is often used in combination with mathematical methods. 

The authors propose integrating geological and mathematical methods to solve some critical 

issues related to the cyclostratigraphy and paleogeography of Eastern Paratethys Miocene sediments. 45 

The present study describes the influence of astronomical cyclicity on the sedimentation processes of 

the Eastern Paratethys based on long-term fluctuations of insolation, cyclostratigraphy and 

paleomagnetic measurements, using Discrete Mathematical Analysis (DMA). 

The cyclostratigraphy methods are based on assessing astronomical cyclicity and its recording in 

sediments and accompanied by detailed lithological and paleomagnetic studies. Global fluctuations in 50 

insolation combined with traditional lithological methods allow an estimation of sedimentation rate and 

allow us to date the sediments. It is particularly important considering the lack of other methods to 

determine the absolute age of the sediments. The influence of astronomical cycles on sedimentation is 

global, meaning this method could be used for large-scale correlations. 

Determination of astronomical cyclicity using geochronological methods, including 55 

paleomagnetic reconstruction and lithological analysis, is made possible by defining the magnetic 

susceptibility of sediments. Magnetic susceptibility depends on the amount of solar radiation reaching 

the Earth’s surface and reflects climatic fluctuations. Further spectral analysis of scalar magnetic 

parameters allows the detection of long-term period oscillations of the Earth’s axis, the angle of 

inclination of the Earth’s axis to the plane of the ecliptic, and eccentricity. This method can produce 60 

absolute ages of sediments with an accuracy on the order of 20,000 to 400,000 years. 

The methodology proposed by the authors consists of synthesising lithological, paleomagnetic 

and mathematical methods for solving some cyclostratigraphy issues. The method has been validated on 

several sections of the Miocene sediments of Paratethys. The distribution of these outcrops on the East 

and Central Paratethys provides wide geographical coverage for comprehensive regional comparison 65 

and allows us to extend the methodology to other sections and outcrops accumulated under different 

conditions and regimes. Petromagnetic and paleomagnetic studies, including field measurements of the 

magnetic susceptibility of sediments using a field kappameter, are also significant component. 

2. Materials and Methods 

The stages of development of mathematical geology show a clear trend towards solving 70 

geological problems using increasingly complex mathematical models. Multidimensional methods are 

replacing simple statistics. The concept of stochastic processes changed our understanding of geological 

history and led to the development of geostatistics. Nonlinear models are replacing linear models, and 

the introduction of fractal sizes has led to the notion of chaotic behaviour. The methods used in 

cyclostratigraphic studies utilise achievements in all of these areas. It should be noted that cyclic 75 

sequences are predictable [Schwarzacher, 1993]. 

Over the past 100 years, mathematical methods have evolved along with the available hardware, 

from simple computations in the early twentieth century to laborious mainframe algorithms in the mid-

twentieth century and the microcomputer revolution in the late twentieth century. The use of rapid 
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algorithms on modern computers has made even the most complex multidimensional methods available 80 

to all researchers. 

The most frequently used mathematical methods in geology can be roughly divided into three 

groups: 

• Time series analysis, including spectral analysis (Fourier, spectrogram, and wavelet analysis), 

autocorrelation, cross-correlation, smoothing, filtering, and extremum search. 85 

• Multivariate data analysis, including multivariate distributions and cluster analysis. 

• Statistical methods, such as statistical distributions, correlation, regression, and chi-square tests. 

Cyclostratigraphy is a new scientific domain in stratigraphy and sedimentology that deals with 

identifying, describing, correlating, and interpreting cyclic variations in the stratigraphic sequence. In 

particular, cyclostratigraphy involves applying this knowledge to geochronology by increasing the 90 

accuracy and resolution of chronostratigraphic units. It uses the astronomical cycles of the currently 

known periodicity and an interpretation of the sedimentation conditions. Orbital cycles are the most 

important cycles. These cycles translate into climatic, oceanographic, sedimentary and biological 

changes recorded in sedimentary deposits over geological time. Numerous case studies have shown that 

detailed analysis of sedimentary rocks allows these cycles to be identified with a high degree of 95 

confidence. An unprecedented high temporal resolution is available once the relationship between the 

sedimentary record and orbital forcing is established. This relationship provides a basis for timing the 

processes occurring in the Earth system [Strasser et al., 2006]. 

