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Abstract. Historic measurements are often temporally incomplete and may contain longer periods of missing data whereas

climatological analyses require continuous measurement records. This is also valid for historic manual snow depth (HS) mea-

surement time series, where even whole winters can be missing in a station record and suitable methods have to be found

to reconstruct the missing data. Daily in-situ HS data from 126 nivo-meteorological stations in Switzerland in an altitudinal

range of 230 to 2536 m above sea level is used to compare six different methods for reconstructing long gaps in manual HS5

time series by performing a "leave-one-winter-out" cross-validation in 21 winters at 33 evaluation stations. Synthetic gaps

of one winter length are filled with bias corrected data from the best correlated neighboring station (BSC), inverse distance

weighted (IDW) spatial interpolation, a weighted normal ratio (WNR) method, Elastic Net (ENET) regression, Random Forest

(RF) regression and a temperature index snow model (SM). Methods that use neighboring station data are tested in two station

networks with different density. The ENET, RF, SM and WNR methods are able to reconstruct missing data with a coefficient10

of determination (r2) above 0.8 regardless of the two station networks used. Median RMSE in the filled winters is below 5 cm

for all methods. The two annual climate indicators, average snow depth in a winter (HSavg) and maximum snow depth in a

winter (HSmax), can be well reproduced by ENET, RF, SM and WNR with r2 above 0.85 in both station networks. For the

inter-station approaches, scores for the number of snow days with HS≥1 cm (dHS1) are clearly weaker and except for BCS

positively biased with RMSE of 18-33 days. SM reveals the best performance with r2 of 0.93 and RMSE of 15 days for dHS1.15

Snow depth seems to be a relatively good-natured parameter when it comes to gap filling of HS data with neighboring stations

in a climatological use case. However, when station networks get sparse and if the focus is set on dHS1, temperature index

snow models can serve as a suitable alternative to classic inter-station gap filling approaches.

1 Introduction

Climatological analyses require continuous measurement series of meteorological data. Unluckily, historical measurement20

series are prone to contain periods of missing data. Longer data gaps can for example originate from temporally abandoning a

measurement site, not properly reported measurements or archiving errors. Therefore, periods of missing data ideally need to

be interpolated prior to execution of any analysis. This is also valid for manual snow depth (HS) measurement time series. For

example, many instances of a whole winter of missing data are present in the manual station HS data records in Switzerland.

On the other hand, long-term continuous records of HS are for example necessary to perform climatological trend analyses25
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(e.g. Matiu et al., 2021), to verify modeling studies (e.g. Olefs et al., 2020) or to calculate return levels of extreme events for

constructional guidelines (e.g. Marty and Blanchet, 2012).

A number of studies have evaluated and compared methods for reconstructing missing data mostly for the two variables

temperature and precipitation (e.g. Kanda et al., 2018; Woldesenbet et al., 2017; Yozgatligil et al., 2013; Kemp et al., 1983).

For longer gaps, usually inter-station approaches are used where missing data of one station is imputed with the help of one30

or more neighboring stations (Massetti, 2014). For this purpose, most often multiple regressions, weighted averages or ratios

of average values between the neighboring station and the station to be filled are used (Woldesenbet et al., 2017; Tardivo and

Berti, 2012; Auer et al., 2007). More recently, also machine learning approaches have been used to estimate missing values

(Kim and Pachepsky, 2010; Kashani and Dinpashoh, 2012).

Snow depth is the result of an interplay between temperature and precipitation as well as the radiation driven energy bud-35

get. Therefore, it is unclear if the methods developed for the reconstruction of other meteorological parameters are also easily

applicable for snow depth time series. Additionally, for inter-station approaches there might be the problem of different rela-

tionships during accumulation and ablation phase between stations which could hinder such approaches (Bales et al., 2018).

This might be especially true for stations at different elevations. Inter-station approaches are limited by the fact that a suit-

able set of reference stations needs to be available. Additionally, different predominant macro-scale weather patterns from40

one winter to the other can lead to the violation of the assumption that relationships between stations are stationary. If other

meteorological parameters have been continuously measured in the period of missing HS at the target station, HS can also

be derived from these parameters with snow models. For the climatological use case where measured data is often limited by

the number of input variables and the temporal resolution, temperature-index models can be used for this task as they only

need daily precipitation and mean temperature as input variables. Although temperature-index models are very simplistic and45

for example neglect effects such as snow redistribution by wind, they have been used in snow climatological impact studies

(e.g. Marke et al., 2018; Notaro et al., 2011). Flat field locations which are often characteristic for snow measurement sites are

thought to be less affected by such kinds of effects.

Reconstruction of HS data has been done by several studies (e.g. Brown, 1996; Brown et al., 2003; Witmer, 1984; Falarz,

2002; Avanzi et al., 2020). Some of the studies focus on shorter gaps in hourly automatic measured snow data (Avanzi et al.,50

2020) while other studies focus on monthly means and employ very simple statistical models based on temperature only

(Hughes and Robinson, 1993; Brown et al., 1995). For daily data, weighted averages of HS data from neighboring stations are

employed (Matiu et al., 2021). Schöner and Koch (2016) use spatial averages and a temperature-index model to reconstruct

missing daily HS data in a project of the Austrian meteorological service. However, except for Witmer (1984) who compare

spatial interpolation methods for short gaps, no general comparison of different methods for reconstructing long gaps in daily55

HS time series exists to our knowledge. It remains unclear which methods are most appropriate for climatological analyses

because the existing methods from different studies are not easily comparable and also only applicable for specific setups. For

climatological analyses covering snow, most often annual or seasonal snow climate indicators are used to evaluate trends and

changes in the snow cover rather than the daily values (e.g. Marty, 2008; Beniston, 2012; Buchmann et al., 2021; Marke et al.,

2018; Olefs et al., 2020). These snow climate indicators are derived from daily data such as for example mean snow depth or60
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Figure 1. Location of evaluation stations (blue triangles) and predictor stations (orange squares) for the cross-validation study. The back-

ground color resembles elevation.

duration of the snow cover. However, none of such studies evaluate the influence of missing data and gap filling procedures on

these snow climate indicators.

