
GI-2021-21 Reply to Reviewers

We would like to thank both Reviewers for the valuable and constructive comments. Those
are much appreciated. We have taken them into account and have revised and
improved the manuscript accordingly. The revisions and their location in the revised
manuscript are indicated under each original response in the “Revision update”
paragraph.

On behalf of all authors,
Olli Nevalainen

Review 1
The manuscript by Nevalainen et al. introduces the Field Observatory Network and its
methodology which combines data from different sources (offline and near real time in
situ data, satellite imagery and climatic data) with ecosystem modelling to support the
monitoring and verification of soil carbon sequestration in agricultural soils. The network
currently consists of 20 pilot farm sites in Finland with the involvement of different actors
from researchers to farmers with the common goal of optimizing agricultural practices in
order to preserve and possibly enhance soil carbon stocks. Both data and simulations
results are disseminated publicly through a web graphical user interface. Such a system
and intended as a decision support for the farmers who are able to monitor the effects of
agricultural practices in relation to crop productivity and carbon sequestration is
innovative, however the limits of the decision-making based on the information currently
provided by the FiON are lacking in the discussion section. In addition, some aspects of
CO2 flux data processing have to be clarified to make the current methodology scalable
in view of an expansion of the sites network.

Overall, the paper is well structured, written in a clear and concise style and definitely
within the scope of the journal GI. I advise that the paper is published after minor review
based on the following remarks:

Thank you for the comments and improvement suggestions. The main concerns
regarding the lack of discussion about the limits of current decision support provided by
FiON and clarifications about the flux data processing are addressed below in the
specific comments.

P1 L29: a MRV tool

We respectfully disagree on this. The pronunciation of the acronym MRV starts with a
vowel “E” and thus the indefinite article should be “an”.



P8, L52 “unfavourable flow conditions according to the following validity criteria:..”. CO2

flux data are filtered according to validity ranges, which are site specific, except for those
resulting from the stationarity tests and u-star filtering. However, in the perspective of
expanding the EC flux observation network within the FiON, the same threshold values
(eg. CO2 mixing ratio mean and variance) might not be applicable to guarantee the
quality of the processed datasets of other sites. Therefore, it would be important to
explain how these thresholds were determined, also referring to current methodological
standards of other flux networks, when possible. Moreover, was a flux footprint analysis
carried out in order to exclude flux data (partly) not targeting the monitored crops? If yes,
the Authors should include the description of this processing step in section 3.3. Was the
diurnal footprint always encompassed within the crop fields borders? Was the increase
in the crop height accounted for in the displacement height used in the footprint model?

The limits for the number of spikes in the sonic anemometer raw data and for the CO2
mixing ratio are generic criteria that were introduced to ensure that the instruments
function properly and to discard disturbed measurements. These limits are not
considered site-specific. In contrast to the Reviewer's comment, the limit employed in
the u-star filtering is determined separately for each site, as explained in the manuscript
(P9 L57-59). The methodology is consistent with the data processing procedures applied
within the FLUXNET (Pastorello et al., 2020). This will be clarified in the revised
manuscript.

While the flux data provided online are screened and gap-filled, they will be subject to
further quality control. Flux footprint analyses are not carried out online but are included
in the post-processing that will produce the final datasets distributed for scientific use.
The footprint analysis is used to screen the data for cases in which the measured flux
does not predominantly originate from the target area, i.e. within the field borders. The
changes in the effective measurement height (measurement height minus displacement
height) were accounted for by including crop height and snow depth data. These matters
will be clarified in the revised manuscript.

Revision update:

The description regarding flux data processing was clarified in section 3.3.

P11 L18 “ ..by combining the observational uncertainty..

Thank you, we will fix this in the revised manuscript.

Revision update: This was fixed.

P20, L50 “One of our aims with this framework is to provide decision support for end
users”

This sentence is key for the discussion section and for the message delivered by the
paper. The Authors should discuss explicitly the limits of the provided decision support



for farm management in terms of potential array of options given the current forecast
window of 15 days. Consider that many factors of agricultural management are fixed
within a production cycle (eg. crop type) and that many agricultural operations depend
strictly on the crop growing stages and have limited margins to be temporally shifted.
Also, underline in the discussion what  can the FiON decision support system provide in
addition to the traditional weather forecasting services upon which farmers usually rely

