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Abstract. Better monitoring, reporting and verification (MRV) of the amount, additionality and persistence of the sequestered 18 

soil carbon is needed to understand the best carbon farming practices for different soils and climate conditions, as well as their 19 

actual climate benefits or cost-efficiency in mitigating greenhouse gas emissions.  This paper presents our Field Observatory 20 

Network (FiON) of researchers, farmers, companies and other stakeholders developing carbon farming practices. FiON has 21 

established a unified methodology towards monitoring and forecasting agricultural carbon sequestration by combining offline 22 

and near real-time field measurements, weather data, satellite imagery, modeling and computing networks. FiON’s first phase 23 

consists of two intensive research sites and 20 voluntary pilot farms testing carbon farming practices in Finland. To disseminate 24 

the data, FiON built a web-based dashboard called Field Observatory (v1.0, fieldobservatory.org). Field Observatory is 25 

designed as an online service for near real-time model-data synthesis, forecasting and decision support for the farmers who are 26 

able to monitor the effects of carbon farming practices. The most advanced features of the Field Observatory are visible on the 27 

Qvidja site which acts as a prototype for the most recent implementations. Overall, FiON aims to create new knowledge on 28 

agricultural soil carbon sequestration and effects of carbon farming practices, and provide an MRV tool for decision-support. 29 

 30 
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1 Introduction 31 

Farmers are managing one of the largest carbon stocks on the planet where even relatively small additions are important for 32 

climate change mitigation. Accordingly, the international “soil carbon 4 per mille” initiative aims at raising the soil organic 33 

carbon content by 0.4 % per year by adopting carbon farming practices (Minasny et al. 2017). Carbon farming practices include 34 

methods, such as reduced soil disturbance (reduced or zero tillage), increasing carbon inputs (soil amendments, cover crops, 35 

residue management) and crop rotations. Such practices do not only have the potential to partially refill the global soil carbon 36 

stock that has lost 116 Pg carbon due to land cultivation (Sanderman et al., 2017), but they could also improve soil structure 37 

and health, and increase crop yields (Merante et al. 2017; Oldfield et al. 2018). Annual carbon sequestration rates for different 38 

management practices vary from 100 to 1000 kg C ha-1 (Merante et al., 2017; Minasny et al., 2017). Detecting sequestration 39 

rates in this range is difficult with traditional empirical soil sampling designs due to large spatial variability of soil carbon 40 

content and small relative changes in the soil carbon stock due to individual management actions (VandenBygaart and Angers 41 

2006; Heikkinen et al. 2021). This calls for better monitoring, reporting and verification (MRV) of the amount, additionality 42 

and persistence of the sequestered soil carbon due to carbon farming practices. 43 

 44 

Towards this goal, we established the Field Observatory Network (FiON), a network of researchers, farmers, companies and 45 

other stakeholders applying carbon farming practices. FiON has created a unified methodology to monitor and forecast 46 

agricultural carbon sequestration, by combining automated near real-time field measurements, weather data, satellite imagery, 47 

modeling and computing networks. In general, FiON follows the principles of other ecological observatory networks, such as 48 

National Ecological Observatory Network (NEON, Keller et al., 2008), Global Lake Ecological Observatory Network 49 

(GLEON, Hipsey et al., 2017) and Biodiversity Observatory Networks (GEOBON, Guerra et al., 2021) that collect long-term 50 

ecological data and monitor the effects of climate and land use change (Elmendorf 2016; Hinckley et al., 2016; Hipsey et al., 51 

2017; Keller et al., 2008). The primary purpose of FiON, however, is to i) create new knowledge on soil processes, ii) to 52 

measure, verify and forecast the carbon sequestration in agricultural soils and to iii) approximate the effects of carbon farming 53 

practices on yield, biomass and CO2 flux in near real-time. To achieve this, FiON invested in the use and development of a 54 

community cyberinfrastructure tool, Predictive Ecosystem Analyzer (PEcAn, pecanproject.org), which enables synthesizing 55 

different data sources and process-based models, quantifying and partitioning uncertainties, and operationalizing near real-56 

time ecological forecasting (Fer et al., 2021). To disseminate the observations and findings, we built a free-access online 57 

dashboard called Field Observatory (v1.0, fieldobservatory.org). This website serves as a tool to monitor the impacts of carbon 58 

farming practices. The dashboard integrates data from field sensors, remote sensing and field survey. In this sense, FiON will 59 

provide decision support for the farmers, at first hand via the Field Observatory website and in due course via the scientific 60 

synthesis informed by the best available data and models. To serve the research and other interested communities, the data in 61 

Field Observatory is publicly available and downloadable from the website. 62 

 63 
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In this paper our objectives are to 1) describe data flows from various manual and automatic measurements in the Field 64 

observatory, 2) demonstrate 15-day forecasts of carbon exchange and plant growth towards decision support for the farmers, 65 

and 3) discuss the benefits of the public monitoring network established by FiON. 66 

 67 

First, we introduce the sites included in FiON, and describe the tested carbon farming practices. Next, we describe the FiON 68 

workflow from data collection, processing and storage to visualization and dissemination through the Field Observatory 69 

website. Finally, we present the near real-time model-data synthesis, forecasting and decision support for the users. 70 

2 Sites and tested carbon farming practices 71 

The first phase of FiON consists of two intensive agricultural research sites and 20 voluntary farms testing carbon farming 72 

practices (Fig. 1, https://www.fieldobservatory.org/MapView). These 20 farms, called Advanced Carbon Action farms (ACA), 73 

were selected out of 100 pilot farms participating in the Carbon Action platform1, where volunteer farmers test carbon farming 74 

practices (Mattila et al. 20212022). Each farm has a test field and an adjacent, conventionally managed, control field (field 1 75 

and 0 in Field Observatory, respectively). The additional carbon farming practices aim to increase carbon sequestrationstock 76 

through increasing carbon inputs (photosynthesis, exogenous inputs  & soil amendments) or through decreasing carbon 77 

decomposition (Minasny et al., 2017). These practices (Table 1) are: cover crops, adaptive grazing, soil amendments, 78 

subsoiling and ley farming (introducing a grass crop into rotation). Each farmer made a five-year carbon farming plan and took 79 

soil samples at the beginning of the study from GPS located points in the field. The same points are monitored annually and 80 

also contain real-time soil sensors. 81 

  82 

 
1  

Carbon Action platform consists of several scientific projects, 100 farms committed to 5 years of research activity and farmer 

extension services. As of spring 2021, some 600 farmers are participating around the topic. Food system companies and 

organisations are also involved. Carbon Action is led by BSAG and the research is coordinated by FMI. More 

https://carbonaction.org/en/front-page/ 

https://carbonaction.org/en/front-page/
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 83 

Table 1 Principles of the carbon farming practices tested at the Carbon Action farms. 84 

Carbon farming practice Principles for carbon sequestration 

Cover crops Crops planted to lengthen photosynthetically active period and to increase carbon assimilation, 

carboninputs from above and root inputsbelowground biomass and to reduce leaching of carbon and 

nutrients. 

