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Abstract. Better monitoring, reporting and verification (MRV) of the amount, additionality and persistence of the sequestered
soil carbon is needed to understand the best carbon farming practices for different soils and climate conditions, as well as their
actual climate benefits or cost-efficiency in mitigating greenhouse gas emissions. This paper presents our Field Observatory
Network (FiON) of researchers, farmers, companies and other stakeholders developing carbon farming practices. FION has
established a unified methodology towards monitoring and forecasting agricultural carbon sequestration by combining offline
and near real-time field measurements, weather data, satellite imagery, modeling and computing networks. FiON’s first phase
consists of two intensive research sites and 20 voluntary pilot farms testing carbon farming practices in Finland. To disseminate
the data, FION built a web-based dashboard called Field Observatory (v1.0, fieldobservatory.org). Field Observatory is
designed as an online service for near real-time model-data synthesis, forecasting and decision support for the farmers who are
able to monitor the effects of carbon farming practices. The most advanced features of the Field Observatory are visible on the
Qvidja site which acts as a prototype for the most recent implementations. Overall, FiON aims to create new knowledge on

agricultural soil carbon sequestration and effects of carbon farming practices, and provide an MRV tool for decision-support.
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1 Introduction

Farmers are managing one of the largest carbon stocks on the planet where even relatively small additions are important for
climate change mitigation. Accordingly, the international “soil carbon 4 per mille” initiative aims at raising the soil organic
carbon content by 0.4 % per year by adopting carbon farming practices (Minasny et al. 2017). Carbon farming practices include
methods, such as reduced soil disturbance (reduced or zero tillage), increasing carbon inputs (soil amendments, cover crops,
residue management) and crop rotations. Such practices do not only have the potential to partially refill the global soil carbon
stock that has lost 116 Pg carbon due to land cultivation (Sanderman et al., 2017), but they could also improve soil structure
and health, and increase crop yields (Merante et al. 2017; Oldfield et al. 2018). Annual carbon sequestration rates for different
management practices vary from 100 to 1000 kg C ha! (Merante et al., 2017; Minasny et al., 2017). Detecting sequestration
rates in this range is difficult with traditional empirical soil sampling designs due to large spatial variability of soil carbon
content and small relative changes in the soil carbon stock due to individual management actions (VandenBygaart and Angers
2006; Heikkinen et al. 2021). This calls for better monitoring, reporting and verification (MRV) of the amount, additionality

and persistence of the sequestered soil carbon due to carbon farming practices.

Towards this goal, we established the Field Observatory Network (FiON), a network of researchers, farmers, companies and
other stakeholders applying carbon farming practices. FiON has created a unified methodology to monitor and forecast
agricultural carbon sequestration, by combining automated near real-time field measurements, weather data, satellite imagery,
modeling and computing networks. In general, FiON follows the principles of other ecological observatory networks, such as
National Ecological Observatory Network (NEON, Keller et al., 2008), Global Lake Ecological Observatory Network
(GLEON, Hipsey et al., 2017) and Biodiversity Observatory Networks (GEOBON, Guerra et al., 2021) that collect long-term
ecological data and monitor the effects of climate and land use change (Elmendorf 2016; Hinckley et al., 2016; Hipsey et al.,
2017; Keller et al., 2008). The primary purpose of FION, however, is to i) create new knowledge on soil processes, ii) to
measure, verify and forecast the carbon sequestration in agricultural soils and to iii) approximate the effects of carbon farming
practices on yield, biomass and COz flux in near real-time. To achieve this, FION invested in the use and development of a
community cyberinfrastructure tool, Predictive Ecosystem Analyzer (PEcAn, pecanproject.org), which enables synthesizing
different data sources and process-based models, quantifying and partitioning uncertainties, and operationalizing near real-
time ecological forecasting (Fer et al., 2021). To disseminate the observations and findings, we built a free-access online
dashboard called Field Observatory (v1.0, fieldobservatory.org). This website serves as a tool to monitor the impacts of carbon
farming practices. The dashboard integrates data from field sensors, remote sensing and field survey. In this sense, FiON will
provide decision support for the farmers, at first hand via the Field Observatory website and in due course via the scientific
synthesis informed by the best available data and models. To serve the research and other interested communities, the data in

Field Observatory is publicly available and downloadable from the website.
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In this paper our objectives are to 1) describe data flows from various manual and automatic measurements in the Field
observatory, 2) demonstrate 15-day forecasts of carbon exchange and plant growth towards decision support for the farmers,

and 3) discuss the benefits of the public monitoring network established by FiON.