We thank the Reviewer for this comment. We agree that the current forecast window of
15 days has limitations with respect to the span of a production cycle. While in the future
we are hoping to include seasonal, annual and longer term forecasts as well, we believe
15 days forecasts can still provide decision support for relatively shorter term agricultural
actions such as harvest, irrigation, fertilization, grazing etc. as we now elaborate per
other Reviewer’s comments (please see discussion and a case study below regarding
the usefulness of 15 days forecasts). Adding the additional layer of agricultural forecast
on top of the weather forecasting services can reinforce traditional operations with
process understanding. For example, sensor or model-based dynamic fertilization
strategies have been successful in improving the nitrogen use efficiency of cropping
systems (e.g. Sela et al., 2018; Scharf et al., 2011). Likewise, timing of harvest and the
cutting height may affect the overall carbon budget and economic income, and the
plant’s water demand may necessitate a different irrigation scheme for optimum growth
and water usage, all of which may not readily manifest themselves to farmers through
weather forecasts only. We also acknowledge that such interventions are potentially
easier for grasslands, compared to the cereals for instance. This is a good point and we
will elaborate on this more in the discussion section of the revised manuscript
accordingly. Finally, we also note that while the near term forecasts are an important
element in providing decision support, Field Observatory also offers decision support in
terms of “feedback” to the farmers where they can monitor the impact of their activities in
a quantitative manner and make their decisions in the future accordingly. We will make
sure to clarify this as well.

Revision update:

This was revised in the manuscript around the same paragraph (section 5.2).

P20, L73-76: “field activities”. These activities are only related to the work of the farmers
in the fields and should be better indicated with the tem “agricultural activities”

We thank the Reviewer for this suggestion, but in our opinion the term “field activity”
refers better to specifically in-field activities. In addition, the term field activity is a
commonly used term in precision agriculture (e.g. Corrado et al., 2018 and
https://www.agricircle.com/en/smart-farming/field-monitoring/). We also collect
measurement events that in our opinion fits better under the term “field activity”.

https://www.agricircle.com/en/smart-farming/field-monitoring/


Review 2
The paper “Towards agricultural soil carbon monitoring, reporting and verification
through Field Observatory Network (FiON)” presents the Field Observatory Network
(FiON) that aims at establishing a unified methodology towards monitoring and
forecasting of agricultural carbon sequestration by combining offline and near real-time
field measurements, weather data, satellite imagery, modeling and computing networks.

General comments:

The paper is overall well written and some components of the observatory such as the
multi-actor approach and the online service for near real-time model-data synthesis and
decision support for the farmers are very valuable. However, several aspects of the
methodology needs to be clarified and  I didn’t really see the added value of the
forecasting system for improving carbon storage as the forecasting methodology is
limited to 15 days.

We thank the Reviewer for this comment, however, we respectfully disagree about the
usefulness of 15 day forecasts. While we acknowledge that some of these aspects would not
necessarily improve carbon storage directly, we specifically value the following three points
when it comes to 15-days forecasting system for improving predictive carbon science in
general:

1) It helps researchers understand and improve their theories and methods: In addition
to potentially having practical relevance for improving carbon storage (please see the 3rd

point), near term agricultural forecasting has benefits to basic carbon science. Although this
is not specific to carbon cycle models, data assimilation methods help dissect model
behaviour and identify research needs (Viskari et al., 2020). For instance, a quick post hoc
inspection where we evaluated the performance of ensemble members with respect to the
analysis states (i.e. taking the analysis state and covariance matrix - our most accurate
understanding about the system - and calculating the multivariate normal likelihood of the
forecasted states with respect to the analysis) shows that while some ensemble members
consistently perform well/worse, different ensemble members perform differently every time
step, suggesting that optimal parameters may vary through time (Fig. 1.). Such parameter
variability patterns in time may point to unaccounted processes in models and underlying
sources driving variability. If we manage to account for these variabilities (e.g. adding
covariates that explain temporal variability) we could also improve our capability to model the
C sequestration on the long term. Furthermore, making out-of-sample predictions for a
yet-to-be-observed future in a near-term iterative forecasting cycle provides a stronger test
than in-sample statistical testing of our models and is less susceptible to overfitting (Dietze
et al., 2018). Our forecast results are archived and a more in-depth analysis of the
forecasting results and forecasting skills are ongoing and will be reported in a future study.



Fig. 1. Relative performances of randomly chosen (10) ensemble members at (20) different
assimilation steps. 1: performing better, 0: performing worse. Some ensemble members
perform consistently well (e.g. ens238) or worse (e.g. ens186) while different ensemble
members perform differently each time step.

Moreover, in addition to understanding models better, operational iterative near-term
forecasting also allows us to detect and intervene when measurements of certain sensors or
data streams deviates from the assimilated background, and in return supports the
management and maintenance of the sensors and data pipelines.

Overall, our 15-day iterative forecasting system provides continuous quantitative benchmark
of models and data based on all other available information which is an essential element of
reliable monitoring and modeling of the carbon cycle allowing rapid detection and
explanation of changing patterns in the carbon sequestration, and possibly allowing them to
be adjusted.