The main task of cyclostratigraphy is to analyse he structure of sedimentary deposits and 

identify stable signals reflecting the orbital influence. An essential aspect of time series analysis in 100 

cyclostratigraphy is transforming raw data into the time domain using calibration points. Once the time 

series is established, mathematical methods can be used to detect orbital periodicities. Of the groups of 

mathematical methods listed above, the group ‘Time series analysis’, especially spectral analysis, is 

invaluable for solving cyclostratigraphy problems. A brief description of the spectral methods most 

commonly used in cyclostratigraphy is provided below. 105 

Any time series can be analysed in terms of its description in the frequency domain. The 

classical way to detect frequency components in time series is Fourier spectral analysis. The importance 

of each frequency component in the time series is established using paired sine and cosine waves. 

Cyclostratigraphic data are usually discrete. For this reason, a discrete Fourier transform is applied. In a 

discrete Fourier transform, a time series is multiplied, point by point, by a cosine wave of a specific 110 

frequency. The results are summed and multiplied by a constant (2/N, where N is the number of points 

in the data series). This calculation gives the average amplitude of the cosine frequency component. The 

calculations continue assuming half the spectrum exists as a mirror image of the actual spectrum at 

‘negative frequencies’. Since negative frequencies have no physical meaning for time series 

observations, the average amplitude must be doubled using a constant. The time series is then multiplied 115 

by a sine wave of the same frequency. The results are again summed and multiplied by a constant. For 

each frequency component investigated, the relative size of the average amplitude of the sine and cosine 

waves determines the average phase of the time series oscillations. Fourier transform can be thought of 

as reorganising time series data to a different location based on frequency. 
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To summarise, the Fourier transform is a mathematical operation that takes any waveform and 120 

breaks it down into separate sinusoidal components with different frequencies and amplitudes. The 

components are then presented as peaks in the frequency spectrum. 

Spectral analysis of data series can be performed using the periodogram method. The 

periodogram is the square of the modulus of the amplitude of the Fourier spectrum. The Lomb 

periodogram is a frequency analysis technique for non-uniform data series; it is more suitable for 125 

cyclostratigraphic data than the Fourier transform. The Lomb periodogram is invariant concerning the 

time scale shift, and its statistical properties for non-uniform samples are equivalent to the Fourier 

transform properties for uniform samples. Frequency analysis by the Lomb method solves the problem 

of detecting oscillatory processes in data series. However, to study the evolution of the observed 

phenomena requires a time-frequency analysis. In this analysis, a subset of the sample is selected by a 130 

sliding observation window. When using an observation window, the data series is multiplied by a 

specific weight function. 

Time series spectra are often characterised by a continuous decrease in spectral amplitude with 

increasing frequency (red noise). Additionally, time series are often unevenly distributed in time, 

making it difficult to estimate their red noise spectra. The REDFIT mathematical method [Schulz and 135 

Mudelsee, 2002], an advanced version of the simple periodogram, solves this problem by directly fitting 

the first-order autoregressive process to unevenly distributed time series. In this way, the method avoids 

interpolation in the time domain and its inevitable shift. REDFIT is used to test if peaks in the spectrum 

of a time series are significant against a background of red noise from a first-order autoregressive 

process. 140 

As mentioned above, knowledge of the periods can provide important information about the 

function and its phenomenon. Traditionally, spectral analysis was used to determine the period of a 

given function. At the Geophysical Center of the Russian Academy of Sciences (GC RAS), a novel 

technique has been developed, allowing assessment of the consistency of any positive number as a 

period of the original function. The most accurate answers, if they exist, will be the required periods. 145 

The proposed technique is based on DMA [Agayan et al., 2018]. The new method is an original 

technique for analysing discrete data, developed at the GC RAS. DMA is a series of algorithms united 

by a common formal basis: fuzzy comparisons of numbers, a measure of proximity in discrete spaces, 

and a discrete limit. DMA was developed to create discrete equivalents of the concepts of classical 

mathematical analysis: for example, limit, continuity, smoothness, connectivity, monotonicity, and 150 

extremum. DMA methods and algorithms have proven to be useful in numerous studies related to the 

processing and analysis of various geological [Gvishiani et al., 2010], geophysical [Gvishiani et al., 

2008a], geomagnetic [Bogoutdinov et al., 2010], seismological [Gvishiani et al., 2016] and other data 

[Gvishiani et al., 2008b]. 