With this study, we perform a quantitative comparison of different methods for reconstructing typical year-long gaps in

manual daily HS time series with focus on climatological analyses and the ability to reproduce important annual snow climate

indicators. A specific aim is to test the performance of simple temperature-index models, because often gaps occur at the65

beginning of a measurements series (i.e. in the fist half of the 20th century), when typically no suitable neighboring stations

are available. We compare different spatial interpolation methods as well as a simple snow model by imputing synthetic gaps

in a "leave-one-winter-out" cross-validation study. The remainder of the paper is structured as follows: Used data and methods

are described in Sect. 2, results are presented and discussed in Sect. 3 and concluding remarks are given in Sect. 4.

2 Data and methods70

We use daily manual snow depth, mean temperature and sum of precipitation data from 126 nivo-meteorological stations in

Switzerland. The majority (93) of the stations are primarily measuring snow related variables and not necessarily temperature

and precipitation. The stations are either operated by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss)

or by the WSL Institute for Snow and Avalanche Research SLF (SLF) and data is provided by these two institutions. The

data covers 21 hydrological years in the period between 1999 until 2020. A hydrological year is defined as the period from75

September until end of August. The snow depth is measured manually between 7 and 8 a.m. local time each morning from

a fixed snow stake an has the date stamp of the day of measurement. Although many stations have already measured snow

before 1999, we decide to use only the last 21 years in order to have as many complete and thoroughly quality controlled time

series in our station set. The 21 year time period was chosen because we wanted to have a long enough data set on the on hand

(containing a few well known snow abundant and snow scarce years) and a common (realistic) length of available snow depth80
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time series for the training period (see below) on the other hand. The daily sum of precipitation data is covering the period

7 a.m. of the previous day until 7 a.m. local time and has the date stamp of the previous day. Mean temperature is aggregated

over the whole day and has no date shift. The change of a HS measurement of date i relative to the preceding measurement is

therefore influenced by the precipitation of date i−1 and a combination of the temperature at the two dates i and i−1. For being

able to test methods for reconstructing missing data in a controlled environment, a "leave-one-winter-out" cross-validation is85

performed. Data for one winter (Nov-Apr) is deleted (gap period) and in case a parameter training is required for the respective

method, this is done on the winter data of the remaining 20 winters (training period). Locations of the stations used in the cross

validation study can be seen in Fig. 1. We test the spatial interpolation methods in two different station networks in order to

assess sensitivity against sparser station networks. Sparser networks can be expected in areas of the world which are not as

densely populated as Switzerland or in earlier times such as e.g. in the mid 20th century when much fewer stations measured90

snow depth in Switzerland. The dense network contains 33 evaluation stations (blue triangles in Fig. 1) as well as additional

93 neighboring predictor stations (orange squares in Fig. 1) and covers stations in an altitudinal range of 230 to 2536 m above

sea level. The sparser network consists of the evaluation stations only and covers an altitudinal range of 273 to 1970 m above

sea level. If two stations were situated closer than 3 km to each other, one of the two stations was excluded from the station

sets. In order to test every method at the same set of stations, evaluation stations are chosen such that they have a continuous95

record for all three variables HS, temperature and precipitation. Therefore, gaps are only filled at the evaluation stations of

both station networks. For the stations ARO, DAV and ULR we combined temperature and precipitation data measured by

MeteoSwiss with HS data that was measured by the SLF at a close by partner station. Gaps shorter than three days in the HS

time series (only rarely occurring) have been filled by linear interpolation. If any variable had longer data gaps than three days,

the corresponding station was excluded from the station data set.100

2.1 Interpolation methods

2.1.1 Selection of neighboring stations for spatial interpolation methods

Six different methods are employed to interpolate a missing winter of snow depth data at a certain station with help of neighbor-

ing stations or by using measured meteorological data at the gap station. In case neighboring stations are used as predictors for

reconstructing the missing data, these stations have to be within a radius of 200 km and show an absolute elevation difference105

of less than 500 m. We choose these limits based on a correlation analysis of Matiu et al. (2021). For all methods which use HS

data from neighboring stations, the best n correlated neighboring stations are chosen as predictor stations. If less than n sta-

tions meet the constraints defined above, the number of predictor stations is reduced accordingly. To select the best reference

stations, Pearson correlations between target station and neighboring stations are computed in the training period only (see

Sect. 2 for definition). The maximum number of potential predictor stations for each of the spatial interpolation methods has110

been determined in another cross validation study where we varied the number of maximum potential predictor stations from 3

to 25 stations. This sensitivity study is performed only on the complete station network as for the sparse network the maximum
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number of 25 stations would not be reached in many example cases. Results of this sensitivity study and the maximum number

of potential predictor stations is discussed further in Sect. 3.1.