2) It helps researchers relate carbon science to numerical weather prediction (NWP)
and communicate better with stakeholders: While clearly this does not have a direct
impact on soil carbon in particular, reporting near-term forecasts of carbon improved our
communication with stakeholders in general. Reporting quantitative, specific and iterative C
forecasts makes it possible to convey the idea that this approach has the potential to be as
successful and common as NWP as a discipline and as a service to society one day.
Ecological forecasts provide us with a standard, quantitative, intuitive and
management-relevant method and language to develop the right context and tools for
structuring soil carbon sequestration decisions: facilitating that researchers contemplate a
more stakeholder-orientated approach and stakeholders take a more active role in
identifying appropriate variables and appropriate measures of proficiency given the



management structure and goals (Petchey et al., 2015).

Bringing near-term carbon forecasts forward further helps describe that soil carbon
monitoring and modeling is a complex computational problem that depends on vast amounts
of basic scientific research and observations, which involves a diverse range of actors and
organizations and require efficient communication and continuous transfer of knowledge
between these groups, similar to NWP. Not only the similarities but also the differences
between agricultural forecasting and NWP help clarify and re-focus the research needs (e.g.
the need to address the heterogeneity and inherent variability in carbon systems). Overall,
near-term forecasts help establish this constructive dynamic between researchers and
stakeholders which in return helps tackle remaining bottlenecks for improving soil carbon
sequestration more efficiently.

3) It provides decision support on near term events that can potentially have
long-term effects on carbon storage: Last but not least, while 15-days forecast has limited
applicability within a cropping cycle, it could be informative on certain field activities that may
have 1-2 weeks of flexibility which in return may have an impact on carbon balance.

Case study: For instance, the grass at the Qvidja farm had a remarkable difficulty in
recovering after the first harvest of this year (14.6.2021) because the following days were
particularly hot and dry. This resulted in poor carbon assimilation in the following weeks after
the harvest. To devise a scenario where we evaluate the impact of timing of this harvest (e.g.
what if it was harvested 1 week later), we travel back in time to 14.6.2021 where the farmer
is facing the decision whether to cut the grass today (14.6.2021, what happened in reality) or
later (e.g. 21.6.2021, alternative scenario). We restart the model from the states as of
13.6.2021 (which we archived) and run it forward with the 15-days weather forecast drivers
available to us at the time (which we also archived). In other words, we start the model from
its retrospective states and we are not using the now observed weather drivers for this
period but the 15-day weather forecast in this exercise to mimic a real-life scenario. The
available forecast horizon for the farmer in this case is the next 15 days as of 14.6.2021
(until and including 28.6.2021). We report the yield, LAI and NEE for the two scenarios
where in one grass is cut on 14.6 and on 21.6 in the other:



Fig 2. Alternative scenario of delaying (right column) the harvest date (red vertical lines)
leads to a slightly larger C sink within the 15-day period while resulting in less yield.

Delaying the harvest results in ~14% less yield for the farmer (Fig 2, top row). Both LAI
development (Fig 2, middle row) and C exchange (Fig 2, bottom row) during the week
following the harvest imply that delaying the harvest may have some adverse effects
compared to the real case. While leaving the grass intact longer during the 14.6-21.6 period
contributes to the overall C sink within this 2-weeks period (+0.08 vs alternative -1.16), it is
not clear whether the amount (even if we account for yield difference as a C output from the
system) justifies delaying harvest on the whole at the expense of yield. Looking at this
picture, considering the next 15-days forecast on 14.6.2021, the farmer could be advised to
keep the harvest date as 14.6 in this case study.

To observe post-hoc what will happen to the C sequestration at this period later in the
season, we run the model forward until the end of our predefined growing season, 31.10
(note that this is just a forward run without being informed by the observations during this
period, therefore should be taken as a relative comparison) and calculated the C-balance
over the 14.6-31.10 period. When we consider only the fluxes between the ecosystem and
atmosphere, the actual harvest time was more favourable, i.e. it acted as a higher sink than
the alternative case (-1251 kgC ha-1 vs. alternative -861 kgC ha-1, Fig. 3). If the carbon
removed as yield is also considered, the actual harvest day was again more favourable



(+288 kgC ha-1 vs. alternative +453 kgC ha-1, Fig. 3). This suggests that keeping the
harvest time as it is might have indeed been preferred.

Fig 3. Accumulation of carbon over 14.6-31.10 period. Positive values indicate C loss from
the ecosystem, and vice versa. Gain in delaying harvest date is lost later in the examined
period.

While this is a toy demonstration for discussion here, it exemplifies types of experiments that
are being designed by our team at the moment. Here we used a static and arbitrary one
week delay and considered only yield, LAI and NEE variables, but more dynamic, systematic
and longer-term explorations are also being devised. In addition, other constraints, such as
the practical flexibility in the agricultural activities of an average farm should also be taken
into account. We are planning to utilize the shiny app we developed for compiling information
from farmers regarding their field activities and their flexibilities. Until such information is
ready, we would respectfully prefer to omit this case study from the main text of the
manuscript as not to mislead any readers, but we could provide it in an appendix or
supplementary material and provide more discussion in the main text regarding the
usefulness of 15-days forecasts as elaborated here. Overall, we deem that undertaking such
experiments would not be possible without establishing this operative iterative forecasting
system in the first place whose design and description was our main scope in this
manuscript. We will clarify the introduction and the main scope of the manuscript in the
revised version.