In the following section, we provide a strict formulation of the problem and a description of the 155 

methodology. Suppose that a function f is given on the segment [a, b], and we want to understand what 

periods it has. The period Т, ideal for f, is defined as follows: T is the period for f if ∀ t, t+T ∈ [a, b] is 

true for f(t) = f(t+T). In reality, the function f may not have any ideal period T, but it may have 

approximate periods. A description of approximate periods and how to determine them is provided 

below. 160 
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It is clear that the applicant for the period Т must lie in the interval (0, (b-a)/2). For such a T and 

t ∈ [a, a+T), we denote by {f, T, t} the finite sequence {f(t), f(t+T), f(t+2T),…}. Firstly, it is necessary 

to understand to what extent the sequence {f, T, t} can be considered constant, i.e., to determine the 

exponent of its constancy C{f, T, t} ≥ 0. The equality C{f, T, t} = 0 must correspond to the constancy of 

the sequence {f, T, t}. 165 

Here we present three different constructions of the exponent C{f, T, t}. Firstly, the variance D 

of the sequence {f, T, t} relative to the usual or average median: 

                              C{f, T, t} = D{f, T, t} or C{f, T, t} = Dm{f, T, t}.                                          (1) 

The second and third constructions presuppose the determination of the modulus of the 

difference sequence |∆{f, T, t}| for consistency {f, T, t}: 

                                           |∆{f, T, t}| = {|f(t+T)-f(t)|, |f(t+2T)-f(t+T)|,…}.                                           (2) 

The question of the constancy of {f, T, t} is reduced to the question of the triviality of 170 

|∆{f, T, t}|. 

The second construction is the Kolmogorov mean Mp with a positive exponent p of the 

sequence |∆{f, T, t}|: 

                                                           C{f, T, t} = Mp|∆{f, T, t}|.                                                             (3) 

As mentioned previously, using the Kolmogorovsky mean Mp, C indicates the proximity of the 

sequence |∆{f, T, t}| to zero. 175 

Another solution is given by the third construction, using the distribution function F|∆{f, T, t}|: 

                                                          C{f, T, t} = α(|∆{f, T, t}|),                                                              (4) 

where α(|∆{f, T, t}|) is α-quantile of the distribution F|∆{f, T, t}|. 

The estimate C{f, T, t} characterizes T as a period on the sequence {t, t+T, t+2T,…}. 

The next stage is the development of a unified estimate T as a period independent of t. Such an 

estimate C(f, T) should be an indicator of the smallness of the collection (C(f, T, t), t ∈ [a, a+T)). For 180 

this, we again use the Kolmogorov mean Mp: 

                                  C(f, T) = Mp(C(f, T, t), t ∈ [a, a+T)), p ≥ 0.                                              (5) 

The final stage is the search for strong minima of the estimate C(f, T). Provided that they exist, 

we can obtain the necessary periods for the function f using the apparatus of minimality measures 

[Agayan et al., 2018]. 

3. Results 185 

In the following section, we present the results of applying the above spectral methods to an 

example time series taken from [Lisiecki and Raymo, 2005]. The time series represents a series of 

oxygen isotopes of calcite in the shells of Pliocene and Pleistocene benthic foraminifera collected from 

57 core samples worldwide. This series contains the last 400,000 years of the record in 1,000-year 

increments (Figure 1). This series was chosen for demonstrating the application of spectral methods as 190 

it has been comprehensively studied. 
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Figure 1: Temporal fluctuations of the isotopic composition of precipitation [Lisiecki and Raymo, 2005]. 

