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Abstract. Aeromagnetic exploration is an important method of geophysical exploration. We study the compensation method

of towed bird system and establish the towed bird interference model. Due to the geomagnetic gradient changes greatly, so

the geomagnetic gradient is considered in the towed bird interference model. In this paper, we model the geomagnetic field10

gradient and analyze the influence of the towed bird system on the aeromagnetic compensation results. Finally, we apply the

ridge regression method to solve the problem. We verify the feasibility of this compensation method through actual flight

tests and further improve the data quality of the towed bird interference.

1 Introduction

Aeromagnetic exploration is generally used in geological research, mineral exploitation, and underground unexploded15

ordnance detection (Ekinci et al., 2020; Beamish and White, 2011; Doll et al., 2012). Since the magnetic field generated by

the ferromagnetic material and metal cutting geomagnetic wires on the aircraft platform will interfere with the magnetic

detector. It will affect the quality of aeromagnetic survey data. Therefore, it is necessary to carry out aeromagnetic

compensation (Chen et al., 2018).

In 1950, Tolles and Lawson summarized three sources related to aircraft maneuvers: the permanent field, the induced field,20
and the eddy current field (Tolles and Lawson, 1950). In 1961, Leliak summarized the work of Tolles and Lawson and

proposed a model of aeromagnetic compensation called the Tolles Lawson (T-L) model (Leliak, 1961). As a linear solution,

the T-L model faces the problem of multicollinearity (Leach, 1979; Bickel, 1979). In 1979, Bickel analyzed the

multicollinearity of the T-L model and proposed a small signal solving method to reduce the linear relationship between

features (Bickel, 1979). In 1980, Leach used linear regression theory to study the T-L model and proposed a ridge regression25

algorithm to solve the multicollinearity problem in the T-L model (Leach, 1980). In recent years, the main methods to solve

multicollinearity problems are the principal component analysis (Wu et al., 2018), the truncated singular value

decomposition (TSVD) (Gu et al., 2013; Deng et al., 2013), the multi-model compensation method (Zhao et al., 2019), the

wavelet analysis method (Deng et al., 2010; Dou et al., 2016), and the improved recursive least-squares (Zhao et al., 2017).

The above methods are all based on linear models. In 1993, Williams proposed a neural network nonlinear model to solve30
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aeromagnetic interference (Williams, 1993), but this neural network model has an overfitting problem. On this basis, Ma

Ming proposed a dual estimation compensation method of unscented Kalman filter and suppressed the problem of neural

network overfitting by introducing measurement noise (Ma et al., 2017). Yu et al. proposed an aeromagnetic compensation

model based on the generalized regression neural networks (GRNNs) (Yu et al., 2021). The model combines linear

regression and a neural network, which not only solves the insufficient fitting ability of linear regression but also weakens35

the influence of neural network overfitting. In practice, the measured value of the airborne magnetic sensor is the

superposition of the geomagnetic field and interference field. Separate the aeromagnetic interference value through a band-

pass filter (Jia et al., 2004; Groom et al., 2004; Dou et al., 2016). However, due to the existence of a geomagnetic gradient,

the filter can not completely separate the geomagnetic field. In addition, the induced magnetic field component and the eddy

current magnetic field component in the interference magnetic field are related to the geomagnetic field. Therefore, there is a40

strong coupling relationship between the geomagnetic field and magnetic interference (Dou et al., 2016).

The measurement device and the electrified wire in the towed bird platform system will cause interference, so it is

necessary to compensate for the interference of the towed bird platform. Because the towing bird system is affected by

external factors, there are two ways of movement: swing and vibration. The swing amplitude is 10 meters. The geomagnetic

gradient is 0.5nT/m, so the interference of the geomagnetic gradient on the towed bird is an important factor. In this paper,45

based on the towed bird interference model, the geomagnetic gradient component is introduced and solved by the ridge

regression method. Through the actual flight data verification, this method can improve the data quality of pod interference.

2 Experiment and data introduction

Figure 1: Towed bird system50
In the process of aeromagnetic exploration, most methods use fixed-wing platforms to compensate. When the magnetic

sensor is located near the fuselage or inside the fuselage, the structure and changes of the interfering magnetic field

generated by the aircraft in flight are complicated, which will also cause aeromagnetic interference (Xiu et al., 2018). To

reduce the aeromagnetic interference, we used the helicopter towed bird method to conduct field test measurements in the

Zhanhe area of Wudalianchi City, northern Heilongjiang Province. The towed bird is connected with the helicopter through a55
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30-meter long rope in Fig. 1. Because the ferromagnetic material in the towed bird system will affect the measurement data

of the magnetic sensor, it is necessary to compensate for the magnetic interference generated by the towed bird system.