Adaptive grazing Short grazing & long rest periods to manage grass growth for increased root growth and increased 

soil cover.  

Soil amendments Exogenous carbon input. In additionHigh input of organic material may stimulate plant growth 

through increased water holding capacity, nutrients, etc.  

Subsoiling Removing physical barriers to root growth by soil loosening. Coupled to a grass crop to stabilize 

loosened soil. Increases plant growth and soil aeration and decreases bulk density. 

Ley farming Breaking monocropping with perennial grass. Increases photosynthesis, root input and diversity.  

Grass cultivation Diverse plant species composition, increased cutting height and organic fertilization. 

 85 

The 20 ACA farms were selected based on their chosen practice (four farms per measure), location (appropriate distances for 86 

survey work and even spread over Finnish farmland) and soil type (a mix of clay and sandy soils) (Table 2). All of them were 87 

included in a soil conditionquality survey in 2019 (Mattila, 2020). Farms with anomalous measurements or too large organic 88 

matter content or nutrient differences between the control and treatment plots in the initial phase of FiON were excluded from 89 

ACA farms. FiON includes two intensive research sites, Qvidja and RuuukkiRuukki, which are operated by the Finnish 90 

Meteorological Institute (FMI). In Qvidja, carbon farming practices are tested in three different fields. In Ruukki, there are no 91 

carbon farming practices implemented at the moment. Both sites have eddy covariance towers which continuously monitor 92 

greenhouse gas fluxes and weather (see Sect. 3). 93 
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Figure 1 Map of Advanced Carbon Action sites (green dots) and intensive sites (blue squares) (left), and eddy covariance 95 

tower and radiation measurement instrumentation at Qvidja (right). 96 

 97 

Table 2 Current FiON sites. 98 

Site Site type Soil type Carbon farming 

practice 

Species in 2020 Nearest FMI weather station 

AE ACA Sandy loam Subsoiling Rye Kauhava airport 

KO ACA Silt Subsoiling Silage grass Juupajoki Hyytiälä 

KP ACA Clay loam Subsoiling Multi-species ley Pirkkala airport 

LA ACA Clay silt Subsoiling Oats Pirkkala airport 

JN ACA Fine sand Adaptive grazing Pasture grass Vesanto Sonkari 

MI ACA Clay loam Adaptive grazing Pasture grass Lohja Porla 

NI ACA Sand till Adaptive grazing Pasture grass Jyväskylä airport AWOS 

KI ACA Fine sand Soil amendments Multi-species ley Somero Salkola 

LI ACA Clay loam Soil amendments Spring wheat Lohja Porla 

PA ACA Clay loam Soil amendments Hay grass Nurmijärvi Röykkä 

PI ACA Clay loam Soil amendments Oats Kaarina Yltöinen 
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MU ACA Clay loam Grass mixture Multi-species ley Somero Salkola 

NA ACA Loam Cover crops Peas Vaasa airport 

NE ACA Loam Cover crops Oats Kauhava airport 

PU ACA Silty clay loam Cover crops Oats Mäntsälä Hirvihaara 

SI ACA Clay loam Cover crops Multi-species ley Porvoo Harabacka 

AI ACA Silty clay Ley farming Multi-species ley Rauma Pyynpää 

JA ACA Clay loam Ley farming Multi-species ley Jokioinen Ilmala 

IK 

ACA 

Sand till Ley farming Silage grass 

Seinäjoki Pelmaa 

MO ACA Loam Ley farming Barley Hämeenlinna Lammi Pappila 

Qvidja Intensive Clay loam Grass cultivation Silage grass Kaarina Yltöinen* 

Ruukki Intensive Organic (peat) - Silage grass Siikajoki Ruukki* 

*Intensive sites have their own micrometeorological measurements. 99 

 100 

3 Data collection  101 

FiON combines multiple online and offline data streams with different temporal frequencies and geographical extent (Fig. 2, 102 

Table 3). These data streams flow into a server where the data are pre-processed (filtered, gap-filled, formatted) and model-103 

data analyses are performed through an ecological cyberinfrastructure Predictive Ecosystem Analyzer (PEcAn, Fer et al., 104 

2021). All observational and computational outputs are stored in the server and disseminated through a web-based user 105 

interface. In the following sections we describe each data stream and model-data activity in the order given in Fig. 2. 106 

  107 
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 108 
  Figure 2 Overview of the FiON data flows. 109 

 110 

3.1 Offline field and lab measurements 111 

At ACA sites, the measurements are done at three, static measurement georeferenced points per field. The points have c.a. 30-112 

–100 m distance from each other and are located on a transect line. They were located to cover the variability of the The 113 

transect was situated on each field and cover similar soil to ensure comparable conditions infor both the test and control plots. 114 

When placing the transects, slope, vegetation map and soil type were used to ensure the transect covers different management 115 

zones in the field. Annual soil sampling and soil quality measurements are made within a ten-meter radius of these points. All 116 

offline data from ACA sites on soil properties (cation exchange capacity, pH, organic matter), nutrients (P, K, S, Ca, Mg, Cu, 117 

Zn, B, Mn, Fe, Al, P-saturation), soil physical quality (soil structure, bulk density, porosity, water holding capacity, infiltration 118 

rate) and biological properties (earthworm counts, above ground biomass, percentage plant cover) are presented in Zenodo 119 

data repository with annual updates (Mattila, 2020; Mattila and Heinonen, 2021). In addition to annual monitoring, a pre-study 120 

SOC sampling was conducted on the fields in 2018 and will be repeated in 2023. In these studies, ten 20 cm deep core soil 121 

samples (14 mm diameter) were collected at 10 m radius from a georeferenced point centre and pooled to form a composite 122 

sample. Such samples were taken from each field from the three measurement points from both the control and carbon farming 123 

fields. Focusing the sampling to georeferenced locations and using composite sampling, reduces the overall sampling 124 
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variability and allows tracking relatively small (4 % of background level) changes in SOC stock (Knebl et al. 2015). The 125 

offline field measurements at the intensive site Qvidja are described in Heimsch et al. (2021). Such offline   126 

Offline, non-automated and infrequent data are currently being curated further for harmonization and reporting in JavaScript 127 

Object Notation (JSON) file formats and International Consortium for Agricultural Systems Applications (ICASA) standards 128 

(White et al., 2013). An example soil carbon measurement data point (16.59 ± 2.25 kg m
−2