Revision update:

1) This point was clarified in the manuscript at section 5.1 Scientific contribution
2) This point was incorporated in the manuscript at section 5.2 Practical contribution
3) This point is now incorporated in the revisions in three places:

○ The last paragraph of the Results section.
○ 5.2 Practical contribution (together with the other Reviewer's comment on

forecasting)
○ The supplement S2 Case study: To delay or not to delay harvest



More problematic, I consider that the approach suffers from critical flaws concerning
both the modeling approach and the in-situ monitoring. Therefore, I do not recommend
this article for publication.

Specific comments:

My main concern is that the modelling approach doesn’t seem to be mature and it has
not proved its ability to simulate the carbon budget components (biomass, biomass
restitution to the soil, CO2 fluxes, carbon budget) in the context of this observatory. More
generally, I have strong doubts concerning the scalability of this modelling approach.
First, the modelling approach should be described more in details. For instance, are
simulations done at 10m resolution by assimilating LAI time series to account for spatial
variability in vegetation development which can be quite significant even within a field?
How is remote sensing used to calibrate the model exactly?  Which parameters are
calibrated?  Is the calibration procedure parcimonious?

We thank the Reviewer for this comment. The scope of our manuscript is more focused on
the description of data flows and presentation of the operational 15-day C-flux forecast
system. Hence, we didn’t provide much details on calibration but cited the Fer et al. (2018)
paper that contains a detailed description of the calibration protocol which we also followed
in this study. We only briefly mentioned that we calibrated the model because state data
assimilation (forecast-analysis) techniques are best applied with calibrated model
parameters (also see Huang et al., 2021). Per Reviewer’s request we will add more details in
the main text and provide further material in the appendix.

The BASGRA model is not spatially explicit and in this case it was run at the field-scale to
represent the eddy covariance (EC) field. The LAI time series were prepared to represent
the whole block accordingly by accounting the spatial variability in pixels in the observation
uncertainty (P11 L18 and also discussed later in this document related to reviewers
comment regarding the observational uncertainty). The parameters of the model were
screened with a global sensitivity analysis by varying the parameter values in their prior
range. Priors are probability distributions encapsulating the likely values of model
parameters that are formulated according to information coming from previous analyses, the
literature, meta analyses, expert opinion, ecological theory etc. In this study priors are
chosen according to values provided by model developers and our expert opinion (also see
Höglind et al., 2016; Hjelkrem et al., 2017, Huang et al., 2021). The top 20 parameters (see
Table 1 below) that contribute most to model NEE and LAI output uncertainties were chosen
for targeting in the calibration. Both the modeling and calibration approaches as
implemented in PEcAn software are scalable and state-of-the-art techniques (Fer et al.,
2018; 2021). Calibration is done by assimilating both the LAI and NEE data streams
simultaneously. The influence of NEE time-series were corrected for effective sample size as
described in Fer et al. (2018). Due to the coarser time step and smaller sample size of the
LAI data no additional autocorrelations were applied for this data stream.

Table 1. BASGRA Parameters targeted in the calibration.

BASGRA Description Unit Prior



parameter

RUBISC Rubisco content of upper leaves g m-2 leaf Unif[3,12]

LAICR LAI above which shading induces leaf
senescence

m2 leaf m-2 Unif[2, 7]

Dparam Constant in the calculation of
dehardening rate

℃-1 d-1 Unif[0.0005, 0.0018]

KRESPHARD Carbohydrate requirement of
hardening

g C g-1 C ℃-1 Lnorm[-3.39, 0.22]

NCSHMAX Maximum N-C ratio of shoot g N g-1 C Unif[0.015, 0.06]

TCSOMF Time constant of fast SOM
decomposition at 10℃

d Gamma[130, 0.055]

TMAXF Temperature at which decomposition
is maximal

℃ Weibull[26, 0.53]

TSIGMAF Resilience of decomposition to
temperature change

℃ Gamma[100, 4.5]

LAIEFT Decrease in tillering with leaf area
index

m2 leaf m-2 Unif[0.01, 0.4]

NELLVM Number of elongating leaves per
non-elongating tiller

tiller-1 Unif[1, 3]

RDRSCO Relative death rate of leaves and
non-elongating tillers due to shading
when LAI is twice the threshold
(LAICR)

d-1 Unif[0.03, 0.13]

LAITIL Maximum ratio of tiller and leaf
appearance at low leaf area index

- Unif[0.3, 1.2]