There are two kinds of motion modes in the motion process of the towed bird platform: one is the large amplitude swing

mode influenced by the helicopter motion, the other is the amplitude vibration mode influenced by the wind speed. Under

the joint action of the two motion modes, the measured data have interfered.60

(a) (b)

Figure 2: Straight line and data

Figure 3: Diamond line and data Figure 4: Square line and data65
The experiment included three flights at an altitude of 1250m. The first time was a long straight flight. The purpose of the

experiment was to observe the distribution of the geomagnetic field in the experimental area and the intensity of magnetic

interference generated by the towed bird. Figure 2(a) shows the flight path, where the survey line direction corresponds to

the measured value in Fig. 2(b). The swing range of the pod system platform is 10 meters in Figure 2(a), and the measured

value in Fig. 2(b) shows that the magnetic interference is about 5nT. In Figure 2(b), the magnetic field difference between70

5000-7000 sampling points is 250nT. The distance is 500m, so the geomagnetic gradient is 0.5nT/m. In Fig. 3 the diamond
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data is used for the training of the aeromagnetic compensation model. In Figure 4, square data is used as the verification of

the training model.

3 Compensation method

3.1 Towed bird model75

The interference generated by the towed bird system and the fixed-wing helicopter platform is caused by the magnetic sensor

strap-down system platform.

Figure 5: The towed bird coordinate system80
Establish the towed bird coordinate system according to the fixed-wing coordinate system in Fig. 5 (Leliak, 1961). �鏠࡬

and � are the angles between the three coordinate axes of the towed bird and the geomagnetic field, called Euler angles,

where �鏠 � are the geomagnetic declination and the geomagnetic inclination, respectively.

Euler angles �鏠࡬鏠� can be measured by a three-axis magnetometer, and are redefined as follows:

�� � cos ��ଭ

�� � cos ࡬ (1)85

�� � cos ��ଭ

��鏠�� and �� represent the direction cosine of the Euler angle.

There are three types of magnetic field interference: permanent magnetic field, induced magnetic field, and eddy current

magnetic field. Refer to the T-L model to establish the towing bird jamming platform model as follows:

�� � ���� � ���� � ���� � ����
� � ����� � ������ � ������ � ����

� � ������
� � �������

� �

�������
� � �������

� � �������
� � �������

� � �������
� � �������

� (2)

�� is aeromagnetic interference. ��鏠� � �鏠�鏠���� is the aeromagnetic interference parameter. ��
� 鏠��

� 鏠��
� is the derivative of90

Euler angle cosine to time.
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Further expressed as:

�� � � � � (3)

Where � � ��� �� ��������� is the aeromagnetic interference parameter, and � � ��� �� ������ �� �� is the

aeromagnetic interference feature.95

The linear superposition of geomagnetic field and aeromagnetic interference constitutes the measured value �:

� � �� � �� � �� � � � � (4)

3.2 Error analysis and improvement

Traditional aeromagnetic compensation usually uses a bandpass filter to obtain the aeromagnetic interference value. ��䁨� ଭ

is expressed as linear bandpass filtering for each column of matrix R. applying ��䁨 to both ends of formula (4), we can get100

the following results:

��䁨 � � ��䁨��� � ��䁨�� � �ଭଭ � ��䁨���ଭ � ��䁨��ଭ � � (5)

When ��䁨���ଭ � �，then:

��䁨 � � ��䁨��ଭ � � (6)

The data processed by the bandpass filter is denoted as �䁨鏠�䁨 . Let ��䁨 � � �䁨鏠��䁨 � � �䁨 . Then (6) can be expressed105

as:

�䁨 � �䁨 � � (7)

Applying the least-squares to solve:

� � ��䁨
��䁨ଭ��䁨

��䁨 � �䁨
��䁨 (8)

Where �uf
Tufଭ−�uf

T is the generalized inverse of the matrix �䁨, denoted as �䁨
�.110

To analyze the influence of the system matrix �䁨 on the result, we perform singular value decomposition on the system

matrix �䁨：

�䁨 � 횐ଭ�� � ���
� ���������� (9)

Where the matrix �䁨 is   � �� matrix. 횐 and �are   �  鏠�� � �� orthogonal matrix respectively. ଭ is R × 16 diagonal

matrix. ��� is the ith singular value and has ��� � ���� � ���；��� is the ith column vector of matrix 횐 ; ��� is the ith115

column vector of matrix �.