2.1.2 Best correlated station (BCS)115

The simplest approach we test for imputing missing data is to directly use HS data from the best correlated neighboring station

(BCS). Correlation is calculated in the training period and the constraints defined in Sect. 2.1.1 have to be fulfilled. As a simple

bias correction measure, the data from the BCS is multiplied with the ratio of the mean at the target site to the mean at the BCS

calculated in the training period.

2.1.3 Inverse distance weighting (IDW)120

The inverse distance weighting (IDW) method uses a weighted spatial average of neighboring stations to impute missing values

at the target station, neglecting any elevation gradients. Weights are the inverse squared distance of the respective neighboring

station to the target station such that

ŷ =

∑n
i=1

yi
d2i∑n

i=1
1
d2i

(1)

where ŷ is the estimated snow depth at the target station, n is the number of neighboring reference stations, yi is the snow depth125

at neighboring station i and di is the distance of the neighboring station i to the target station. Imputed values are rounded to

the nearest cm-integer. IDW is besides nearest neighbor and non-weighted local averages one of the most often used methods

for reconstructing climatological data (Beguería et al., 2019; Kanda et al., 2018).

2.1.4 Weighted normal ratio (WNR)

Matiu et al. (2021) use a variation of the weighted normal ratio (WNR) method for filling short and longer gaps (up to few130

years) in daily snow depth time series. The normal ratio method was first introduced by Paulhus and Kohler (1952) and assumes

a constant ratio of the average state of two neighboring stations (Young, 1992; Yozgatligil et al., 2013). Missing values are filled

by

ŷ =

∑n
i=1wiyi

ȳ
ȳi∑n

i=1wi
(2)

where n is the number of neighboring reference stations, yi is the snow depth at neighboring station i, ȳ and ȳi are the mean135

snow depth at the target station and reference station i in the training period respectively and wi is the weight of station i based

on the vertical distance Z −Zi calculated as wi = e− ln2(Z−Zi)
2/2502

which is a Gaussian weight function with a full width at

half maximum of 500 m. Reconstructed values are rounded to the nearest cm-integer. In order to have equal conditions within

our method comparison, the selected neighboring stations do not need to have a correlation coefficient larger than 0.7 with the

target contrary to the WNR method used in Matiu et al. (2021).140
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2.1.5 Elastic Net (ENET) regression

As fourth method for reconstructing missing HS data at a target station, we use a multiple linear regression of the HS data

from the best correlated neighboring stations. As the neighboring stations often are as well correlated with each other, we use

Elastic Net (ENET) regularization to reduce the variance of the model (Zou and Hastie, 2005; Friedman et al., 2010). Elastic

Net combines the l1 regularization term employed in LASSO (Tibshirani, 1996) and the l2 regularization term used in ridge145

regression (Hoerl and Kennard, 1970) and is thus able to deal with multicollinearity in the predictors. The ratio between l1 and

l2 regularization and the hyperparameter α are optimized in a 5-fold cross validation on the data in the training period. Before

fitting and predicting with the model, predictors and target are standard scaled to have a mean of 0 and standard deviation of

1 based on the data in the training period. Reconstructed values are rounded to the nearest cm-integer and negative predicted

values are clipped to zero.150

2.1.6 Random Forest (RF) regression

As fifth method we employ Random Forest (RF) regression as a nonlinear combination of neighboring stations. A random

forest is an ensemble of decision trees that are drawn from random subsets of the training data (Breiman, 2001). The prediction

of the ensemble is the average of the individual trees. We use the best correlated neighboring stations as predictors that satisfy

the requirements defined in Sect. 2.1.1. In order to capture potential different relationships between stations in the course of a155

snow season, we additionally pass the three seasons early winter (Nov, Dez), mid winter (Jan, Feb) and late winter (Mar, Apr)

as a categorical predictor to the model. Prior to fitting the model, this "seasons" predictor is one-hot encoded, whereas the other

predictors of neighboring station HS data are standard-scaled as for the elastic net regression (Sect. 2.1.5). The random forest

model has a tree number of 200 and a maximum depth of 70.

2.1.7 Snow model (SM)160

As last method we make use of a simple snow model (SM). The snow model consists of a temperature-index model which is

then coupled to a density model to estimate the snow depth. For estimating snow water equivalent (SWE) in the snowpack,

we use the Snow-17 model which uses a temperature-index approach with a seasonally varying melt factor (Anderson, 1973).

However, we do not use the density parameterization described in the former reference. Instead, we post-process the SWE

time-series of the temperature-index model with a very simple density model. The density model uses an approach based on165

Martinec and Rango (1991) in which a time dependent density for the different layers in the snowpack is assumed:

ρ(t) = ρmax + (ρ0 − ρmax)e−t/τ (3)

Each layer that is identified by an increase in SWE has an initial new snow density ρ0, which is temporally increasing according

to Eq. 3 at each time step t until it reaches a maximum density ρmax. When SWE decreases during a day, the density model

removes layers from top of the snowpack for compensating the loss in SWE. During the cross-validation, only the parameters170

of the density model ρ0, ρmax and τ are optimized by grid-searching a predefined reasonable parameter space during the
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training period for each station and synthetic gap individually to minimize the root-mean-squared error (RMSE) in the training

period. No parameter optimizations are done for the melt and accumulation model and the parameters defined in Anderson

(1973) are used. We considered to use a combined temperature of two days to correspond with the interval of precipitation and

HS data (see Sect. 2). However, we found negligible differences in model performance and decided to leave the input data as175

is to avoid potential smoothing of temperature signals. In contrast to the inter-station methods described above, we apply the

snow model over the full hydrological year in order account for snow which has already built up until November. However,

scoring is only done in the winter months Nov-Apr.