, average± ± standard deviation) is 129 

visualized on Qvidja graphs and available on the accompanying JSON file (https://data.lit.fmi.fi/field-130 

observatory/qvidja/ec/events.json). 131 

3.1.1 Field activity 132 

All field activity information (e.g. planting, fertilization, harvest timing and amount) is currently received offline through 133 

personal communication. An online application is under development for i) harmonizing historical field data, and for ii) 134 

collecting future field activity data. Accordingly, the application is being developed to allow the farmers themselves to enter 135 

these events and related details, and it will be tested for the first time at the end of the 2021 season. The application is written 136 

using the Shiny R package (v1.6.0, Chang et al., 2021) and it automatically produces files in a JSON format using the ICASA 137 

standards when possible (https://github.com/Ottis1/fo_management_data_input). Examples of historical field activity events 138 

(e.g. planting and tillage) that are prepared through this application are being made available in the Field Observatory JSON 139 

files and visualized on the graphs (Fig. 5). 140 

3.2 Online soil measurements 141 

Since 2020, each ACA site was provided with four TEROS-12 soil sensors (METER Group, Inc. USA) (two sensors per field, 142 

control and treatment) measuring volumetric water content, electrical conductivity and temperature (Table 3). The automated 143 

sensors are located at 75 mm depth in two of the three fixed measurement points of each field. The sensors were connected to 144 

a third party data transfer hardware (Datasense Oy, Finland), which uses Lora/WAN network to transmit the data. During the 145 

first year, the sensors measured every half hour but in 2021 measurement frequency was changed to one hour. The data is 146 

stored at the service providers server and is pulled to the PEcAn server (#8) through the Datasense API. Currently the sensor 147 

array includes 80 TEROS-12 soil sensors, four O2 sensors (Apogee Instruments, SO-120, USA) and two CO2 sensors (Vaisala 148 

Oy, G525, Finland) and will be supplemented with weather and groundwater depth measurements.  The soil O2 and CO2 meters 149 

are used to track changes in soil microbial activity and to guide model development.  150 

3.3 Online eddy covariance tower measurements 151 

Carbon dioxide, evapotranspiration (latent heat), sensible heat and momentum fluxes between the ecosystem and atmosphere 152 

are measured at the intensive study sites, Ruukki and Qvidja, using the micrometeorological eddy covariance (EC) technique. 153 

The EC instrumentation at both sites includes a three-axis sonic anemometer (uSonic-2 Scientific, METEK GmbH, Elmshorn, 154 
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Germany) and an enclosed-path infrared gas analyser (LI-7200, LI-COR Biosciences, NE, USA) installed on a tower. The 155 

measurement height is 2.3 m in Qvidja and 3.3 m in Ruukki (2.3 m from 13 June to 25 June 2019 and, 3.1 m from 25 June to 156 

4 November 2019 and 3.3 m since 5 November 2019). The measurement heights fulfill guidelines for grasslands and croplands 157 

defined by the Integrated Carbon Observation System (ICOS; Sabbatini & Papale, 2017). For details of the measurement set-158 

up in Qvidja, see Heimsch et al. (2021). 159 

The data from the EC instruments are recorded at a 10-Hz frequency. Half-hourly turbulent fluxes are calculated by block-160 

averaging these raw data after applying a double rotation of the coordinate system (McMillen, 1988). The time lag between 161 

the sonic anemometer and gas analyzer signals is determined based on the cross-correlation analysis (Rebmann et al., 2012). 162 

The gas fluxes are calculated from the mixing ratios determined with respect to dry air (Webb et al., 1980). The measured 163 

fluxes are compensated for the losses due to high-frequency signal attenuation within the measurement system (Laurila et al., 164 

2005). The flux data are filtered for instrument malfunction and unfavourable flow conditions according to the following 165 

generic validity criteria: number of spikes in the raw data < 100, mean CO2 mixing ratio > 350 ppm, relative stationarity (Foken 166 

and Wichura, 1996) < 30 % and CO2 mixing ratio variance < 15 ppm² from April to September and < 5 ppm² from October to 167 

March. At the Ruukki site, flux data are accepted from the wind direction sector 135°-315° (Blocks 5, 6, 5up and 6up) and the 168 

sectors 0°-90° and 330°-360° (Blocks 1-4). In Qvidja, the wind directions representing the direction of the experimental site 169 

are 0°-°–30° and 140°-°–360°. Periods of weak turbulence are filtered by applying a site-specific friction velocity threshold. 170 

The threshold and its uncertainty are estimated for each site-year using the moving-point-transition method (Reichstein et al., 171 

2005) and a bootstrapping approach (Pastorello et al., 2020). For incomplete years, the estimates from the previous year are 172 

used. While the flux data provided online are screened, they will be subject to further quality control in offline post-processing 173 

that will produce the final datasets distributed for scientific use. These post-processing procedures include flux footprint 174 

analysis and related data screening for inadequate upwind fetch, i.e., for cases in which the measured flux does not 175 

predominantly represent the field. Footprints are calculated with respect to the effective measurement height that takes into 176 

account the varying canopy height and snow depth. 177 

The EC measurements are complemented with supporting meteorological observations conducted next to the flux tower. These 178 

include soil moisture, soil temperature at different depths, soil heat flux, photosynthetically active radiation (PAR), global and 179 

reflected solar radiation, air temperature and precipitation. Half-hourly meteorological and flux data are transmitted to a server 180 

at the FMI, which is then synchronized to the PEcAn server (#8). 181 

3.3.1 Flux data processinggap-filling and uncertainty analysis 182 

The missing CO₂ flux (net ecosystem exchange, NEE) data are gap-filled based on empirical response functions that are fitted 183 

separately for the gross primary production (GPP) and total ecosystem respiration (ER): 184 

𝑁𝐸𝐸 =  𝐺𝑃𝑃 +  𝐸𝑅                                                                                                                     (1) 185 
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Respiration is modelled as a function of air temperature: 186 

𝐸𝑅 = 𝑅0 ⋅ 𝑒
𝐸0⋅(

1

𝑇0
−

1

𝑇𝑎−𝑇1
)
                                                                                                             (2) 187 

where R0 is the respiration rate at the reference temperature of 283.15 K, T0 = 227.13 K, T1 = 56.02 K, E0 is the temperature 188 

sensitivity of respiration, and Ta is the measured air temperature (Lloyd and Taylor, 1994). 189 

GPP is modelled as a function of PAR: 190 

𝐺𝑃𝑃 =
𝛼⋅𝑃𝐴𝑅⋅𝐺𝑃𝑚𝑎𝑥

𝛼⋅𝑃𝐴𝑅 + 𝐺𝑃𝑚𝑎𝑥
                                                                                                                (3) 191 

where 𝛼 is the apparent quantum yield and GPmax is the asymptotic photosynthesis rate in optimal light conditions.  192 