Then, the least-squares solution (8) can be expressed as follows:

� � ���
� ���

� �䁨
���

� ��� (10)

It can be obtained from the above formula that the system matrix �䁨 contains small singular values. The slight error in

matrix �䁨 will be magnified. During the movement, the swing distance of the towed bird is 10 meters. Since the geomagnetic120
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gradient is 0.5nT/m, it will introduce the geomagnetic gradient, resulting in the presence of the geomagnetic field component

in the filtered aeromagnetic interference �䁨, which will cause an error in the solution.

From the above analysis, it can be known that the existence of the geomagnetic gradient will affect the compensation

result of the towed bird interference. According to the two-dimensional Taylor model of the geomagnetic field, the

horizontal geomagnetic field is expressed as a function of latitude � and longitude �(Dawson and Newitt, 1977).125

���ଭ�선ᖂ � ���
�

���
� ����� �� − ��ଭ�−��� − ��ଭ� (11)

Where ���ଭ�선ᖂ is the horizontal geomagnetic field. �� and �� are the latitude and longitude of the initial position, ��� is a

constant, and N is the truncation order.

The filtered horizontal geomagnetic field obtained through band-pass filter processing is as follows:

��䁨����ଭ�선ᖂଭ � ��䁨� ���
�

���
� ����� � − �� �−� � − �� �ଭ (12)130

The Taylor model only considers the relationship between latitude and longitude and the geomagnetic field but does not

consider the influence of altitude changes on the geomagnetic field. Since the helicopter's flying height is 1250 meters, it is

considered that the vertical geomagnetic field gradient is proportional to the helicopter's flying height. Assuming that the

scale factor of the vertical gradient component of the geomagnetic field is �, the filtered vertical gradient component can be

expressed as follows:135

��䁨����ଭ��ᖂଭ � ��䁨���� − ��ଭଭ � ���䁨��ଭ (13)

Where ��䁨����ଭ��ᖂଭ is the filtered vertical geomagnetic field gradient value. �� is the height of the starting position of the

towed bird, and � is the height of the towed bird during flight. Then the geomagnetic field passing through the band-pass

filter can be further expressed as follows:

��䁨���ଭ � ��䁨� ���
�

���
� ����� � − �� �−� � − �� �ଭ � ���䁨��ଭ (14)140

When the truncation order N is different, the expression of equation (14) will be different, which will affect the final

compensation result.

Next, we use a bandpass filter to filter the truncation order N=1,2,3,4:

� � � ��䁨����ଭ�선ᖂ�ଭ � �����䁨 � � �����䁨��ଭ

� � � ��䁨����ଭ�선ᖂ�ଭ � �����䁨 � � �����䁨 � � �����䁨 �� � �����䁨 �� � �����䁨���ଭ145

� � � ��䁨����ଭ�선ᖂ�ଭ � �����䁨 � � �����䁨 � � �����䁨 �� � �����䁨 �� � �����䁨 �� � �����䁨 �� +

�����䁨 ��� � �����䁨 ��� � �����䁨 ��

� � � ��䁨����ଭ�선ᖂ�ଭ � �����䁨 � � �����䁨��ଭ � �����䁨 �� � �����䁨 �� � �����䁨 �� � �����䁨 �� +

�����䁨 ��� � �����䁨 ��� � �����䁨 �� � �����䁨 �� � �����䁨 ��� � �����䁨 ���� � �����䁨 ��� +�����䁨���ଭ

By introducing formula (14) into formula (5), we can get the following results:150

��䁨 � � ��䁨��� � ��䁨�� � �ଭଭ � ��䁨���ଭ � ��䁨��ଭ � � � ��䁨����ଭ�선ᖂଭ � ���䁨 � � ��䁨��ଭ � � (15)

��䁨����ଭ�선ᖂଭcan bring in different results according to different values of N in equation (14), and finally combine the

towed bird model with the geomagnetic field model. The final expression is as follows:
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��䁨 � � ��䁨���ଭ�� (16)

Where �� � ��鏠�鏠�鏠�鏠����,�� � ��鏠�鏠���鏠���鏠�����. �� and �� have different expressions according to the value of N. For155

example, when N=1, �� � ��鏠�鏠�鏠��，�� � ��鏠�鏠���鏠����。

Since the T-L model introduces the geomagnetic field component, the model will further have a multicollinearity problem.

Therefore, the ridge regression method is introduced to solve this problem. The ridge regression solution formula is as

follows:

��� � argmin
��

� ��䁨 � − ��䁨 �� �� � � ��������ଭ (17)160

Where ��� is the parameter estimation value under the ridge regression, and λ is the regularization factor.