 

Figure 2a shows the Fourier and Lomb periodograms for the time series in Figure 1 [Lisiecki 195 

and Raymo, 2005], which was previously normalised and centred. The Fourier periodogram is shown in 

blue, the Lomb periodogram is shown in red [Hammer and Harper, 2005], and the spectrum obtained by 

the REDFIT method is shown in green [Hammer and Harper, 2005]. Let us consider the observed 

Milankovitch cycles. Figure 2a shows that all six main peaks in the Fourier and Lomb periodograms are 

located at the frequencies (in decreasing order of spectral power): 0.0094, 0.0250, 0.0153, 0.0432, 200 

0.0184, and 0.0339. This corresponds to the periods: 106,380 (eccentricity), 40,000 (tilt cycle), 65,360, 

23,150 (precession), 54,350 and 29,500 years. 

The coincidence of the frequency maxima of the Fourier and Lomb periodograms (Figure 2a) 

can be explained by several factors. Firstly, the initial data have a uniform temporal distribution of 

observations. For data such as these, in the absence of white noise, there is an identical coincidence of 205 

the Fourier and Lomba periodograms [Carbonell et al., 1992]. Secondly, the differences in 

periodograms are caused by the presence of minor noise in the original data. The Lomb method [Lomb, 

1976] better distinguishes periods of 106,380 and 65,360 years from this noise. 

The REDFIT spectrum (Figure 2b) shows five peaks at the frequencies (in descending order of 

spectral power): 0.0094, 0.0250, 0.0163, 0.0425, and 0.0325. Note that the two main peaks in the 210 

REDFIT spectrum are located at the same frequencies as the main peaks in the Fourier and Lomb 

periodograms. In this case, two REDFIT peaks are shifted in the frequency domain, and one peak 

combines two Fourier and Lomb peaks. The discrepancies may be because REDFIT considers the 

spectrum of red noise in the time series, which is not accounted for in the Fourier and Lomb transforms. 

The results shown in Figure 2 demonstrate that spectral methods for studying time series are 215 

valuable tools in mathematical geology, particularly in cyclostratigraphy for detecting orbital 

periodicities. 
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(a) (b) 

Figure 2: (a) Fourier and Lomb periodograms, and (b) REDFIT spectrum, constructed for the time series in Figure 1. 

The efficiency of the new technique developed at the Geophysical Center of the Russian 220 

Academy of Sciences is demonstrated using the example of the time series shown in Figure 1. Figure 3 

shows the calculated constancy exponent of the series in blue and its smoothed version in red. As 

mentioned previously, the required periods of the time series are the points of the minimum constancy 

exponent C(f, T). Figure 3 shows that the strong periods are 115,000, 44,000 and 85,800 years. Weakly 

expressed periods are 58,600 and 67,600 years. Note that the identified periods are relatively close to 225 

the periods identified by spectral methods. Four out of five periods in Figure 3 closely match the 

periods in Figure 2. A possible explanation for the appearance of the 85,800-year period may be that it 

is a multiple of the period of 44,000 years. 

The results shown in Figure 3 indicate that the proposed method for determining the periods of 

time series can be used simultaneously with spectral methods in practice. 230 

                         

Figure 3: Function constancy exponent (construction - variance) and determination of periods 
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We apply the above spectral methods, and the new approach developed at GC RAS to search for 

periods in magnetic susceptibility data of the Pontian (the total thickness of the sediments is 41.2 m; 

Figure 4a) and Lower Maeotian deposits (the total thickness of the deposits is 30 m; Figure 4b) of 235 

Zhelezny Rog Cape. The section is located on the Black Sea coast of the Taman Peninsula (Russia) and 

is a reference section for the Pontian regional stage of the European part of Russia.  Measurements of 

the magnetic susceptibility of rocks were carried out using a field kappameter across the strike of the 

layers at regular intervals of 20 cm. Three measurements were taken at each point to ensure accuracy. 

For each point, the average susceptibility was calculated from the three measured values. The averaged 240 

magnetic susceptibility values are shown in Figure 4. 

 

 

(a) (b) 

Figure 4: Magnetic susceptibility of deposits of the Zhelezny Rog Cape section: (a) Lower-Upper Pontian; (b) Lower 

Maeotian. 