For gap-filling, the data are divided into blocks sections based on the harvest dates, and each block section is gap-filled 193 

separately. This is done because fluxes measured before a harvest cannot be used to predict fluxes after a harvest. First, R0 and 194 

E0 are estimated from the night-time (PAR < 20 µmol m-2 s-1 ) flux data with a 15-day moving window. If there are less than 195 

25 observations, the window size is increased stepwise by two days until enough data are obtained. Similarly, 𝛼 and GPmax are 196 

determined with a three-day moving window by fitting the PAR response function to the daytime NEE from which the 197 

modelled respiration is subtracted. Finally, gaps in NEE are filled with modelled NEE, which is the sum of modelled GPP and 198 

modelled ER. Gap-filled values that are determined using fits from asymmetrical time windows, with possibly biased data are 199 

flagged and updated when new measurements become available. Before flux gap-filling, the missing air temperature and PAR 200 

data are imputed using linear interpolation if the gap is not longer than 6 h. Longer gaps are filled using the mean diel cycle of 201 

the data measured within seven days before or after the missing data point 202 

The uncertainty of measured NEE (Emeasumeas) is inferred from the model residuals. For each site-year, the measurements are 203 

grouped into 0.2 mg CO2 m-2 s-1 wide bins, and for each bin the measurement uncertainty is characterized as the standard 204 

deviation of the residuals. The uncertainty of each measured half-hourly flux is then estimated from the relation between the 205 

measurement uncertainty and the magnitude of the flux (Richardson et al., 2008). For incomplete years, the relation from the 206 

previous year is used. 207 

The uncertainty of modelled NEE (Emod)umod), Eqs. (1)–(3), is propagated from the uncertainties of the least-squares fits of 208 

modelled GPP (EGPPuGPP) and Reco (ERecouReco) as: 209 

𝐸𝑚𝑜𝑑𝑢𝑚𝑜𝑑  =  √𝐸𝐺𝑃𝑃
2 + 𝐸𝑅𝑒𝑐𝑜

2 =  √𝑢𝐺𝑃𝑃
2 + 𝑢𝑅𝑒𝑐𝑜

2                  210 

(4) 211 
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Finally, the uncertainty related to the friction velocity threshold (Eustaruustar) is estimated by filtering the flux data using the 100 212 

different bootstrapped friction velocity thresholds, gap-filling the 100 differently filtered datasets, and using the standard 213 

deviation of the gap-filled fluxes as an estimate for Eustaruustar. 214 

3.4 FMI open weather data 215 

For all ACA sites, the weather information, namely precipitation, air temperature, relative humidity, wind speed and wind 216 

direction are retrieved from the nearest FMI weather stations (Table 2). Weather data are pulled to the PEcAn server using the 217 

fmir R package (https://github.com/mikmart/fmir). 218 

3.5 Satellite data from Google Earth Engine (GEE) 219 

All sites are monitored using remote sensing imagery from European Space Agency’s (ESA) Sentinel-2 satellites. 220 

Atmospherically corrected Level-2A (L2A) Sentinel-2 multispectral data (processed using Sen2Cor software) are retrieved 221 

using GEE (earthengine.google.com) cloud data platform. The scene classification band available in L2A products is used to 222 

filter away image acquisition dates during which the field is covered by snow, cloud or cloud shadow. From the Sentinel-2 223 

data, we calculate the Normalized Difference Vegetation Index (NDVI) and the Leaf Area Index (LAI). LAI is calculated 224 

because it is present in and can be assimilated to many process-based ecosystem models. NDVI is included in Field 225 

Observatory mainly for the farmers to whom NDVI is a more familiar measure compared to LAI. NDVI is calculated using 226 

near infra-red (B8A) and red (B4) bands of the L2A products. The Leaf Area Index (LAI) is estimated using the ESA Sentinel 227 

Application Platform (SNAP) Biophysical Processor neural network algorithm (Weiss & Baret, 2016, 228 

https://github.com/ollinevalainen/satellitetools). The NDVI data is natively available in 10 m resolution, whereas LAI is 229 

resampled to 10 m resolution from its original 20 m resolution. The satellite data is updated every two days at most (which is 230 

the Sentinel-2 revisit frequency over Finland). In addition, yearly cumulative NDVI sum is calculated using integration by 231 

trapezoidal rule for all sites (“NDVI days”). Common starting and ending points for the active growing season, 31 March and 232 

31 October, respectively, are used to standardize the cumulative NDVI sums between sites. This standardization improves the 233 

comparability of the cumulative sums between sites by having them all in the same absolute units. Without standardization the 234 

cumulative sums would be much influenced by the availability of the first and last observations of the growing season for a 235 

site. This is determined more by the cloud cover than the actual start and end of the growing season. To improve within site 236 

comparison, the cumulative NDVI is computed using dates when all fields within a site have satellite imagery available. The 237 

NDVI and LAI data is provided to the Field Observatory user interface in both raster (GeoTIFF) and tabular form (CSV). 238 

With the tabular data, the average value of pixels within the field is used to estimate the field-level value. The tabular data is 239 

provided with 90 % confidence intervals by multiplying the associated uncertainties by 1.645.the Z-score for two-sided 90 % 240 

confidence interval (1.645). Non-realistic negative LAI values are capped to zero. For NDVI the uncertainty is presented as 241 

standard error of the mean (SE) of the pixels within the field. For the cumulative NDVI sum, the uncertainties are propagated 242 

https://github.com/mikmart/fmir
https://github.com/ollinevalainen/satellitetools
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using the Python uncertainties package (https://pythonhosted.org/uncertainties/) which automatically computes the required 243 

derivatives and propagates the uncertainties. 244 

The uncertainty for the LAI (𝑢𝐿𝐴𝐼) is estimated by combining the observational uncertainty (𝑆𝐸𝐿𝐴𝐼) and the algorithmic 245 

uncertainty (𝑢𝑎𝑙𝑔) of the LAI estimation: 246 

𝑢𝐿𝐴𝐼 =  √𝑆𝐸𝐿𝐴𝐼
2  + 𝑢𝑎𝑙𝑔

2,         (5) 247 

where the 𝑆𝐸𝐿𝐴𝐼  is computed as the SE of LAI observations within the field. The 𝑢𝑎𝑙𝑔 is calculated by propagatingThe 248 

observational uncertainty aims at capturing the uncertainty associated with a particular single observation (from a specific 249 

image at a certain date). It is affected by the variability of the individual pixel values within the field at that specific date. The 250 