First, we introduce the sites included in FiON, and describe the tested carbon farming practices. Next, we describe the FION
workflow from data collection, processing and storage to visualization and dissemination through the Field Observatory

website. Finally, we present the near real-time model-data synthesis, forecasting and decision support for the users.

2 Sites and tested carbon farming practices

The first phase of FiON consists of two intensive agricultural research sites and 20 voluntary farms testing carbon farming
practices (Fig. 1, https://www.fieldobservatory.org/MapView). These 20 farms, called Advanced Carbon Action farms (ACA),
were selected out of 100 pilot farms participating in the Carbon Action platform!, where volunteer farmers test carbon farming
practices (Mattila et al. 2021). Each farm has a test field and an adjacent, conventionally managed, control field (field 1 and 0
in Field Observatory, respectively). The additional carbon farming practices aim to increase carbon sequestration through
increasing photosynthesis, exogenous inputs or through decreasing decomposition (Minasny et al., 2017). These practices
(Table 1) are: cover crops, adaptive grazing, soil amendments, subsoiling and ley farming (introducing a grass crop into
rotation). Each farmer made a five-year carbon farming plan and took soil samples at the beginning of the study from GPS

located points in the field. The same points are monitored annually and also contain real-time soil sensors.

1

Carbon Action platform consists of several scientific projects, 100 farms committed to 5 years of research activity and farmer
extension services. As of spring 2021, some 600 farmers are participating around the topic. Food system companies and
organisations are also involved. Carbon Action is led by BSAG and the research is coordinated by FMI. More
https://carbonaction.org/en/front-page/
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Table 1 Principles of the carbon farming practices tested at the Carbon Action farms.

Carbon farming practice Principles for carbon sequestration

Cover crops Crops planted to lengthen photosynthetically active period and to increase
carbon assimilation, carbon and root inputs and to reduce leaching of carbon
and nutrients.

Adaptive grazing Short grazing & long rest periods to manage grass growth for increased root
growth and increased soil cover.

Soil amendments Exogenous carbon input. In addition may stimulate plant growth through
increased water holding capacity, nutrients, etc.

Subsoiling Removing physical barriers to root growth by soil loosening. Coupled to a grass
crop to stabilize loosened soil. Increases plant growth and soil aeration and
decreases bulk density.

Ley farming Breaking monocropping with perennial grass. Increases photosynthesis, root
input and diversity.

Grass cultivation Diverse plant species composition, increased cutting height and organic
fertilization.

The 20 ACA farms were selected based on their chosen practice (four farms per measure), location (appropriate distances for
survey work and even spread over Finnish farmland) and soil type (a mix of clay and sandy soils) (Table 2). All of them were
included in a soil condition survey in 2019 (Mattila, 2020). Farms with anomalous measurements or too large organic matter
content or nutrient differences between the control and treatment plots in the initial phase of FiON were excluded from ACA
farms. FiON includes two intensive research sites, Qvidja and Ruuukki, which are operated by the Finnish Meteorological
Institute (FMI). In Qvidja, carbon farming practices are tested in three different fields. In Ruukki, there are no carbon farming
practices implemented at the moment. Both sites have eddy covariance towers which continuously monitor greenhouse gas

fluxes and weather(see Sect. 3).
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Figure 1 Map of Advanced Carbon Action sites (green dots) and intensive sites (blue squares) (left), and eddy covariance
tower and radiation measurement instrumentation at Qvidja (right).

Table 2 Current FiON sites.