RDRTMIN Minimum relative death rate of foliage d-1 Beta[20, 1250]

TCNUPT Time constant of soil mineral N uptake d Unif[10, 70]

K PAR extinction coefficient m2 leaf m-2 Unif[0.5, 0.95]

FLITTSOMF Fraction of decomposed litter
becoming fast SOM

g g-1 Beta[170, 80]

TBASE Minimum value of effective
temperature for leaf elongation

℃ Unif[0.1, 6]

TRANCO Transpiration coefficient mm d-1 Lnorm[1.5, 0.45]

SLAMAX Maximum SLA of new leaves m2 leaf kgC-1 Norm[40, 2]

FSOMFSOMS Fraction of decomposed fast SOM g g-1 Beta[10, 250]

Revision update:



The details about model calibration are now available as supplement S1 Calibration
protocol details.

Also it is obvious that the model will perform better for simulating LAI and CO2 fluxes
when those variables are used for calibration! But what will be the capacity of the model
to simulate not only the net CO2 fluxes but also the other components of the C budget
when CO2 is not used for calibration (i.e. at all the ACA sites or even at larger scale)?
More generally, what is the plan for applying this approach to sites not equipped with
EC? What would be the accuracy of the model then to simulate the C budget
components? What is the plan for validating the other C budget components (e.g.
biomass) or the C budget itself when upsacling or applying the model at the ACA sites?

We agree with the Reviewer on these points and we will revise the manuscript to make
our logic and plans clearer. Our main reason for performing the calibration was because
data assimilation (forecast-analysis cycle) works best if the model is calibrated and
initialized for the site (otherwise, when the model is too uncertain data assimilation will
give almost all weight to the observations and we would learn less about the model, not
to mention that the 15-day forecasts will also be more uncertain). The second reason
why this was useful is that, we calibrated the model for the EC field at Qvidja but we are
using it to perform simulations on the Qvidja ACA fields that are nearby as well (a work
under preparation with a focus on the cutting height experiment carried out at the Qvidja
ACA fields). [...reply continues, update split to two parts]

Revision update:

The following sentences were added to section 4 Model-data synthesis and decision
support:

"In other words, while state data assimilation algorithms can inform model states and improve
predictive performance, best results are achieved when the model is calibrated to the site (Huang et
al., 2021)."

"While the model is calibrated by the EC field data at Qvidja, initial results show improvement at the
nearby Qvidja ACA sites as well (not shown here, but visible on Field Observatory LAI graphs)."

[...reply continues]

Furthermore, we currently also have offline simulations for other Finnish mineral
grassland sites that show using the parameters calibrated against Qvidja EC tower
improves the model performance at these sites that are not equipped with EC. This is
again part of an ongoing work with a factorial simulation design where we test the
performance of the model in capturing different C budget components when informed by
data streams other than CO2 fluxes (such as LAI, yield, soil moisture and soil properties
that are available from all ACA sites and virtually can be made available from
everywhere). We agree with the Reviewer that this is a very important question to
answer (albeit not in this manuscript), hence we needed the site network, data flows and



mechanics described in this paper in place to carry out these multi-site in-depth
analyses.

Revision update:

The following paragraph is now added to Discussion Section 5.3:

“The framework designed by FiON and described in this paper provides the necessary mechanics to
study the applicability and reliability of the models to simulate components of the carbon budget
virtually in every field. While scalability has been the core idea for the design of this framework since
the beginning, putting it to practical test is the main scientific next step. Currently, a factorial
experimental design and simulation is ongoing where the performance of the models will be tested at
multiple sites by informing them with various data streams. For this, we will start with constraints that
can be made available virtually from everywhere and test which combinations, if any, can inform
models enough to capture local carbon budget dynamics and components. Such constraints are for
example LAI derived from remote sensing, soil moisture provided by inexpensive in-situ sensors, soil
properties estimated from global products and yield. In this setup, the information contributed by the
sites that are equipped with EC-towers will also be tested. For example, we will perform a factorial
experiment at the ACA sites with and without the models being constrained by EC-data at the intensive
sites. As we have additional data streams other than the mentioned constraint data types (e.g. biomass
and soil C, Table 2) from ACA sites for evaluation, the framework described in this paper provides the
means to carry out such multi-site in-depth analyses.”

Indeed I really doubt that soil sampling strategy will allow to validate the C budget
estimates from the model at the ACA sites and it won’t be feasible at the flux sites.
Indeed:

● Given the soil sampling methodology described p7 I have strong doubts
concerning the ability to detect SOC stock changes at the ACA sites which is
the main objective of the FiON observatory. Indeed, many studies showed that
between hundreds and thousands of samples are needed to detect changes in
SOC stocks at a few years of intervals. See for instance the soil sampling
protocols at the ICOS flux tower sites.