2.2 Evaluation metrics

As score metrics of the reproduced daily HS values we use the RMSE, the coefficient of determination (r2) and the BIAS. The180

BIAS is calculated as the average error. RMSE and BIAS can be interpreted in the same unit as the HS measurements [cm].

As fourth metric, we use the mean arctangent absolute percentage error (MAAPE) which was introduced by Kim and Kim

(2016) as a relative error term (limited to a maximum of 1.6) because of frequent close-to-zero HS values for stations at low

elevation which blow up traditional relative error terms such as the mean absolute percentage error. Since we are interested in

gap filling for climatological analyses, we additionally test how good the different methods are able to reproduce three snow185

climate indicators which are frequently used by practitioners. These snow climate indicators are i) the average snow depth in a

winter (HSavg) which is widely used to test for trends in snow climatology, ii) the maximum snow depth in a winter (HSmax)

which is an important indicator for e.g. prevention measures in engineering, and iii) the number of snow days with HS≥1 cm

(dHS1) which has vital importance for ecology and the winter tourism industry.

3 Results and Discussion190

3.1 Number of potential predictor stations

The influence of the maximum number of neighboring stations is displayed in Fig. 2. Boxplots of RMSE and MAAPE scores

calculated in the reconstructed winters are shown for varying numbers of neighboring stations for the different spatial interpo-

lation methods. The methods have been evaluated in the dense station network. IDW shows decreasing performance for both

RMSE and MAAPE with increasing number of predictors. The median RMSE increases from 3.9 for one predictor station to195

5.6 for 25 predictor stations. For WNR, the median MAAPE is increasing with increasing number of neighboring stations from

0.21 for one neighboring station to 0.37 for a maximum number of 25 neighboring stations. However, WNR performs best in

terms of RMSE for a maximum number of 5 neighboring stations with a median RMSE of 3.1. RF and ENET generally show

increasing performance with increasing number of predictor stations. For ENET, median RMSE is decreasing from 3.3 for one

predictor station to 2.7 for a maximum number of 15 predictor stations. Above 15 predictor stations, a minimal increase of200

median RMSE to 2.8 is observable. MAAPE scores are decreasing and show a lower spread for increasing maximum number

of predictor stations. However, further increase from 15 stations does not yield remarkable differences in median MAAPE
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Figure 2. Boxplots of RMSE and MAAPE calculated in the individual reconstructed winters with varied maximum number of predictor

stations for the spatial interpolation methods. The methods have been applied to the complete station network. For better comparison,

outliers are not shown in the boxplots. Note that WNR with one predictor station is equivalent to the BCS method.

and its variance. For RF, RMSE constantly decreases with increasing maximum number of predictor stations from 3.5 for one

predictor station to 2.9 for a maximum number of 25 predictor stations. MAAPE scores for RF are insignificantly better for

maximum station numbers of 3, 5 and 10 than for higher maximum station numbers.205

Some of the methods are more sensitive to the maximum number of used neighboring stations than others. The deterministic

approaches (IDW, WNR) regresses in skill for more stations because more stations introduce unnecessary noise. This is the

reason why other studies that use regional averages or simple linear regressions also use only few neighboring stations for

reconstructing missing data (e.g. Matiu et al., 2021; Tardivo and Berti, 2014). Regularization measures, which are both included

in the ENET and RF regression, allow to choose the best predictors from a given set of predictor stations. Therefore, overfitting210

is prevented even for a larger number of predictors with these two methods. Tests on how many predictor stations are influential
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Table 1. Selected number of neighboring stations for each method.

Method max. # neighboring stations

BCS 1

IDW 3

WNR 3

ENET 15

RF 10

SM1 0

1only temperature and precipitation data from the

target station is used

for the Random Forests showed that only few stations (less than ~5) share the majority of feature importance. The selected

number of maximum neighboring stations for the method comparison in Sect. 3.2.1 and Sect.3.2.2 is mainly based on the

median RMSE and MAAPE scores presented earlier. If scores from two different maximum numbers of predictor stations are

approximately equal for one method, we decided to use the lower number of stations to keep the method as simple as possible.215

Accordingly, we use the maximum numbers of predictor stations listed in Table 1 for the comparison of different methods in

the following sections.

3.2 Method performance

3.2.1 Daily values

Predicted daily values are plotted against measured daily values for the different methods and station densities in Fig. 3. Values220

are aggregated over every filled gap in the cross-validation. The three score metrics r2, RMSE and BIAS are indicated in

each panel. For both the sparse and dense station network, ENET regression yields almost always the best results for all score

metrics, shortly followed by RF regression and the WNR method. In the dense station network, WNR, ENET and RF have

similar score values with RMSE ranging between 6.5 and 7.0, similar r2 of 0.94 and equally small BIAS of 0.06 for ENET

and RF and BIAS of -0.07 for WNR. BCS is shortly following WNR, ENET and RF in the dense station network with r2 of225