Site Site type Soil type Carbon farming Species in 2020 Nearest FMI weather station
practice

AE ACA Sandy loam Subsoiling Rye Kauhava airport

KO ACA Silt Subsoiling Silage grass Juupajoki Hyytiala
KP ACA Clay loam Subsoiling Multi-species ley Pirkkala airport

LA ACA Clay silt Subsoiling Oats Pirkkala airport

JN ACA Fine sand Adaptive grazing Pasture grass Vesanto Sonkari

MI ACA Clay loam Adaptive grazing Pasture grass Lohja Porla

NI ACA Sand till Adaptive grazing Pasture grass Jyvaskyla airport AWOS
KI ACA Fine sand Soil amendments  Multi-species ley Somero Salkola

LI ACA Clay loam Soil amendments Spring wheat Lohja Porla

PA ACA Clay loam Soil amendments Hay grass Nurmijarvi Roéykka
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PI ACA Clay loam Soil amendments
MU ACA Clay loam Grass mixture
NA ACA Loam Cover crops
NE ACA Loam Cover crops
PU ACA Silty clay loam Cover crops
SI ACA Clay loam Cover crops
Al ACA Silty clay Ley farming
JA ACA Clay loam Ley farming
ACA
IK Sand till Ley farming
MO ACA Loam Ley farming
Qvidja  Intensive Clay loam Grass cultivation

Ruukki  Intensive Organic (peat) -

Oats
Multi-species ley
Peas
Oats
Oats
Multi-species ley
Multi-species ley

Multi-species ley

Silage grass
Barley
Silage grass

Silage grass
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Kaarina Yltéinen
Somero Salkola
Vaasa airport
Kauhava airport
Mantsala Hirvihaara
Porvoo Harabacka
Rauma Pyynpaa
Jokioinen Ilmala

Seinajoki Pelmaa

Hameenlinna Lammi Pappila
Kaarina YlItéinen®

Siikajoki Ruukki*

*Intensive sites have their own micrometeorological measurements.

3 Data collection

FiON combines multiple online and offline data streams with different temporal frequencies and geographical extent (Fig. 2,

Table 3). These data streams flow into a server where the data are pre-processed (filtered, gap-filled, formatted) and model-

data analyses are performed through an ecological cyberinfrastructure Predictive Ecosystem Analyzer (PEcAn, Fer et al,,

2021). All observational and computational outputs are stored in the server and disseminated through a web-based user

interface. In the following sections we describe each data stream and model-data activity in the order given in Fig. 2.
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2. Online soil 1. Offline field and
measurements lab measurements
(ACA sites) (All sites)
3. Online eddy
covariance tower
measurements \4

(Intensive sites) 8. Predictive Ecosystem

Analyzer (PEcAn) server

10. Field Observatory

user interface

e N - .
4. FMI open * Collects, stores and 9. Public data storage Runs in the web
weather data processes the data »| * Serves data files to browser
(ACA sites) * Carbon calculator Internet Retrieves data
(PECAN) Displays data
. ’ Can export data
5. Satellite data from ’ $
Google Earth Engine A ecanp®©’
(Al sites)

6. Copernicus 7. ECMWF 15-day

Atmospheric ensemble weather
Monitoring Service forecasts
(ACA sites) (All sites)

Figure 2 Overview of the FiON data flows.

3.1 Offline field and lab measurements

At ACA sites, the measurements are done at three, static measurement points per field. The points have c.a. 30-100 m distance
from each other and are located on a transect line. They were located to cover the variability of the field and cover similar soil
conditions in both the test and control plots. Annual soil sampling and soil quality measurements are made within a ten-meter
radius of these points. All offline data from ACA sites on soil properties (cation exchange capacity, pH, organic matter),
nutrients (P, K, S, Ca, Mg, Cu, Zn, B, Mn, Fe, Al, P-saturation), soil physical quality (soil structure, bulk density, porosity,
water holding capacity, infiltration rate) and biological properties (earthworm counts, above ground biomass, percentage plant
cover) are presented in Zenodo data repository with annual updates (Mattila, 2020; Mattila and Heinonen, 2021). The offline
field measurements at the intensive site Qvidja are described in Heimsch et al. (2021). Such offline, non-automated and
infrequent data are currently being curated further for harmonization and reporting in JavaScript Object Notation (JSON) file
formats and International Consortium for Agricultural Systems Applications (ICASA) standards (White et al., 2013). An

example soil carbon measurement data point (16.59 +2.25 kg m?, average+tstandard deviation) is visualized on Qvidja graphs

and available on the accompanying JSON file (https://data.lit.fmi.fi/field-observatory/qvidja/ec/events.json).
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3.1.1 Field activity