We appreciate the comment and we acknowledge the challenges in validating C budget
estimates with soil sampling methodology. We are well aware that due to natural
variation in the field, the smaller the change needed to be detected, the higher the
number of replicate samples needed. We also fully agree that FiON needs regular highly
intensive soil sampling campaigns for model calibration purposes.This will be included in
the FiON development plans.

However, we also believe that the sampling approach that so far has been conducted
serves the modelling in two crucial ways: 1) it defines the level of SOC content in the
particular site (SOM content varies in ACA farms from 2% to 13%), and 2) it links in a
general level soil C content to soil particle size distribution (analysis on-going) that can
be used as a proxy to scale our measurements to other sites (in case no soil data is
available).



We understand the limitations in our field sampling and we agree with the main criticism
by the Reviewer. We will take the intensive sampling into account when planning future
FiON activities.

In addition to the ACA annual monitoring, there is a pre- and post- sampling protocol for
each site. The pre-samples in 2018 were taken from three georeferenced points per field
with 10 cores on a 10 m radius of the center point. That gives three pooled samples per
field, consisting of 10 subsamples. The samples were taken using a fixed diameter core
(c.a. 15 mm), allowing estimation of soil bulk density. The sampling will be repeated in
2023 from the same points. The aim is to measure the difference in C change between
test and control fields, so in total 60 subsamples are used per sampling year to make
that assessment, and the subsamples are collected on fixed GPS locations, minimizing
variability.

We will clarify the soil sampling methodology in the revised manuscript.

Revision update:

There is recent support in the literature that repeated sampling in the same locations can
improve the detection level in soil C stock studies (see e.g. Brock et al., 2011; Knebl et
al., 2015).  As we acknowledge the challenges in detecting small C stock changes, we
will put special emphasis on this issue in our next sampling in 2023 (e.g. re-consider the
possibilities to increase sample numbers). The soil sampling methodology was revised in
the manuscript section 3.1.

● The eddycovariance (EC) setups do not allow to quantify annual CO2 fluxes
nor annual C budgets at the Qvidja and Ruukki sites. Indeed, it is written p8
line 45 that the height of eddycovariance (EC) setup at the Qvidja was installed
at 2.3 m height, (in Figure 1 this measurement height seems even lower).
However, when a distance of 2m between the EC setup and the canopy is not
respected, there is a strong risk of underestimation of the CO2 Figure 1 shows
that this minimum distance is clearly not respected. Also, from what is written
lines 45-46, I understand that measurements are not performed over a whole
cropping year at the Ruukki site (they start on June 13 2019 and end on
November 4th 2019) meaning that 1) it is not possible to evaluate the plot
annual C budget and 2) it is not possible to evaluate the model’s ability to
simulate soil respiration outside the cropping period.

We are following and fulfilling the EC measurement guidelines provided by ICOS
(Sabbatini, S., & Papale, D., 2017, page 7, “System height”):

"For grasslands, croplands, and shrublands with hc (canopy height) not higher than 1.75
m, hm (measurement height) must be comprised between [hm= 1.67 × hc] and [hm= 6 ×
hc]. For forested or more structurally complex ecosystems, hm should be between[hm=
1.67 × hc]and [hm= 2 × hc]. Anyhow, hm cannot be lower than 2 m."

For our measurement height of 2.3 m, the maximum canopy height would thus be 1.38
m ( = 2.3 m / 1.67). This is never exceeded at our study sites.



We agree that in 2019 at Ruukki, we are lacking measurements from the early growing
season since the measurements started on June 13th, and hence the points 1) and 2)
are not possible for the year 2019 with standard gap-filling procedures. However, in 2020
and 2021 we have full cropping year data. Also as clarification, the 2019 measurements
in Ruukki did not end on November 4th; only the tower height was changed. We will
clarify these in the revised manuscript.

Revision update:

These were clarified in section 3.3.

Another concern is that the method (SEN2CORE, see P 10 line 102) for detecting clouds
and could shadows for the L2A S2 data on the GEE is based on a monodate approach
meaning that the performance for cloud detection is not optimal compared to methods
based on multitemporal approaches (e.g. MAJA processing chain): the consequence is
that NDVI and LAI time series may be quite noisy reducing the accuracy of the modelling
approach relying on the use of remote sensing products times series.

We agree that using multitemporal cloud detection approaches, such as MAJA, might
especially decrease the number of false negative cases (i.e. undetected cloudy images),
but it is not guaranteed to be a more optimal solution. For example MAJA, to the authors’
knowledge, does cloud screening at maximum with 120 m resolution. While it would
probably decrease the number of false negative cases, it might simultaneously increase
the number of false positive cases. The current method using the scene classification
band created by SEN2COR has not produced too many outliers at our sites (some sites
do not have any outliers, some might have max. 1-2 outliers per year). Above all, we do
not consider the current time series noisy at any site. In addition,  we assimilate LAI
observations as state variables with uncertainties using Ensemble Kalman Filtering to
process-based models wherefore single outliers, with optimally larger uncertainties,
won’t drive the model too drastically to wrong predictions. At the moment, the fact that
level 2A data processed with SEN2COR is readily globally available in cloud computing
platforms, such as Google Earth Engine, has also large computational benefits. But in
the future we will follow and evaluate the performance of our current methodology and
improve it if necessary. We will add discussion regarding our current satellite data
processing chain and its caveats to the revised manuscript.