0.92, RMSE of 7.6 and BIAS of -0.1. IDW is performing poorer than the four aforementioned methods with r2 of 0.85, RMSE

of 10.6 and a positive BIAS of 1.78. The Snow Model performs equal to IDW in the dense station network in terms of RMSE

and r2 with RMSE of 10.2 and r2 of 0.86. SM predictions are negatively biased with BIAS of -0.74. The SM thus cannot

compete with the WNR, BCS, ENET and RF methods in the dense station network. However, the SM (in contrast to IDW) can

compete with the WNR and BCS methods in the sparse station network for which the RMSE increases by ~35% and ~40%230

compared to the dense station network, respectively. RF and ENET are less sensitive against station network density than the

WNR and BCS methods but still performance decreases for decreasing station network density. RMSE in the sparser station

network decreases by ~30% compared to the dense station network for RF and ENET. IDW is the most sensitive to station
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Figure 3. Reconstructed daily snow depth values plotted against the measured values for the used methods (columns). Data in the top row is

calculated in the full station network, data in the bottom row is calculated using the evaluation stations only. The solid black line represents

perfect predictions, the dashed line is a linear fit of predicted versus measured values. The three score metrics coefficient of determination

(r2), root-mean-squared error (RMSE), and BIAS are indicated in each panel.

network density. RMSE in the sparse station network increases by ~75% and explained variance is significantly lower with r2

of 0.55 in the sparse station network.235

The RMSE scores and BIAS of daily values aggregated over all reconstructed gaps are about double as high as the the

median RMSE and BIAS obtained from each gap individually (Fig. A2).

3.2.2 Annual snow climate indicators

HSavg, HSmax and dHS1 derived from the reconstructed daily data (Sect. 3.2.1) are plotted against the same snow climate

indicators derived from the measured data in Fig. 4. The score values BIAS, RMSE and coefficient of determination (r2)240

accompanying the data shown in Fig. 4 are listed in Table 2. Absolute errors of the same snow climate indicators derived from

reconstructed data versus the HSavg derived from the measured data in the reconstructed winters are shown in Fig. 5.

BCS, WNR, ENET, RF and SM yield unbiased reconstructions of HSavg for both the dense and the sparser station network

with BIAS smaller 0.15 cm. For all methods, RMSE for HSavg is about 30 to 40% smaller than the RMSE derived from the

aggregated daily values (see Sect. 3.2.1) for both the reconstructions from the dense and sparser station network. The absolute245

error of HSavg and HSmax increases with increasing HSavg for all methods (Fig. 5). However, the increase is much larger for

BCS and IDW in the case of the sparser station network.

HSmax derived form the filled gaps shows a ~5-10% lower explained variance than HSavg. RMSE values for HSmax are

larger than for HSavg but should be compared cautious because of the different scales of the two snow climate indicators.

BCS, WNR, ENET, RF and the SM yield negatively biased HSmax with biases ranging from -2.3 to -7.4 cm in the dense and250

-1.6 to -7.4 cm in the sparse station networks, respectively. IDW shows slightly positive BIAS of 2.8 and 2.9 for the dense and
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Figure 4. Modeled average snow depth in a winter (HSavg, top row), maximum snow depth in a winter (HSmax, middle row) and number of

snow days with HS≥1 cm (dHS1, bottom row) of the reconstructed winters from the cross-validation trials versus the respective snow climate

indicator value derived from measurements. The columns refer to the different interpolation methods. Orange squares are gaps reconstructed

with the complete station network, blue triangles are gaps that have been reconstructed solely using the evaluation stations as depicted in

Fig. 1. The black line represents perfect predictions. The dashed and dotted lines are linear fits to the data points of the dense and sparse

station networks, respectively.

sparse station networks, respectively. Median absolute errors of HSmax are increasing with increasing HSavg for all methods.

For BCS and IDW, absolute errors for HSmax are increasingly sensitive to station network density for increasing HSavg. The

temporal occurrence of HSmax is consistently well reproduced for all methods in the dense and sparser station network with

median deviations of 0 days, mean deviations ranging from -2.8 to +2.4 days and standard deviations ranging from 31.3 to255

37.1 days (see Fig. A3).

The dHS1 is reproduced less precisely than HSavg with ~10-20% lower explained variance r2. All methods apart from BCS

and SM strongly overestimate the number of snow days with HS≥1 cm of the reconstructed winters with BIAS from 14.6

to 18.4 days overestimation for the full station network and 16.0 to 23.3 days overestimation for the sparse station network.

However, the BCS also slightly overestimates dHS1 with BIAS of 3.7 and 6.6 days in the dense and sparse station networks,260

respectively. All methods (except SM by method definition) experience an increase in BIAS of dHS1 in the sparse station

network compared to the dense station network. For all methods, the absolute error of dHS1 is largest in winters with HSavg

below 40 cm.
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Table 2. BIAS, RMSE and coefficient of determination (r2) for the three climate metrics HSavg, HSmax and dHS1 reconstructed with the

different methods in the dense and sparse station networks as shown in Fig. 4.