All field activity information (e.g. planting, fertilization, harvest timing and amount) is currently received offline through
personal communication. An online application is under development for i) harmonizing historical field data, and for ii)
collecting future field activity data. Accordingly, the application is being developed to allow the farmers themselves to enter
these events and related details, and it will be tested for the first time at the end of the 2021 season. The application is written
using the Shiny R package (v1.6.0, Chang et al., 2021) and it automatically produces files in a JSON format using the ICASA
standards when possible (https://github.com/Ottis1/fo_management data input). Examples of historical field activity events
(e.g. planting and tillage) that are prepared through this application are being made available in the Field Observatory JSON
files and visualized on the graphs (Fig. 5).

3.2 Online soil measurements

Since 2020, each ACA site was provided with four TEROS-12 soil sensors (METER Group, Inc. USA) (two sensors per field,
control and treatment) measuring volumetric water content, electrical conductivity and temperature (Table 3). The automated
sensors are located at 75 mm depth in two of the three fixed measurement points of each field. The sensors were connected to
a third party data transfer hardware (Datasense Oy, Finland), which uses Lora/WAN network to transmit the data. During the
first year, the sensors measured every half hour but in 2021 measurement frequency was changed to one hour. The data is
stored at the service providers server and is pulled to the PEcAn server (#8) through the Datasense API. Currently the sensor
array includes 80 TEROS-12 soil sensors, four Oz sensors (Apogee Instruments, USA) and two CO: sensors (Vaisala Oy,

Finland) and will be supplemented with weather and groundwater depth measurements.

3.3 Online eddy covariance tower measurements

Carbon dioxide, evapotranspiration (latent heat), sensible heat and momentum fluxes between the ecosystem and atmosphere
are measured at the intensive study sites, Ruukki and Qvidja, using the micrometeorological eddy covariance (EC) technique.
The EC instrumentation at both sites includes a three-axis sonic anemometer (uSonic-2 Scientific, METEK GmbH, Elmshorn,
Germany) and an enclosed-path infrared gas analyser (LI-7200, LI-COR Biosciences, NE, USA) installed on a tower. The
measurement height is 2.3 m in Qvidja and 3.3 m in Ruukki (2.3 m from 13 June to 25 June 2019 and 3.1 m from 25 June to

4 November 2019). For details of the measurement set-up in Qvidja, see Heimsch et al. (2021).

The data from the EC instruments are recorded at a 10-Hz frequency. Half-hourly turbulent fluxes are calculated by block-
averaging these raw data after applying a double rotation of the coordinate system (McMillen, 1988). The time lag between
the sonic anemometer and gas analyzer signals is determined based on the cross-correlation analysis (Rebmann et al., 2012).
The gas fluxes are calculated from the mixing ratios determined with respect to dry air (Webb et al., 1980). The measured
fluxes are compensated for the losses due to high-frequency signal attenuation within the measurement system (Laurila et al.,

2005). The flux data are filtered for instrument malfunction and unfavourable flow conditions according to the following

8
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validity criteria: number of spikes in the raw data < 100, mean CO2 mixing ratio > 350 ppm, relative stationarity (Foken and
Wichura, 1996) < 30 % and COz mixing ratio variance < 15 ppm? from April to September and < 5 ppm? from October to
March. At the Ruukki site, flux data are accepted from the wind direction sector 135°-315° (Blocks 5, 6, Sup and 6up) and the
sectors 0°-90° and 330°-360° (Blocks 1-4). In Qvidja, the wind directions representing the direction of the experimental site
are 0°-30° and 140°-360°. Periods of weak turbulence are filtered by applying a friction velocity threshold. The threshold and
its uncertainty are estimated for each site-year using the moving-point-transition method (Reichstein et al., 2005) and a

bootstrapping approach (Pastorello et al., 2020). For incomplete years, the estimates from the previous year are used.