Revision update:

We added discussion related to satellite data processing to section 5.3.

Also, why considering NDVI which is known for saturating when the vegetation is well
developed (meaning that the vegetation development may be underestimated)?

We are aware and agree that NDVI saturates with well developed vegetation. NDVI is
included in Field Observatory mainly for the farmers to whom NDVI is a more familiar
measure compared to LAI. NDVI and its cumulative sum was requested by our farmer
collaborator.



In scientific modelling work, we don’t use NDVI observations at all. Instead we use LAI.
As farmer collaboration is one of the main goals of FiON we intend to keep NDVI
observed and visualized in the Field Observatory. We will clarify the purpose of both
NDVI and LAI in the Field Observatory.

Revision update:

This was clarified in section 3.5.

Then the following points need clarifications:

● P7 lines 10-12: it is written “At ACA sites, the measurements are done at three,
static measurement points per field. The points have c.a. 30-100 m distance
from each other and are located on a transect line. They were located to cover
the variability of the field and cover similar soil conditions in both the test and
control plots”. Which variability are the authors referring to? Soil properties I
assume but which soil properties where considered? SOC content ? Depth ?
Texture…? Also what does “similar soil conditions” means exactly? A
quantitative analysis should be provided.

The three sampling locations were chosen before any soil analysis was conducted.
Therefore, the selection followed an idea of random sampling. In case there were some
potential sources of variation (slope, distance to ditches etc), they were taken into
account similarly in both control and C farming plots. All samples were taken similarly,
from the same depths and the field had a similar texture based on farmer’s earlier soil
analysis, aerial photographs and knowledge on their soils.

We apologize for the unclear wording ‘Similar soil conditions’. In our case it means that
as random soil sampling was conducted in two fields that were of similar soil type, we
assume that the starting point for the C farming experiment was equal both at the control
and the C farming plot. The original soil sample data is available at Zenodo (Mattila,
2020). We will clarify these in the revised manuscript.

Revision update:

This was clarified in section 3.1.

● P7 line 12: Please describe the sampling procedure (depth, method for
sampling, i.e. core or other…)? An appropriate soil sampling methodology is
critical for estimating SOC stock changes

From each of the three randomly selected sampling locations ten 20 cm deep soil cores
(core diameter 14 mm) were taken in the circumference of a circle with radius of 10 m.
Those ten samples were pooled and homogenised. The pooling was done to minimize
variation within one sampling location. Three locations were sampled in the control site,
and three in the C farming site (N=3x2).

We want to emphasize that this sampling strategy was not designed to verify small
changes in soil C stocks in time. This strategy allows us to define the SOC levels, and



link the SOC to the particle size distribution in each site. A better description of the soil
sampling procedure will be provided in the revised manuscript.

Revision update:

We clarified the soil sampling procedure in section 3.1. We would also revise our reply
here that N=3 at both control and C farming field (not N=3x2=6). We would also
emphasize that our sampling strategy (N=3, each sample a georeferenced composite of
ten soil cores) was chosen to use the available resources the most efficiently to identify
small changes in soil C stocks in time.

● P8 section 3.2: it is not clear how those measurements will be used to monitor
changes in SOC stocks (especially O2 and CO2 concentrations in the soil).
Also please provide information on the model of the O2 and CO2 instruments
and information on the depth of measurements?

The observatory is not strictly a SOC forecasting tool, it is a field ecological state
observatory. The CO2 (Vaisala G525) and O2 (Apogee SO-120) sensors (10 cm depth)
allow monitoring of soil and root respiration. They were included to provide feedback to
farmers and to possibly guide modeling. For example, if the CO2 concentration
increases by 10 fold after a rain event, that is an indication that microbial activity has
also increased, which should be captured by the process model. We will clarify this in
the revised manuscript.

Revision update:

We clarified sensors’ model information and purpose in section 3.2.

● P9 line 69: I don't understand this sentence. Does it mean that different
gapfilling methods are used depending on the size of the gap in the
observations?

We are unfortunately not sure which sentence the Reviewer here refers to. At P9 line 69,
we have the equation for the modelled respiration. Maybe the following two replies also
clarify this one. (We apologize for the unclear line numbering - we did not notice that the
PDF conversion capped the first digit from the line numbers.)