Figure 5 shows the results of applying spectral methods to the susceptibility data for the Pontian 

deposits. Of the three prominent peaks on the Lomb periodogram, two peaks fall within the 95% 245 

confidence interval (Figure 5a). These peaks are located at frequencies of 0.0425 and 0.2519, 

corresponding to periods of 23.53 m and 3.97 m, respectively. This result is confirmed by the Fourier 

periodogram (Figure 5a), where the main peaks are located at frequencies of 0.0437 and 0.2519 - 

periods of 22.88 m and 3.97 m. In contrast to the example described above (Figure 2a), the Fourier and 

Lomb periodograms in Figure 5a differ slightly. These differences can be explained by white noise in 250 

the original data (Figure 4a). 

Figure 5b shows the spectrum obtained using the REDFIT algorithm. Two peaks fall within the 

95% confidence interval. They occur at frequencies of 0.0444 and 0.2525, which correspond to periods 

of 22.52 m and 3.96 m. These periods coincide with the periods identified by the Fourier and Lomb 

periodograms. 255 
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(a) (b) 

Figure 5: The results of applying spectral methods to the magnetic susceptibility data from the Lower-Upper Pontian deposits 

from the Zhelezny Rog Cape section (Figure 3a): a) Fourier and Lomb periodograms (the bold solid line indicates the 95% 

confidence interval for the Lomb periodogram); b) the spectrum constructed by the REDFIT algorithm (the bold solid line 

indicates the 95% confidence interval). 260 

Figure 6 shows the Fourier and Lomb periodograms and the REDFIT spectrum for the magnetic 

susceptibility data from the Lower Maeotian deposits. Only one peak of the Lomb periodogram falls 

within the 95% confidence interval (Figure 6a). This peak is located at a frequency of 0.1408, which 

corresponds to a period of 7.1 m. This result is partially confirmed by the Fourier periodogram, where 

the main peak is at a frequency of 0.1516 (period 6.6 m). We are inclined to believe that the differences 265 

in the periodograms can be explained by noise in the data. The REDFIT spectrum is shown in Figure 

6b. In this spectrum, just one peak is located in the 95% confidence interval. It occurs at a frequency of 

0.1497, corresponding to a period of 6.68 m. The similarity in the periods obtained from the Fourier 

periodogram and the REDFIT spectrum may indicate more white noise than red noise in the initial data. 

 

 

(a) (b) 

Figure 6: The results of applying spectral methods to the magnetic susceptibility data of the Lower Maeotian deposits of the 270 
Zhelezny Rog Cape section (Figure 3b): (a) Fourier and Lomb periodograms (the bold solid line indicates the 95% confidence 

interval for the Lomb periodogram); (b) the spectrum constructed by the REDFIT algorithm (the bold dotted line indicates the 

95% confidence interval). 

We apply the new algorithm created in the Geophysical Center to selected periods. In Figure 7, 

the calculated constancy values for the magnetic susceptibility data of the Pontian and Lower Meotian 275 
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deposits are shown in blue. As discussed previously, periods are considered to be the points of ‘global’ 

minima of the constancy exponent. For this reason, the calculated constancy exponents were ‘strongly’ 

smoothed to obtain their global trends. The smoothed constancy exponents are shown as red lines in 

Figure 7. Figure 7a shows that the prominent period in the magnetic susceptibility data series of the 

Pontian deposits is 3.6 m. The minimum of the constancy exponent at 15.2 m can be considered a 280 

‘weak’ period. The absence of the ~23 m period in Figure 7a is due to the algorithm considering values 

in half of the studied segment to be contenders for the period, which in this case is 41.2 m. For the 

Lower Meotian deposits, only one period of 7 m can be distinguished (Figure 7b). Strong periods in 

Figure 7 emerge as very close to the periods obtained using spectral methods of analysing data series. In 

the case of a ‘softer’ smoothing of the constancy exponent (Figure 7), weaker periods can be obtained. 285 

In Figures 5–6, these were not valid above the 95% confidence intervals or could not be obtained due to 

the low spatial resolution of the initial data. 

  

(a) (b) 

Figure 7: Determination of the periods in the magnetic susceptibility data: (a) Lower-Upper Pontian deposits; (b) Lower 

Maeotian deposits. The calculated constancy exponent of the series is shown in blue (construction – dispersion, see above). 