The EC measurements are complemented with supporting meteorological observations conducted next to the flux tower. These
include soil moisture, soil temperature at different depths, soil heat flux, photosynthetically active radiation (PAR), global and
reflected solar radiation, air temperature and precipitation. Half-hourly meteorological and flux data are transmitted to a server

at the FMI, which is then synchronized to the PEcAn server (#8).

3.3.1 Flux data processing

The missing CO- flux (net ecosystem exchange, NEE) data are gap-filled based on empirical response functions that are fitted

separately for the gross primary production (GPP) and total ecosystem respiration (ER):
NEE = GPP + ER 1)

Respiration is modelled as a function of air temperature:

1 1
ER =R, eE"'(ﬂ_ﬁ) (@)
where Ro is the respiration rate at the reference temperature of 283.15 K, To =227.13 K, T1 = 56.02 K, Eo is the temperature

sensitivity of respiration, and Ta is the measured air temperature (Lloyd and Taylor, 1994).

GPP is modelled as a function of PAR:

@-PAR-GPpyqy

GPP = @-PAR + GPgyx @)

where «a is the apparent quantum yield and GPmax is the asymptotic photosynthesis rate in optimal light conditions.

For gap-filling, the data are divided into blocks based on the harvest dates, and each block is gap-filled separately. First, Ro
and Eo are estimated from the night-time (PAR < 20 pmol m? s™) flux data with a 15-day moving window. If there are less
than 25 observations, the window size is increased stepwise by two days until enough data are obtained. Similarly, @ and GPmax

are determined with a three-day moving window by fitting the PAR response function to the daytime NEE from which the
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modelled respiration is subtracted. Gap-filled values that are determined using fits from asymmetrical time windows, with
possibly biased data are flagged and updated when new measurements become available. Before flux gap-filling, the missing
air temperature and PAR data are imputed using linear interpolation if the gap is not longer than 6 h. Longer gaps are filled

using the mean diel cycle of the data measured within seven days before or after the missing data point

The uncertainty of measured NEE (Emeas) is inferred from the model residuals. For each site-year, the measurements are
grouped into 0.2 mg CO2m™ s! wide bins, and for each bin the measurement uncertainty is characterized as the standard
deviation of the residuals. The uncertainty of each measured half-hourly flux is then estimated from the relation between the
measurement uncertainty and the magnitude of the flux (Richardson et al., 2008). For incomplete years, the relation from the

previous year is used.

The uncertainty of modelled NEE (Emod) is propagated from the uncertainties of the least-squares fits of modelled GPP (Ecpp)

and Reco (Ereco) as:

Emoa = \/EGPP z + Ereco z 4

Finally, the uncertainty related to the friction velocity threshold (Eustar) is estimated by filtering the flux data using the 100
different bootstrapped friction velocity thresholds, gap-filling the 100 differently filtered datasets, and using the standard

deviation of the gap-filled fluxes as an estimate for Eustar.

3.4 FMI open weather data

For all ACA sites, the weather information, namely precipitation, air temperature, relative humidity, wind speed and wind
direction are retrieved from the nearest FMI weather stations (Table 2). Weather data are pulled to the PEcAn server using the

fmir R package (https://github.com/mikmart/fmir).