𝑢𝑎𝑙𝑔 is calculated by propagating theoretical individual pixel uncertainties (𝑢𝑡𝑖
) to the calculated average: 251 

𝑢𝑎𝑙𝑔 =  𝑛−1√∑ 𝑢𝑡𝑖
2𝑛

𝑖=1 ,          (6) 252 

where n is the number of pixels (i.e. sample size) and 𝑢𝑡 the reported theoretical RMSE for the SNAP LAI algorithm that is 253 

0.89 (Weiss and Baret, 2016) and constant to all pixels. The artificial increase of n due to resampling LAI observations from 254 

its native 20 m resolution to 10 m is taken into account and n is reduced accordingly. 255 

3.6 PAR from Copernicus Atmospheric Monitoring Service (CAMS) 256 

For the ACA sites, the daily PAR data are derived from the global irradiation data obtained from the CAMS through daily 257 

queries (www.soda-pro.com/web-services/radiation/cams-radiation-service/, Qu et al., 2017). The global daily irradiation (Wh 258 

m-2 day-1) is converted to daily PAR (MJ m-2 day-1) assuming that 50 % of the global irradiation is at PAR range. The CAMS 259 

data is available for each day with a 48 h time lag. The daily PAR is reported in MJ m-2 day-1 which is a more convenient unit 260 

for a daily value compared to µmol m-2 s-1 used with 30-min measurement frequency in intensive sites. 261 

3.7 ECMWF 15-day ensemble weather forecasts 262 

European Center Medium-range Weather Forecast (ECMWF) data are processed by the Finnish Meteorological Institute for 263 

every site. This dataset consists of 6-hourly 2 meter temperature (2t variable in ECMWF standards), total precipitation (tp), 264 

relative humidity (r), 10 meter U and V wind components (10u and 10v, respectively), surface pressure (sp), surface solar and 265 

thermal radiation downwards (ssrd and strd, respectively) values of 51 ensemble members where one member is the control 266 

forecast and the other 50 are perturbed members which have perturbed initial conditions different than the control to explore 267 

https://pythonhosted.org/uncertainties/
http://www.soda-pro.com/web-services/radiation/cams-radiation-service/
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the range of uncertainty (Buizza and Richardson, 2017). Weather forecast data are updated everyday. Per ECMWF license 268 

agreements, the data are visualized as is but the disseminated tabular files are obfuscated. 269 

Table 3 Summary of data streams reported in FiON. Offline = stored in public data repository and updated as necessary. 270 

Data type Units Data source Frequency Since Sites Online/offline 

Field activity - Personal communication* Seasonal 2019 All Offline 

Farmer management 

actions 

- Questionnaire Annual  All Offline 

Soil C % (ACA), 

kg m-2 

(Qvidja) 

Lab measurements Biannual 2018 All, 

except 

Ruukki 

Offline 

Soil water holding 

capacity 

m3 m-3 Lab measurements Once to 

calibrate 

sensors 

2019 All, 

except 

Ruukki 

Offline 

Soil nutrients mg kg-1 Lab measurements Biannual 2018 ACA Offline 

Bulk density kg dm-3 Lab measurements Annual 2019 ACA Offline 

Biomass kg ha-1 Lab measurements Annual 2019 ACA Offline 

Soil moisture m3 m-3 ACA soil sensors & eddy 

covariance 

Half-hourly 2018 (Qvidja), 

2019 (Ruukki), 

2020 (ACA) 

ACA & 

Intensive 

Online 

Soil temperature ℃ ACA soil  sensors & eddy 

covariance 

Half-hourly 2018 (Qvidja), 

2019 (Ruukki), 

2020 (ACA) 

ACA & 

Intensive 

Online 

Electrical 

conductivity 

μS cm-1 ACA soil sensors Half-hourly 2020 ACA Online 

CO2-flux mg m-2 s-1 Eddy covariance Half-hourly 2018 (Qvidja), 

2019 (Ruukki) 

Intensive Online 

Latent and sensible 

heat flux 

W m-2 Eddy covariance Half-hourly 2018 (Qvidja), 

2019 (Ruukki) 

Intensive Online 

Short-wave radiation 

(incoming and 

reflected) 

W m-2 Eddy covariance Half-hourly 2018 (Qvidja), 

2019 (Ruukki) 

Intensive Online 

CO2 concentration ppm Eddy covariance Half-hourly 2018 (Qvidja), 

2019 (Ruukki) 

Intensive Online 

Precipitation mm FMI open weather & eddy 

covariance 

Half-hourly 2018 (Qvidja), 

2019 (ACA & 

Ruukki) 

ACA & 

Intensive 

Online 
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Air Temperature ℃ FMI open weather & eddy 

covariance 

Half-hourly 2018 (Qvidja), 

2019 (ACA & 

Ruukki) 

ACA & 

Intensive 

Online 

Relative Humidity % FMI open weather & eddy 

covariance 

Half-hourly 2018 (Qvidja), 

2019 (ACA & 

Ruukki) 

ACA & 

Intensive 

Online 

PAR MJ m-2 day-

1 

μmol m-2 s-1 

Copernicus & eddy 

covariance 

Daily & 

half-hourly 

2018 (Qvidja), 

2019 (ACA & 

Ruukki) 

ACA & 

Intensive 

Online 

Leaf Area Index m2 m-2 Sentinel-2, GEE Min 2-days 2018 (Qvidja), 

2019 (ACA & 

Ruukki) 

All Online 

NDVI - Sentinel-2, GEE Min 2-days 2018 (Qvidja), 

2019 (ACA & 

Ruukki) 

All Online 

*Online application is under development. 271 

3.8 Predictive Ecosystem Analyzer (PEcAn) server 272 

All FiON data are pooled in an FMI server where model-data integration cyberinfrastructure software PEcAn is installed and 273 

compiled. PEcAn is an ecological informatics toolbox that consists of process-based models, a workflow management system 274 

and analytical tools for model-data synthesis (LeBauer et al., 2013; Dietze et al., 2013). The automated PEcAn workflow calls 275 

a series of modularized tasks that involve pre-processing of the model inputs, configuring and running the models, post-276 

processing model outputs and performing model-data integration analyses. Coupling a process-based model to this workflow 277 

requires writing a model package which consists of a few interfacing scripts as PEcAn adopts intermediate input and output 278 

file formats, and applies pre- and post-model run analyses to these standards (Fer et al., 2021). While there are already many 279 

ecosystem models coupled to PEcAn and its design is general across process-based models, coupling of more models that can 280 

simulate agricultural ecosystems is in progress. In this study, we coupled the BASGRA_N model (Basic Grassland Model, 281 

Höglind et al., 2020) to the PEcAn workflow and demonstrated its use for the Qvidja site (see Sect. 4, Model-data synthesis). 282 