dense station network evaluation stations only

BCS IDW WNR ENET RF SM BCS IDW WNR ENET RF SM

HSavg

r2 0.96 0.87 0.96 0.97 0.97 0.93 0.90 0.53 0.93 0.94 0.94 0.93

RMSE 4.45 7.92 4.15 4.04 3.91 5.98 6.80 14.87 5.81 5.37 5.32 5.98

BIAS -0.11 1.84 -0.07 0.06 0.06 -0.77 0.12 1.77 0.02 0.05 0.05 -0.77

HSmax

r2 0.88 0.84 0.90 0.91 0.91 0.85 0.79 0.46 0.86 0.88 0.89 0.85

RMSE 15.77 18.01 14.50 13.08 13.54 17.50 20.63 33.06 16.63 15.43 15.04 17.50

BIAS -2.27 2.79 -4.72 -5.21 -4.50 -7.49 -1.64 2.92 -4.22 -5.55 -3.85 -7.49

dHS1

r2 0.89 0.73 0.81 0.79 0.85 0.93 0.78 0.66 0.78 0.63 0.83 0.93

RMSE 18.64 28.64 24.04 25.56 21.49 14.84 25.71 32.12 26.17 33.66 22.96 14.84

BIAS 3.68 17.47 14.74 18.44 14.60 5.24 6.63 19.53 16.69 23.27 15.96 5.24

Figure 5. Boxplots of absolute errors in average snow depth in a winter (HSavg, top row), maximum snow depth in a winter (HSmax, middle

row) and number of snow days with HS≥1 cm (dHS1, bottom row) calculated for 20 cm HSavg bins of the respective gap-winter and the

different methods (columns) respectively. Colors of the boxplots denote the different station networks that have been used for reconstruction.

Outliers in the boxplots are not shown for better comparison.
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3.3 Applicability and limitations

Snow depth appears to be a good-natured parameter with respect to reconstructing missing data. All methods except of IDW are265

able to reconstruct HS with a coefficient of determination above 0.8 regardless of the two station networks used. When deciding

what method to choose, it depends on the use case (daily values or derived annual climate indicators) and the setting (station

network, surrounding topography, gaps in neighboring stations) in which one wants to reconstruct the data. A qualitative

assessment for the suitability of the different methods in different situations and for different applications is given in Table 3.

In a very dense station network such as the one in Switzerland, BCS is able to reproduce annual snow climate indicators270

HSavg, HSmax and dHS1 with r2 above 0.8 and RMSE below 10 cm for the reconstructed daily HS values. This performance

could probably be improved with more advanced bias correction of the neighboring station such as quantile-mapping (Gud-

mundsson et al., 2012). However, simple approaches such as BCS, IDW and to a smaller extent WNR are sensitive to the

density and representativity of the station network. While this is true for every method that uses neighboring stations, more

sophisticated methods such as ENET and the nonlinear RF regression are able to almost retain skill also for sparser station275

networks. Consequently, ENET and RF are besides the SM the most promising candidates in regions with a sparser station

network.

Simple spatial averaging with IDW is not able to resemble strong gradients that are present in an alpine topography. We

therefore also tested the gradient-plus-inverse-distance-squared (GIDS) method (not shown in results) introduced by Nalder

and Wein (1998) which was used in a project of the Austrian Meteorologic service for imputing gaps in HS time-series (Schöner280

and Koch, 2016). In the sparse network GIDS performed even weaker than IDW, which is in accordance with Price et al. (2000)

who observed poor results with GIDS for temperature and precipitation reconstruction in areas with strong topography. Nalder

and Wein (1998) compare GIDS to Kriging based methods. We also expect a strong dependence on station network density for

Kriging and therefore refrained from including these kind of methods in our method comparison. However, in dense station

networks, Kriging can be an alternative approach to our proposed methods for interpolating snow depth data, especially when285

it comes to spatial continuous reconstructions and not only estimations on a single point.

Buchmann et al. (2021) evaluated the natural variability of annual snow climate indicators by comparing data from parallel

station pairs (<3 km distance and <100 m elevation difference). They find RMSE for HSavg within a station pair to be in

the same range as RMSE for reproduced HSavg with the ENET, RF, WNR and SM methods. This proves that HSavg can be

reproduced reasonably well with these four methods. Even the best performing method in our comparison study cannot reach290

the quality of a parallel station pair for HSmax and dHS1. RMSE of the RF method is 2 respectively 4 times larger then the

median RMSE within a parallel station pair for these two snow climate indicators (Buchmann et al., 2021).

For all methods, highest median absolute errors and BIAS for dHS1 can be observed in winters with low HSavg. These

winters are often characterized by an ephemeral snow cover which is building up and vanishing again in the course of the

winter. Temperature index models are prone to have problems with these kinds of snow covers which could explain the weaker295

performance of the SM method in these conditions (Hughes and Robinson, 1993; Gray and Landine, 1988). The positive BIAS

of dHS1 for the methods that use several neighboring stations may be explained as following. The probability that at least one
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Table 3. Suitability of different methods in different situations (dense and sparse station networks, gaps in neighboring stations) and for

different applications. Suitability ranges from not recommended or not possible (- -) to very good (+ +).

BCS IDW WNR ENET RF SM

gaps in neighboring station(s) - - + + - - + - + +

sparse station network - - - - - + + + +

dense station network + - + + + + -

daily data + - - + + + + + -

HSavg + + - + + + + + +

HSmax - - - + + + + + -

dHS1 + - - - - - + +

of the neighboring stations has snow at a certain day is higher than the probability of snow at the target station. Since most

of the methods combine data of the neighboring stations, this will result in statistically more days with snow. When trying to

minimize BIAS in dHS1, it is therefore best to rely on only few neighboring stations. Accordingly, BCS yields predictions300

for dHS1 that have a lower positive BIAS. One possible approach to reproduce dHS1 more accurately than deriving it from

reconstructed daily values, could be to model dHS1 directly. This could be realized by fitting a nonlinear statistical model such

as random forest to the dHS1 series of the target station with dHS1 series derived from neighboring stations as predictors.