3.5 Satellite data from Google Earth Engine (GEE)

All sites are monitored using remote sensing imagery from European Space Agency’s (ESA) Sentinel-2 satellites.
Atmospherically corrected Level-2A (L2A) Sentinel-2 multispectral data are retrieved using GEE (earthengine.google.com)
cloud data platform. The scene classification band available in L2A products is used to filter away image acquisition dates
during which the field is covered by snow, cloud or cloud shadow. Normalized Difference Vegetation Index (NDVI) is
calculated using near infra-red (B8A) and red (B4) bands of the L2A products. The Leaf Area Index (LAI) is estimated using
the ESA Sentinel Application Platform (SNAP) Biophysical Processor neural network algorithm (Weiss & Baret, 2016,

https://github.com/ollinevalainen/satellitetools). The NDVI data is natively available in 10 m resolution, whereas LAI is

resampled to 10 m resolution from its original 20 m resolution. The satellite data is updated every two days at most (which is

the Sentinel-2 revisit frequency over Finland). In addition, yearly cumulative NDVI sum is calculated using integration by

10
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trapezoidal rule for all sites (“NDVI days”). Common starting and ending points for the active growing season, 31 March and
31 October, respectively, are used to standardize the cumulative NDVI sums between sites. To improve within site comparison,
the cumulative NDVI is computed using dates when all fields within a site have satellite imagery available. The NDVI and
LAI data is provided to the Field Observatory user interface in both raster (GeoTIFF) and tabular form (CSV).

With the tabular data, the average value of pixels within the field is used to estimate the field-level value. The tabular data is
provided with 90 % confidence intervals by multiplying the associated uncertainties by 1.645. Non-realistic negative LAI
values are capped to zero. For NDVI the uncertainty is presented as standard error of the mean (SE) of the pixels within the
field. For the cumulative NDVI sum, the uncertainties are propagated using the Python uncertainties package

(https://pythonhosted.org/uncertainties/) which automatically computes the required derivatives and propagates the

uncertainties .

The uncertainty for the LAI (u;,;) is estimated by combining observational uncertainty (SE;,; ) and the algorithmic

uncertainty (u4,4) of the LAI estimation:

2
Upgr = \/SELAIZ + Uy (5

where the SE; ,; is computed as the SE of LAI observations within the field. The w4 is calculated by propagating individual

pixel uncertainties (u;,) to the calculated average:

Ugqig = n~t ’ ?:1 uti2> (6)

where n is the number of pixels (i.e. sample size) and u; the reported theoretical RMSE for the SNAP LAI algorithm that is
0.89 (Weiss and Baret, 2016) and constant to all pixels. The artificial increase of n due to resampling LAI observations from

its native 20 m resolution to 10 m is taken into account and n is reduced accordingly.

3.6 PAR from Copernicus Atmospheric Monitoring Service (CAMS)

For the ACA sites, the daily PAR data are derived from the global irradiation data obtained from the CAMS through daily

queries (www.soda-pro.com/web-services/radiation/cams-radiation-service/, Qu et al., 2017). The global daily irradiation (Wh

m? day™!) is converted to daily PAR (MJ m? day!) assuming that 50 % of the global irradiation is at PAR range. The CAMS
data is available for each day with a 48 h time lag. The daily PAR is reported in MJ m day! which is a more convenient unit

for a daily value compared to pmol m? ™! used with 30-min measurement frequency in intensive sites.

11
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3.7 ECMWF 15-day ensemble weather forecasts

European Center Medium-range Weather Forecast (ECMWF) data are processed by the Finnish Meteorological Institute for

every site. This dataset consists of 6-hourly 2 meter temperature (2¢ variable in ECMWEF standards), total precipitation (zp),

relative humidity (), 10 meter U and V wind components (/0u and /0v, respectively), surface pressure (sp), surface solar and

thermal radiation downwards (ss7d and strd, respectively) values of 51 ensemble members where one member is the control

forecast and the other 50 are perturbed members which have perturbed initial conditions different than the control to explore

the range of uncertainty (Buizza and Richardson, 2017). Weather forecast data are updated everyday. Per ECMWF license

agreements, the data are visualized as is but the disseminated tabular files are obfuscated.

Table 3 Summary of data streams reported in FiON. Offline = stored in public data repository and updated as necessary.