● P10 line 88: where does this “Emod” comes from? No mention of a modelled
NEE before

The gaps in the measured NEE are filled with the sum of modelled GPP and ER (P9
L65-74 ). The Emod stands for the gap-filled/modelled NEE. This will be clarified in the
revised manuscript.

Revision update:



We revise here that in section 3.3.1 the Emod stood for uncertainty of the modelled
NEE. For clarification, we changed the notations to use letter u instead of E. Also
sentence “Finally, gaps in NEE are filled with modelled NEE, which is the sum of
modelled GPP and modelled ER.” was added to the same section.

● P9 line 75: I don’t understand the sentence “For gap-filling, the data are divided
into blocks based on the harvest dates…”. Please be more explicit.

The flux data are divided into sections that start and end at harvest dates. These
sections are gap-filled independently, so that fluxes before a harvest are not used to
predict fluxes after a harvest. This will be clarified in the revised manuscript.

Revision update:

We clarified this in section 3.3.1.

● P10-11, Section 3.5: Why standardizing cumulative NDVI sums? Also does it
really make sense to consider fixed starting/ending dates for growing seasons
because of inter-annual variability and North/South gradients for the sites
which means that the growing seasons are probably not synchronous. Last,
why computing both LAI and NDVI? This point should be clarified.

The cumulative NDVI sums are standardized with fixed integration limits in order to have
them in the same absolute units between sites. This in practice makes it possible to
compare them between sites to some level. Without standardization the cumulative
sums would be much influenced by the availability of the first and last observations of
the growing season for a site. This is determined more by the cloud cover than the
actual start and end of the growing season. There is of course inter-annual variability in
the growing seasons but unfortunately we cannot rely on capturing the exact start and
end dates from the satellite data due to cloudiness. We think having these fixed
integration limits is better than using the actual first and last observations of the year
which might be off by more than a month from the true growing season limits. We will
clarify this in the revised manuscript as well.

As mentioned earlier, NDVI is included in Field Observatory mainly for the farmers to
whom NDVI is a more familiar measure compared to LAI. We will clarify the reason for
including both LAI and NDVI in the revised manuscript.

Revision update:

We clarified this in section 3.5.

● P11 line 113: what is the justification for multiplying the associated
uncertainties by 1.645?

The value 1.645 is the Z-score for 90% confidence interval. We multiply by it to convert
the uncertainties to 90% confidence interval. This will be clarified in the revised
manuscript.



Revision update:

We clarified this in section 3.5.

● P11 line 118: what do you mean by observational uncertainty?

By observational uncertainty we mean the uncertainty associated with a particular single
observation (from a specific image at a certain date). It is affected by the variability of the
LAI values of the individual pixels within the field at that specific date. Observational
uncertainty is thus unique for each image whereas the algorithmic uncertainty is usually
the same for on field (it can vary depending on the number of valid samples/pixels). We
will clarify this in the revised manuscript.

Revision update:

We clarified this in section 3.5.

Technical corrections:

P2 line 35: the authors state that “Carbon farming practices include methods, such as
reduced soil disturbance (reduced or zero tillage)…” while recent meta-analysis showed
that soil work mostly act on the SOC

Based on Paustian et al. (2019), carbon farming practices can be classified based on
whether they mainly increase C inputs or decrease C loss. The carbon farming practices
applied in the ACA sites focus on increasing C inputs and no-till is not included as a
tested practice (Mattila et al., 2022). This reflects the common understanding that
reduced tillage only influences C distribution and not total stock. Unfortunately this
sentence did not represent the experimental set up, but was more a general overview
and will be revised.

Revision update:

We revised the sentence. We were uncertain to which meta-analysis the Reviewer refers
to, but we hope the revised version answered the criticism satisfactorily.

P4 in Table 1: change “Crops planted to lengthen photosynthetically active period and to
increase carbon assimilation, carbon and root inputs and to reduce leaching of carbon
and nutrients.” by “Crops planted to lengthen photosynthetically active period and to
increase carbon assimilation, carbon inputs through aboveground and belowground
biomass and to reduce leaching of carbon and nutrients. ». Also, the statement relative
to soil amendment “Exogenous carbon input. In addition may stimulate plant growth
throughincreased water holding capacity, nutrients, etc.” is also true for cover crops or
any practices allowing SOC stock increases.



Will be revised as suggested. However, the SOC stock increase from cover crops (300
kg C/ha/a, Poeplau and Don, 2015) is minor compared to the inputs from soil
amendments tested in ACA (c.a. 10 000 kg C/ha). Therefore the soil amendments are
likely the only carbon management action, which can increase water holding capacity or
nutrient concentrations in 3-5 years.

Revision update:

We revised this in Table 1.

P4 line 92: replace “fluxes and weather(see Sect. 3).” by “fluxes and weather (see Sect.
3).”

Thank you! We will correct this in the revised manuscript.

Revision update:

This was revised.
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