The ‘strongly’ smoothed version is shown in red. 290 

4. Conclusions 

This study presents new experimental data of the Pontian and Lower Maeotian of the Black Sea 

Basin (Paratethys) obtained by Time series analysis of magnetic susceptibility data from relatively 

deep-water sediments exposed in the Zheleznyi Rog Cape section (Taman Peninsula, Russia). 

The DMA-based algorithm developed by the authors allows us to carry out the main tasks of 295 

cyclostratigraphy effectively. Periodograms were constructed to further identify repetitive cycles for 

carrying out geological reconstructions and correlating sediments of the same age over a large area. In 

the studied interval, a ∼71-m-long sedimentary sequence, spectral analysis revealed statistically 

significant signals with some highland peaks. These signals correspond to the precession and obliquity 

cycles. The 3.6 m peak corresponds to the precession periodicity (19–24 thousand years). The 7 m peak 300 

corresponds to the periods of changes in the angle of inclination of the Earth’s axis (41,000 years). The 

15.2 m peak corresponds to 100,000-year cycles; however, its validity is questionable due to the length 

of the interval (15×3 = 45 m). The 23 m peak is not valid, as the sampling interval is 41.2 m (cycle 
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lengths are valid when they are three times the thickness of the interval: 23×3 = 69 m). The analyzed 

parameters of the magnetic susceptibility of the Zhelezny Rog section are consistent with the data from 305 

the study of these strata using the Past and AnalySeries programs, the selection of astronomical cycles 

was carried out [Rybkina and Rostovtseva, 2014; Rostovtseva and Rybkina, 2017]. 

This study correlates the main steps of Messinian Salinity Crisis (MSC) of the Mediterranean to 

the Black Sea Pontian record based on astronomical tuning of the study sequence and evaluation of 

integrated biostratigraphic, paleomagnetic and sedimentological data [Hsü et al., 1973]. 310 

It is necessary to say in conclusion a few words, about the mathematical apparatus of DMA 

[Agayan et al., 2018]. It is being developed at the Geophysical Center of the Russian Academy of 

Sciences and forms the basis of the methodology for searching periods in the series of cyclostratigraphic 

data presented in the article. It is important to emphasize that DMA is a direction of modern applied 

systems analysis [Zgurovsky and Pankratova, 2007]. 315 

DMA has all the necessary tools to generate mining algorithms for geological and geophysical 

data, including searching for hidden periods / cycles. Based on fuzzy sets and fuzzy logic, DMA has the 

ability to convey expert ideas about the structure, morphology, monotony, and other of studied data 

series. Thus, DMA enables a systematic approach to the analysis of complex data series of Earth 

sciences. 320 

The Geophysical Center of the Russian Academy of Sciences has a vast experience of 

application DMA-structures for solving various geophysical problems. Among them are recognition of 

low-amplitude geomagnetic pulsations of various frequency ranges from 1 to 30 MHz (Pc3, Pi2, Pc5) 

on records of geomagnetic field variations; recognition of anomalies on magnetic records of the 

INTERMAGNET network; recognition of areas prone to strong earthquakes; recognition of anomalies 325 

in the records of residual gravity field variations of the global network of superconducting gravimeters 

GGP Network; recognition of anomalies on the records of the intrinsic electric potential of the Piton de 

la Fournaise volcano (Reunion Island, France); identifying areas of stability in radar interferometry 

images for monitoring the activity of Mount Etna (Sicily); analysis of a complex interference magnetic 

field in the Gulf of Saint-Malo (Brittany, France); direction assessment of the magnetization vector for 330 

geological bodies in the area of the Ahaggar massif (Algeria) and others [Bogoutdinov et al., 2010; 

Gvishiani et al., 2008a; Gvishiani et al., 2002; Zelinskiy et al., 2014; Soloviev et al., 2005; Zelinskiy et 

al., 2014; Soloviev et al., 2015; Gvishiani et al., 2003; Gvishiani et al., 2004; Kulchinsky et al., 2010; 

Mikhailov et al., 2003; Zlotnicki et al., 2005]. Thus, the results of this work show that DMA is also 

applicable for solving cyclostratigraphy problems. 335 
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