Data type Units Data source Frequency Since Sites Online/offli
ne
Field activity - Personal Seasonal 2019 All Offline
communication*
Farmer - Questionnaire Annual All Offline
management
actions
Soil C % (ACA), Lab measurements Biannual 2018 All, Offline
kg m2 except
(Qvidja) Ruukki
Soil water m3 m-3 Lab measurements Once to 2019 All, Offline
holding capacity calibrate except
sensors Ruukki
Soil nutrients mg kg Lab measurements Biannual 2018 ACA Offline
Bulk density kg dm3 Lab measurements Annual 2019 ACA Offline
Biomass kg ha't Lab measurements Annual 2019 ACA Offline
Soil moisture m3 m-3 ACA soil sensors & Half- 2018 (Qvidja), ACA & Online
eddy covariance hourly 2019 (Ruukki), Intensiv
2020 (ACA) e
Soil temperature °C ACA soil sensors & Half- 2018 (Qvidja), ACA & Online
eddy covariance hourly 2019 (Ruukki), Intensiv
2020 (ACA) e
Electrical uS cmt ACA soil sensors Half- 2020 ACA Online
conductivity hourly
CO,-flux mg m2s Eddy covariance Half- 2018 (Qvidja), Intensiv Online
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! hourly 2019 (Ruukki) e
Latent and W m-2 Eddy covariance Half- 2018 (Qvidja), Intensiv Online
sensible heat hourly 2019 (Ruukki) e
flux
Short-wave W m-2 Eddy covariance Half- 2018 (Qvidja), Intensiv Online
radiation hourly 2019 (Ruukki) e
(incoming and
reflected)
CO ppm Eddy covariance Half- 2018 (Qvidja), Intensiv Online
concentration hourly 2019 (Ruukki) e
Precipitation mm FMI open weather & Half- 2018 (Qvidja), ACA & Online
eddy covariance hourly 2019 (ACA & Intensiv
Ruukki) e
Air Temperature °C FMI open weather & Half- 2018 (Qvidja), ACA & Online
eddy covariance hourly 2019 (ACA & Intensiv
Ruukki) e
Relative % FMI open weather & Half- 2018 (Qvidja), ACA & Online
Humidity eddy covariance hourly 2019 (ACA & Intensiv
Ruukki) e
PAR MJ m2 Copernicus & eddy Daily & 2018 (Qvidja), ACA & Online
day! covariance half- 2019 (ACA & Intensiv
pgmol m2 hourly Ruukki) e
S—l
Leaf Area Index m?2 m2 Sentinel-2, GEE Min 2- 2018 (Qvidja), All Online
days 2019 (ACA &
Ruukki)
NDVI - Sentinel-2, GEE Min 2- 2018 (Qvidja), All Online
days 2019 (ACA &
Ruukki)

*Online application is under development.

3.8 Predictive Ecosystem Analyzer (PEcAn) server

All FiON data are pooled in an FMI server where model-data integration cyberinfrastructure software PEcAn is installed and
compiled. PEcAn is an ecological informatics toolbox that consists of process-based models, a workflow management system
and analytical tools for model-data synthesis (LeBauer et al., 2013; Dietze et al., 2013). The automated PEcAn workflow calls
a series of modularized tasks that involve pre-processing of the model inputs, configuring and running the models, post-

processing model outputs and performing model-data integration analyses. Coupling a process-based model to this workflow
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requires writing a model package which consists of a few interfacing scripts as PEcAn adopts intermediate input and output
file formats, and applies pre- and post-model run analyses to these standards (Fer et al., 2021). While there are already many
ecosystem models coupled to PEcAn and its design is general across process-based models, coupling of more models that can
simulate agricultural ecosystems is in progress. In this study, we coupled the BASGRA N model (Basic Grassland Model,
Hoglind et al., 2020) to the PEcAn workflow and demonstrated its use for the Qvidja site (see Sect. 4, Model-data synthesis).

In the future, we will provide model predictions for all sites through PEcAn.

3.9 Public data storage

To harmonize the data, all tabular data with less than daily measurement frequency is aggregated to a 30 min interval (to every
hour and half hour) before transferring the data to the public data storage (Amazon Simple Storage Service, field-
observatory.data.lit.fmi.fi). To protect the privacy of the farmers, all data holding spatial information is transformed for all

ACA sites, except for site MU (which is operated by Hime University of Applied Sciences).