However, the reduced number of data points would ideally require a longer training period of simultaneous measurements at

target and neighboring stations, respectively. The number of snow covered days can be defined with different thresholds. While305

a large positive BIAS for the 1 cm threshold (dHS1) can be observed for all methods, this BIAS decreases with increasing

thresholds for the snow covered days (see Table A1). For the number of snow days with HS≥10 cm (dHS10) the BIAS is less

than 2 days for all methods and decreases further for the number of snow days with HS≥30 cm (dHS30). The coefficient of

determination also increases with increasing snow days threshold.

An option to increase the skill of the deterministic methods BCS, IDW and WNR, is to apply stricter constraints to the310

neighboring stations as done in (Matiu et al., 2021) by introducing a correlation constraint to the neighboring stations (see

Sect. 2.1.4). In the station networks applied in this study, this would lead to a failure in filling data in 15 and 20% of the filled

gaps (station-years) for the dense and sparse station network, respectively. These cases occurred mostly for stations at low

elevations (AIG, ALT, GVE, SIO, VIS, see Fig.1) with an ephemeral snow cover.

Due to semi-automatic quality control procedures and careful station preselection, our test data set did only contain very few315

missing HS values for the reference stations. However, this is rather unlikely to be encountered in a real application. Missing

values in neighboring stations can be handled differently by different methods. ENET does not allow a single missing value

in one of the neighboring stations in the train and gap period. On the other hand, RF and the WNR method are able to deal

with missing values in the predictor stations which is a huge asset when it comes to applicability. The effect of missing values

in neighboring stations on the performance has not been tested in this study. However, this is an important point to keep in320
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mind when trying to apply any of the evaluated methods. For RF, it is also possible to add other non snow depth categorical

or continuous predictors such as the mean HSavg anomaly of the predictor stations or prevailing large scale atmospheric

conditions in the winter of interest. We tested a RF version with an additional categorical predictor calculated from binned

quantiles of the mean of all used predictor stations but did not see any improvement over the simpler version using only the

season as categorical predictor.325

One potential limitation of the SM approach is, that if the snow measurements are interrupted at a certain station, possibly

other variables which are needed as input for the snow model could also be missing. However, this is a rather unlikely case to

encounter at least in the dataset of Switzerland. Temperature and precipitation traditionally have a higher priority for weather

services than the variables associated with snow and therefore in case an issue occurred at a station, the probability of contin-

uation of these two classic meteorologic variables is higher than for any snow variable. After the automation of many weather330

stations (not for snow) in Switzerland in the 1980s, long gaps in the temperature and precipitation record are even less likely to

be encountered. If other variables such as wind and incoming short- and longwave radiation are also available at high temporal

resolution for a station, a more sophisticated snow model such SNOWPACK (Bartelt and Lehning, 2002; Lehning et al., 2002)

or CROCUS (Brun et al., 1989, 1992) would probably improve the performance of the gap reconstruction. These physics based

models cover processes such as erosion by wind and are thought to better represent settling and melting than the very simple335

approach used in our study. However, the required input data is, if at all, only available in the most recent decades.

A general limitation of our analysis may be the fact that the sparse station network is still dense when compared to station

networks present in other regions of the world (Gubler et al., 2017). If the station network is sparser than in our example, the

snow model and RF should be favoured over the other approaches as these both methods show the least sensitivity to station

network density in our analysis. Especially in data sparse regions, the probability of having temperature and precipitation data340

available is much higher than for snow depth observations which points towards the use of a snow model for data reconstruc-

tion. Alternatively, one could make use of output from reanalysis products such as ERA5-land (Muñoz Sabater et al., 2021).

If available, snow depth can be used directly from the reanalysis product or other meteorologic variables from the reanalysis

product can be used to model snow depth with a snow model. In either way, some sort of downscaling is necessary since re-

analysis products are available in a spatial resolution of about 10 or more kilometers. This can for example be done statistically345

by using e.g. the Random Forest model described in Sect. 2.1.6 with data from the 9 surrounding grid cells of the target station

as predictor variables. This method would be independent of neighboring stations and can be applied worldwide if a global

reanalysis product is employed. However, the low spatial resolution of reanalysis products will always limit the application in

complex mountainous terrain. Moreover, reanalysis products often suffer from a temperature bias (e.g. Scherrer, 2020), which

is crucial with respect to a variable like the highly temperature-sensitive snow cover.350

Ultimately, gap filling is often a preceding step when it comes to data homogenization in order to correct time series that

show breaks due to station relocations or changes in measurement techniques or instrumentation (Marcolini et al., 2019). These

breaks can be accompanied by a period of missing data. Reconstruction methods that employ training methods before and after

a data gap could level out breaks and potentially complicate their detection and correction. Therefore, it might be advisable
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to only use a training period from either before or after the data gap. Caution is also necessary when trying to e.g. do break355

detection on reconstructed annual dHS1 series due to the positive biases introduced by most of the methods.