3.3 Evaluation standard of compensation quality

The traditional aeromagnetic compensation quality evaluation standard uses a standard deviation improvement ratio to

evaluate:

�  �
���䁨선ᖂ�
��䁨��ᖂ

(18)165

���䁨선ᖂ� and �after are the standard deviations of the data before and after compensation, respectively. Standard deviation

data includes not only aeromagnetic interference data but also geomagnetic gradient data. Assuming that the aeromagnetic

interference and the geomagnetic field can be linearly superimposed, then:

�  �
���䁨선ᖂ�
� ����䁨선ᖂ�

�

��䁨��ᖂ
� ���䁨��ᖂ

� (19)

���䁨선ᖂ�
� and ��䁨��ᖂ

� are the standard deviations of the aeromagnetic interference before and after compensation. ���䁨선ᖂ�
� and170

��䁨��ᖂ
� are the standard deviations of the geomagnetic field before and after compensation. The aeromagnetic interference

caused by birds is small, but the geomagnetic gradient is large and changes a little before and after compensation.

���䁨선ᖂ�
� � ���䁨선ᖂ�

� ，��䁨��ᖂ
� � ��䁨��ᖂ

� ，���䁨선ᖂ�
� � ��䁨��ᖂ

� (20)

Therefore:

�  �
���䁨선ᖂ�
� ����䁨선ᖂ�

�

��䁨��ᖂ
� ���䁨��ᖂ

� �
���䁨선ᖂ�
�

��䁨��ᖂ
� � � (21)175

Therefore, the data before and after compensation are filtered by a bandpass filter with a cut-off frequency of 0.03-0.1Hz.

Then there are:

�  �
���䁨선ᖂ�
�

��䁨��ᖂ
� (22)

The paper takes �  as the evaluation index of the compensation result.
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4 Results and analysis180

According to the above analysis, when the truncation order of the two-dimensional Taylor model of the local magnetic

field is � � �鏠�鏠�鏠�鏠� , the ridge regression method is used to solve the formula (17). The standard deviation

improvement ratio (IR) of formula (22) is used to evaluate the results of aeromagnetic compensation.

Figure 6: Improved ratio (IR)185
Figure 6 shows the standard deviation improvement ratio of applying the ridge regression method when the truncation

order N is 0,1,2,3,4 respectively. The paper selects the truncation order of the two-dimensional Taylor of the geomagnetic

field. When � � �, the compensation result is less than the standard deviation improvement rate when N is 1, 2, 3. When N

is 4, it will be slightly lower than the standard deviation improvement ratio when N is 3. When the truncation order is greater

than 3, the multicollinearity of the model will increase, leading to the introduction of errors in the solution process, so190
choosing a suitable truncation order is very important for model solving. When N is 3, the ridge regression method is used to

solve the problem, and the final compensation result is the best. The standard deviation improvement is 6% higher than that

of the compensation effect without the geomagnetic gradient.

Figure 7 shows the comparison of the standard deviation and improvement ratio of the towed bird compensation in

different directions. Figure 8 shows the comparison of the compensation result when N=1,2,3,4. It can be seen from Figure 7195

and Figure 8 that when the helicopter is flying in the south and west directions, the standard deviation is large, the towing

bird swing is small, and the main interference is vibration mode. Therefore, when the geomagnetic gradient is introduced

into the compensation, the result is only slightly better than the model when � � � . When the helicopter is heading north,

because the towing bird platform is affected by swing and vibration, it is greatly affected by the geomagnetic gradient,

resulting in large aeromagnetic interference. Introducing the geomagnetic gradient into the towed bird interference model200

will be improved, and IR will be improved to 2.47. When the helicopter is heading east, the interference is mainly caused by

the swing mode of the towed bird. The standard deviation interference is small, and it is greatly affected by the geomagnetic

gradient. So the IR is improved to 2.75.
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205

Figure 7: Comparison of compensation results of N = 0,1,2,3 in different directions：
(a) standard deviation (STD)，and (b) improvement ratio (IR).

Figure 8 Compensation result of� � ᖝ鏠Ğ鏠懪鏠ଭ210

5 Conclusion

The paper analyzes two movement modes of the towed bird system during the movement process. We considered the

influence of geomagnetic gradient changes on the results of aeromagnetic interference compensation, but we also introduced

the varying geomagnetic gradients into the interference model. Finally, we derive the model parameter estimation and

correction. The paper solves the problem of the compensation result of the geomagnetic gradient change under the towing215
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bird system but also expands the towing bird interference model. When the towed bird system is subject to large swings and

vibrations in the heading, this method can improve the data quality of aeromagnetic interference， the experimental results

show that the improvement ratio has increased by 6%. Next, we will use this compensation method to improve the data

quality of aeromagnetic surveys and use the helicopter towed bird system to detect underground magnetic targets.
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