In the future, we will provide model predictions for all sites through PEcAn. 283 

3.9 Public data storage 284 

To harmonize the data, all tabular data with less than daily measurement frequency is aggregated to a 30 min interval (to every 285 

hour and half hour) before transferring the data to the public data storage (Amazon Simple Storage Service, field-286 

observatory.data.lit.fmi.fi). To protect the privacy of the farmers, all data holding spatial information is transformed for all 287 

ACA sites, except for site MU (which is operated by Häme University of Applied Sciences). 288 
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3.10 Field Observatory user interface 289 

The Field Observatory user interface (v1.0, fieldobservatory.org) allows viewing general information about the sites and the 290 

measurements and carbon farming practices conducted on them. The website has an interactive map to navigate to site-specific 291 

dashboards. A site view consists of general information about the site, an interactive map with satellite imagery of a specified 292 

vegetation parameter, an interactive timeline for selecting satellite imagery for viewing, and a panel of interactive time series 293 

charts (Fig. 3). Each chart comes with a description of the displayed data. A chart typically contains multiple time series and 294 

the visibility of each can be toggled. The user can enable and disable time aggregation and choose the time aggregation level 295 

from predefined options. The time aggregation is calculated using sliding statistics such as mean or sum depending on the data 296 

type. Any chart can be exported as an SVG image or as a CSV file containing the displayed data. A global specification file 297 

defines a list of charts and the data source types that can be shown in each chart. Site-specific specification files are used to 298 

define data source types available for each site and to provide links to the data files. Specification files are stored in JSON 299 

format. 300 

The website is served by Azure services. The map and site views are based on client-side JavaScript, running in the user’s web 301 

browser. Maps have been implemented using Mapbox GL JS JavaScript library. 302 

 303 
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(a) 304 

 305 

 306 

 307 

(b) 308 

Figure 3 Two web interface views of the measurement data for site KI: (a) Overview and LAI satellite images and (b) observed 309 

soil and air temperature and soil moisture. The reader is referred to the website www.fieldobservatory.org for more and 310 

interactive charts. The aerial photo contains data from the National Land Survey of Finland Topographic Database (11/2020). 311 

4 Model-data synthesis and decision support  312 

While the current version of the Field Observatory mainly disseminates observations, one of the main goals of this application 313 

is to provide accessible near real-time model-data synthesis, forecasting and decision support for the users. We demonstrate 314 

http://www.fieldobservatory.org/
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the first application of this service at the Qvidja grassland site with the grassland model BASGRA_N (Table 2). BASGRA_N 315 

model is developed specifically for northern climates and for grass types (timothy, Phleum pratense; meadow fescue, Festuca 316 

pratensis) that are the dominating forage species cultivated at the Qvidja farm, and it is able to simulate grassland productivity, 317 

quality and greenhouse gas balance (Höglind et al., 2020). 318 

 319 

We coupled BASGRA_N to PEcAn, and used PEcAn's workflow management system and analytical tools (specifically the 320 

Bayesian calibration and state data assimilation modules) to inform the model with the data. Before employing them for 321 

forecasting and decision support, these models need to be initialized and calibrated. In other words, while state data assimilation 322 

algorithms can inform model states and improve predictive performance, best results are achieved when the model is calibrated 323 

to the site (Huang et al., 2021). Therefore, we used the field and lab measurements (Sect. 3.1), such as the rooting depth, soil 324 

carbon content and soil water holding capacity, to initialize the model states. Next, using multiple constraints (CO2 flux and 325 

LAI from the eddy covariance tower field, Sect. 3.3), we calibrated 20 model parameters using Bayesian numerical methods 326 

through the BayesianTools R-package (Hartig et al., 2019) as implemented in the PEcAn system (Fer et al., 2018)., also please 327 

see the supplement, section S1 for further details on the calibration protocol). In calibration, we used the observations from 328 

May 2018 to April 2021. After calibration model predictions were improved in terms of both uncertainty reduction and 329 

accuracy (Fig. 4). While the model is calibrated by the EC field data at Qvidja, initial results show improvement at the nearby 330 

Qvidja ACA sites as well (not shown here, but visible on Field Observatory LAI graphs). 331 

 332 

 333 

Figure 4 Predicted versus observed comparison before (orange ellipses) and after (purple ellipses) initialization and 334 

calibration. Ellipses represent the 90% CI % confidence intervals of model ensemble runs with 500 members. After 335 
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initialization and calibration, the model performance at Qvidja improved in terms of both accuracy (closer to the 1:1 line) and 336 

uncertainty reduction (narrower ellipses). 337 

  338 

Next, we deployed the initialized and calibrated model in an online, operational, iterative near-term forecasting framework by 339 

driving it with the ECMWF ensemble 15-day weather forecast (Sect. 3.7). From April 2021 onwards, every day a 15-day 340 

ensemble forecast is made from the BASGRA_N model. As time progresses, each day the CO2 flux forecast is informed with 341 

the observed and gap-filled daily CO2 flux values within an iterative forecast-analysis cycle using the Extended Ensemble 342 

Adjustment Kalman filter algorithm implemented in PEcAn (Dietze, 2017). When LAI observations are also available, they 343 

are jointly assimilated with the CO2 flux measurements as well. Although we are currently only assimilating the CO2 flux and 344 

LAI observations, related states are also updated within the model through the analysis step as the model encodes and simulates 345 

relations and covariances among different ecosystem processes. Among the model output variables, we share the LAI and CO2 346 

flux (Fig. 5), as well as Latent Heat and Yield Potential forecasts with the users through the Field Observatory user interface, 347 

albeit only for the Qvidja site for the time being. 348 
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 349 

Figure 5 15-day LAI (top) and CO2 flux (bottom) forecast at Qvidja.  The 90 % confidence intervals for hindcast and forecast 350 

are generated by 250 ensemble members, with different combinations of model parameters, initial conditions and 351 

meteorological drivers. Units in the CO2 flux graph are given per second to reflect the measurement frequency, however, 352 

observations were aggregated to daily time step here to align with the model predictions. The scythe icon indicates a harvest 353 

event on June 14th, 2021. 354 

 355 
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While a 15-day forecast has limited applicability within a cropping cycle, it could be informative on certain field activities that 356 

may have 1–2 weeks of flexibility which in return may have an impact on carbon balance. For instance, one can simulate 357 

alternative scenarios of timing of the harvest (e.g. whether to harvest now or delay it, please see supplementary material S2 358 

for a demonstration). It is possible to retrospectively explore these cases systematically as both weather forecasts and model 359 

analysis states are archived in the Field Observatory’s operational iterative forecasting system.  360 