4 Conclusions

We compared different methods for reconstructing long gaps in daily manual HS data records as well as their ability to re-

construct the annual snow climate indicators HSavg, HSmax and dHS1. The ENET, RF, WNR and BCS method are able to

reproduce daily HS values with coefficient of determination above 0.9 in the dense and above 0.8 in the sparse station net-360

work, respectively. Median RMSEs of the filled gaps are below 4 cm for all methods. The SM which does not need data from

neighboring stations reveals only slightly lower coefficient of determination (0.86) for daily HS values. The two annual climate

indicators HSavg and HSmax, in contrast to dHS1, can be well reproduced by BCS, ENET, RF, SM and WNR. All methods

except for SM and BCS overestimate the dHS1 with BIAS of 15 to 23 days. In a sparse station network a simple snow model

is best suited to resemble dHS1 most accurately with r2 of 0.93.365

The reconstruction errors of HSavg are within the natural variability of a parallel station pair. Snow depth seems to be

a relatively good-natured parameter when it comes to gap filling of data with neighboring stations. However, when station

networks get sparse, temperature index snow models serve as a suitable alternative to classic inter-station gap filling approaches.

Since most of the methods perform reasonably well, the choice of which method to use depends on the specific use case and

setting. If a serially complete, highly correlated station is available, bias corrected data from this station is easy to calculate370

and, in many instances, sufficient enough to be used in a climatological use case. If no meteorological data is available at the

target station and if neighboring stations regularly contain missing data as well, WNR is a suitable deterministic approach

to reconstruct data from neighboring stations. Missing data in neighboring stations can also be handled by RF. If the station

network is sparser than in our study and if neighboring stations are further away and weakly correlated, the snow model, ENET

and RF should be favoured over the other approaches as these three methods show the least sensitivity to station network375

density in our analysis. If the focus of the analysis is set on dHS1, a simple snow model is best suited to reconstruct a complete

missing winter. If no meteorological data is available, BCS should be the fallback solution for dHS1 in case a suitable reference

station is available.

Appendix A: Additional figures and tables

Code and data availability. Python code to perform the analysis and to use the methods on other data is available from Aschauer (2021).380

Input data to reproduce the analyses is available upon request from the authors.
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Figure A1. Boxplots of RMSE (top row) and BIAS (bottom row) calculated for 20 cm HSavg bins of the respective gap-winter and the

different methods (columns) respectively. Colors of the boxplots denote the different station networks that have been used for reconstruction.

Outliers in the boxplots are not shown for better comparison. The maximum number of predictors for the different methods is set as defined

in Table 1.

Figure A2. Boxplots for root-mean-squared error (RMSE) and BIAS of the daily values for the different methods and station densities. The

maximum number of predictors for the different methods is set as defined in Table 1. The station network density is irrelevant for the snow

model as no data from neighboring stations is used. For better comparison, outliers are not shown in the boxplots.

Author contributions. JA and CM designed the study. JA performed the analysis and drafted the manuscript. Both authors discussed the

results and commented on the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

17



Figure A3. Histograms showing the difference in days between the measured date of HSmax and the date of HSmax in the reconstructed

winters in the dense and sparse station networks. In case the same HSmax is recorded on more than one day, the date of the first occurrence

is taken.
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Table A1. BIAS, RMSE and coefficient of determination (r2) for the 1 cm (dHS1), 2 cm (dHS2), 5 cm (dHS5), 10 cm (dHS10) an 30 cm

(dHS30) thresholds for the number of snow days reconstructed with the different methods in the dense and sparse station networks.

dense station network evaluation stations only

BCS IDW WNR ENET RF SM BCS IDW WNR ENET RF SM

dHS1

r2 0.89 0.73 0.81 0.79 0.85 0.93 0.78 0.66 0.78 0.63 0.83 0.93

RMSE 18.64 28.64 24.04 25.56 21.49 14.84 25.71 32.12 26.17 33.66 22.96 14.84

BIAS 3.68 17.47 14.74 18.44 14.60 5.24 6.63 19.53 16.69 23.27 15.96 5.24

dHS2

r2 0.90 0.78 0.88 0.89 0.92 0.93 0.83 0.70 0.88 0.78 0.90 0.93

RMSE 17.30 26.16 19.22 18.86 15.60 14.94 23.43 30.62 19.76 26.12 17.44 14.94

BIAS 3.19 14.12 9.03 10.57 8.16 3.17 5.21 16.31 9.55 14.65 9.22 3.17

dHS5

r2 0.94 0.83 0.93 0.93 0.95 0.94 0.88 0.73 0.92 0.88 0.93 0.94

RMSE 14.31 23.33 14.96 14.58 12.06 14.14 19.37 29.25 16.22 19.90 14.74 14.14

BIAS 2.05 10.67 3.77 4.50 3.25 0.84 3.23 12.80 3.84 7.53 4.09 0.84

dHS10

r2 0.95 0.86 0.95 0.96 0.96 0.94 0.92 0.73 0.93 0.94 0.95 0.94

RMSE 11.99 21.27 12.64 11.26 10.57 14.24 16.20 28.92 14.83 13.61 12.28 14.24

BIAS 0.72 8.21 0.81 1.48 1.07 -0.01 0.46 9.88 1.51 2.19 1.68 -0.01

dHS30

r2 0.93 0.85 0.95 0.95 0.95 0.88 0.91 0.65 0.92 0.93 0.94 0.88

RMSE 12.90 18.79 11.29 10.51 11.01 16.55 14.69 28.55 13.62 12.53 12.14 16.55

BIAS -0.74 4.61 -1.34 -0.54 -0.37 -2.41 -0.99 5.00 -1.24 -0.96 -0.57 -2.41
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