5 Discussion  361 

This paper introduced the Field Observatory Network (FiON) and its unified methodology leading the way to monitor and 362 

forecast the functioning of agricultural ecosystems, geared towards verification of soil carbon sequestration. This methodology 363 

combines the existing spatially scattered measurements, modeling and computing networks, and disseminates the model-data 364 

computation outcomes through the Field Observatory user interface. In the following, we discuss the scientific and practical 365 

contributions of FiON and the Field Observatory, and the future steps planned for both. 366 

5.1 Scientific contribution 367 

FiON adopts state-of-the-art field and laboratory methods, open data sources, near real-time satellite imagery processing and 368 

model-data integration cyberinfrastructures—all of which are needed for a reliable MRV platform. A distinct feature of FiON 369 

is the network of ordinary farms, ACA sites, to establish baseline trends and verify additional changes. As soil carbon pool 370 

changes slowly, even after a shift in management practices, long-term monitoring is needed. The ACA sites (with control and 371 

treatment plots) were specifically designed for this purpose and will be monitored continuously for at least the next five years, 372 

and FiON aspires to continue even longer. This is an adequate time frame to detect SOC changes because the fastest carbon 373 

re-accumulation occurs in the first 10–20 years, depending on soil type, management practices, climate and initial SOC (Bossio 374 

et al., 2020), all of which are monitored by FiON. The intensive and ACA sites provide an important benchmarking opportunity 375 

to our model-data synthesis methodology which will be applied to all 100 Carbon Action farms.  376 

 377 

The PEcAn platform is central to our methodology; it enables synthesizing different data sources and process-based models, 378 

managing observational and model uncertainties, and near real-time forecasting. It distinguishes FiON from observations-only 379 

approaches. In addition to potentially having practical relevance for improving carbon storage, near-term agricultural 380 

forecasting has benefits to basic carbon science. Data assimilation methods help dissect model behaviour and identify research 381 

needs (Viskari et al., 2020). For instance, variability patterns of the best parameter sets in time and space can be identified by 382 

studying model ensemble members with respect to the analysis states (i.e. our best understanding about the system) and may 383 

point to unaccounted processes in models and underlying sources driving variability. If we manage to account for these 384 

variabilities (e.g. adding covariates that explain temporal variability), we could also improve our capability to model the carbon 385 

sequestration on the long term. Moreover, near-term iterative forecasting provides an out-of-sample way of statistical testing 386 
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for models which is less prone to overfitting than in-sample tests which are more typical in (agro-)ecology where models are 387 

tested against data that has already been observed (Dietze et al., 2018). Accordingly, a more in-depth analysis of the archived 388 

Field Observatory forecasting results and skills are ongoing and will be reported in a future study. In addition to understanding 389 

models better, operational iterative near-term forecasting also allows us to detect and intervene when measurements of certain 390 

sensors or data streams deviate from the assimilated background, and in return supports the management of the sensors and 391 

data pipelines, resulting in higher quality datasets. Overall, our 15-day iterative forecasting system provides continuous 392 

quantitative benchmarking of models and data based on all other available information, which allows rapid detection and 393 

explanation of changing patterns in the carbon sequestration with the possibility of intervening and making adjustments. 394 

5.2 Practical contribution 395 

The Field Observatory user interface has not only enabled farmers to monitor impacts of their carbon farming practices, but 396 

also to connect and compare their own and others’ data and practices.  Features in the user interface are co-created with the 397 

farmers and developed accordingly. For example, farmers requested to see a cumulative sum of NDVI through the growing 398 

season which was in return calculated and included on the website. Likewise, simple and clear descriptions to interpret each 399 

data type have been found helpful. The gap-filled CO2 fluxes at the intensive study sites have made it easier to communicate 400 

carbon exchanges between land and the atmosphere and how carbon budget calculations are done. As a result, the Field 401 

Observatory has already been used in workshops and meetings with stakeholders, and in training and scientific outreach for 402 

the Carbon Action farmers.  403 

 404 

One of our aims with this framework is to provide decision support for the end users. This is effectively offered by Field 405 

Observatory in terms of feedback where end users can monitor the impact of their activities in a quantitative manner, assess 406 

and make their decisions in the future accordingly. Our framework also lays the groundwork for a more explicit and specific 407 

decision support system. Although such functionality is not fully in place yet (but planned for the future versionsunder 408 

development), establishing the operational data assimilation and iterative forecasting pipeline is a milestone towards this 409 

direction. UsersWhile the 15 days’ horizon has limitations with respect to the span of a production cycle, in the future we are 410 

planning to include seasonal, annual and longer term forecasts as well. However, 15-day forecasts can still provide decision 411 

support for relatively shorter term and flexible agricultural actions (such as harvest, irrigation, grazing etc.). With the additional 412 

layer of agricultural forecast on top of the weather forecasting services, users are quantitatively informed about the progression 413 

of various ecosystem states and services bythrough these Field Observatory near-term forecast updates. TheFor example, 414 

sensor or model-based dynamic fertilization strategies have successfully improved the nitrogen use efficiency of cropping 415 

systems (e.g. Sela et al., 2018; Scharf et al., 2011). Likewise, timing of harvest and the cutting height may affect the overall 416 

carbon budget and economic income, and the plants’ water demand may necessitate a different irrigation scheme for optimum 417 

growth and water usage, all of which may not readily manifest themselves through weather forecasts and observations only. 418 
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We also acknowledge that such interventions are potentially easier for grasslands, as opposed to the croplands. Nevertheless, 419 

our operative iterative near-term forecasting system enables a framework to explore the impacts of such interventions 420 

dynamically, systematically and quantitatively, and in return devise more reliable and comprehensive decision criteria. Overall, 421 

the current pipeline is further being developed to improve the model performance and to be put into an adaptive decision 422 

making framework where alternative scenarios will be simulated with the modelmodels to aid users in their day-to-day 423 

operations specific to their management structure and goals. 424 

 425 

The near-term carbon forecasts have also improved our communication with stakeholders in general. Reporting quantitative, 426 

specific and iterative carbon forecasts makes it possible to convey the idea that predictive carbon science has the potential to 427 

be as successful and common as numerical weather prediction (NWP) as a discipline and as a service to society one day. 428 

Ecological forecasts provide us with a standard, quantitative, intuitive and management-relevant method and language to 429 

develop the right context and tools for structuring soil carbon sequestration decisions (Petchey et al., 2015; Dietze et al., 2018). 430 

Bringing near-term carbon forecasts forward further helps describe that soil carbon monitoring and modeling is a complex 431 

computational problem that depends on vast amounts of basic scientific research and observations. It involves a diverse range 432 

of actors and organizations and requires efficient communication and continuous transfer of knowledge between these groups, 433 

similar to NWP (Bauer et al., 2015). Not only the similarities but also the differences between agricultural forecasting and 434 

NWP help clarify and re-focus the research needs (e.g. the need to address the heterogeneity and inherent variability in carbon 435 

systems). Overall, near-term forecasts help establish this constructive dynamic between researchers and stakeholders which in 436 

return helps tackle remaining bottlenecks for improving soil carbon sequestration more efficiently. 437 

 438 

There is a large interest towards adopting and developing Field Observatory further. Therefore, the website is under constant 439 

development with new features, and new information about carbon farming and findings of FiON are increasingly being made 440 

available. 441 

5.3 Avenues for future research and development 442 

We have planned future steps for both FiON and the Field Observatory. The first step is to add more agricultural models to 443 

PEcAn. This enables us to extend model-data analysis to all FiON sites where different species and management practices are 444 

involved (i.e. other than grass harvest timing and amount). Coupling of one such additional model (Simulateur 445 

mulTIdisciplinaire pour les Cultures Standard, STICS, Brisson et al., 1998) to PEcAn has already been completed, and others 446 

are in progress. In the meantime, more sites will be added to FiON, not only in number but also in type. For example, with 447 

carbon-smart planning, urban vegetation also has potential to store more carbon. We study this also in FiON and consequently 448 

urban sites will be added. Another goal is to include forests and peatlands in FiON, which requires incorporating new process-449 

based models in the FiON workflow. During the coming years, more field and laboratory measurement data will be collected 450 

and used to validate the model estimates and re-calibrate the models. 451 
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 452 

The framework designed by FiON and described in this paper provides the necessary mechanics to study the applicability and 453 

reliability of the models to simulate components of the carbon budget virtually in every field. While scalability has been the 454 

core idea for the design of this framework since the beginning, putting it to practical test is the main scientific next step. 455 

Currently, a factorial experimental design and simulation is ongoing where the performance of the models will be tested at 456 

multiple sites by informing them with various data streams. For this, we will start with constraints that can be made available 457 

virtually from everywhere and test which combinations, if any, can inform models enough to capture local carbon budget 458 

dynamics and components. Such constraints are for example LAI derived from remote sensing, soil moisture provided by 459 

inexpensive in-situ sensors, soil properties estimated from global products and yield. In this setup, the information contributed 460 

by the sites that are equipped with EC-towers will also be tested. For example, we will perform a factorial experiment at the 461 

ACA sites with and without the models being constrained by EC-data at the intensive sites. As we have additional data streams 462 

other than the mentioned constraint data types (e.g. biomass and soil C, Table 2) from ACA sites for evaluation, the framework 463 

described in this paper provides the means to carry out such multi-site in-depth analyses. 464 

 465 

The development of the online application to gather field activity data from farmers is also in progress. ThisThe main purpose 466 

of this application will not only allow usingis to make collection and utilization of field activity data in visualization and 467 

model-data synthesis but it will alsopipelines easy. In this context, Field Observatory’s interoperability with commercial farm 468 

management information systems needs to be studied in order to reduce the number of times farmers are filling out such 469 

information. An additional future use of this online application is planned to enable the farmers to simulate a predefined 470 

number of scenarios regarding their day-to-day operations by triggering automated PEcAn workflows—for example, given 471 

the next 15-day forecast, they will be able to optimize the timing and amounts of their field activity. InWe are also considering 472 

utilizing this context, Field Observatory’s interoperability with commercial farm managementonline application for additional 473 

purposes: a) for compiling information systems needsfrom farmers regarding the flexibilities of their activities as this brings 474 

an additional practical constraint on the development of the model-based decision support system, b) for enabling new users 475 

to submit electronic requests and information about their fields to be studied. part of the FiON network, c) for supporting peer-476 

to-peer learning between farmers (Mattila et al., 2022). 477 

 478 

We are currently also investigating the use of satellite data sources other than Sentinel-2 in retrieving information on vegetation 479 

and soil properties. In addition to satellite imagery, drones could be used as a source of remote sensing data. The current 480 

Sentinel-2 data filtering is based on the cloud detection available in the L2A products. This filtering approach has produced 481 

quite clean time series; some sites do not have any outliers and some have at the maximum one or two per year. The benefit 482 

of our methodology—where we assimilate observations as state variables to process-based models—is that single outliers, 483 

with optimally larger uncertainties, do not have too drastic of an effect on the model predictions. Nevertheless, we will continue 484 
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to follow the performance of the filtering approach and improve it if necessary. Finally, the data streams used in data 485 

assimilation (to inform and update forecasts) will be increased and improvement in forecasting skills will be analyzed.  486 

6 Conclusions  487 

The Field Observatory Network (FiON) introduced in this paper is primarily a network of researchers, farmers, companies and 488 

other stakeholders developing carbon farming practices. FiON provides a unified methodology to monitor and forecast 489 

agricultural carbon sequestration by combining offline and near real-time field measurements, weather data, satellite imagery, 490 

modeling and computing networks. FiON disseminates data through the Field Observatory user interface 491 

(www.fieldobservatory.org). For farmers, FiON serves as a monitoring and decision support tool. In contrast to the mainstream 492 

decision support tools, FiON also provides the farmers access to other carbon farmers’ data in the network. This enables 493 

comparisons and knowledge transfer between the carbon farmers.   494 

FiON has several analogies to other ecological observatory networks, but unlike these existing networks, FiON is designed to 495 

provide near real-time information and forecasts concerning the carbon farming practices and to facilitate monitoring and 496 

verification of carbon sequestration. In this sense, FiON takes several steps forward from the mainstream of the ecological 497 

observatory networks known so far. 498 

7 Data availability 499 

The data displayed in the Field Observatory are available from the Field Observatory website (www.fieldobservatory.org) and 500 

from Amazon Simple Storage Service at https://field-observatory.data.lit.fmi.fi/index.html. Field measurements conducted at 501 

ACA sites in 2019 and 2020 are available from Zenodo data repository (Mattila, 2020: Mattila and Heinonen, 2021). 502 

8 Code availability 503 

The satellite data processing codes are available from a public GitHub repository 504 

(https://github.com/ollinevalainen/satellitetools). All PEcAn code is available openly on a GitHub repository 505 

(https://github.com/PecanProject/pecan). Field Activity data collection and curation application code which is under 506 

development is also available via GitHub (https://github.com/Ottis1/fo_management_data_input). Rest of the codes by the 507 

authors are not yet openly available. 508 

 509 

http://www.fieldobservatory.org/
https://field-observatory.data.lit.fmi.fi/index.html
https://github.com/ollinevalainen/satellitetools
https://github.com/PecanProject/pecan
https://github.com/Ottis1/fo_management_data_input
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