3.10 Field Observatory user interface

The Field Observatory user interface (v1.0, fieldobservatory.org) allows viewing general information about the sites and the
measurements and carbon farming practices conducted on them. The website has an interactive map to navigate to site-specific
dashboards. A site view consists of general information about the site, an interactive map with satellite imagery of a specified
vegetation parameter, an interactive timeline for selecting satellite imagery for viewing, and a panel of interactive time series
charts (Fig. 3). Each chart comes with a description of the displayed data. A chart typically contains multiple time series and
the visibility of each can be toggled. The user can enable and disable time aggregation and choose the time aggregation level
from predefined options. The time aggregation is calculated using sliding statistics such as mean or sum depending on the data
type. Any chart can be exported as an SVG image or as a CSV file containing the displayed data. A global specification file
defines a list of charts and the data source types that can be shown in each chart. Site-specific specification files are used to
define data source types available for each site and to provide links to the data files. Specification files are stored in JSON

format.

The website is served by Azure services. The map and site views are based on client-side JavaScript, running in the user’s web

browser. Maps have been implemented using Mapbox GL JS JavaScript library.
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Figure 3 Two web interface views of the measurement data for site KI: (a) Overview and LAI satellite images and (b) observed

soil and air temperature and soil moisture. The reader is referred to the website www.fieldobservatory.org for more and

interactive charts. The aerial photo contains data from the National Land Survey of Finland Topographic Database (11/2020).

4 Model-data synthesis and decision support

While the current version of the Field Observatory mainly disseminates observations, one of the main goals of this application
is to provide accessible near real-time model-data synthesis, forecasting and decision support for the users. We demonstrate
the first application of this service at the Qvidja grassland site with the grassland model BASGRA N (Table 2). BASGRA N
model is developed specifically for northern climates and for grass types (timothy, Phleum pratense; meadow fescue, Festuca
pratensis) that are the dominating forage species cultivated at the Qvidja farm, and it is able to simulate grassland productivity,

quality and greenhouse gas balance (Hoglind et al., 2020).
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We coupled BASGRA N to PEcAn, and used PEcAn's workflow management system and analytical tools (specifically the
Bayesian calibration and state data assimilation modules) to inform the model with the data. Before employing them for
forecasting and decision support, these models need to be initialized and calibrated. Therefore, we used the field and lab
measurements (Sect. 3.1), such as the rooting depth, soil carbon content and soil water holding capacity, to initialize the model
states. Next, using multiple constraints (COz flux and LAI from the eddy covariance tower field, Sect. 3.3), we calibrated 20
model parameters using Bayesian numerical methods through the BayesianTools R-package (Hartig et al., 2019) as
implemented in the PEcAn system (Fer et al., 2018). In calibration, we used the observations from May 2018 to April 2021.

After calibration model predictions were improved in terms of both uncertainty reduction and accuracy (Fig. 4).

2 2, 2
CO, flux (mg/ m=/s) LAI (m®/ m°%)
S0 S 1
1 7
’ 7
’ 3 ’
/ ’
!/ 1
0.1 ) 4
4 1
/ ’
II 2 I'
E /! P K pre-calibration
© g © ]
(m] ,' o ’ . .
0.0 0 / post-calibration
/I 1 ’,
7 1
7 1
7 I
7 1
7 1
/I 0 /I
-0.1 ’ ’
’ 1
7 7
0.4 02 ! 0.0 0.2 ) 2 4 6 8
Model Model

Figure 4 Predicted versus observed comparison before (orange ellipses) and after (purple ellipses) initialization and
calibration. Ellipses represent the 90% CI of model ensemble runs with 500 members. After initialization and calibration, the
model performance at Qvidja improved in terms of both accuracy (closer to the 1:1 line) and uncertainty reduction (narrower

ellipses).

Next, we deployed the initialized and calibrated model in an online, operational, iterative near-term forecasting framework by
driving it with the ECMWF ensemble 15-day weather forecast (Sect. 3.7). From April 2021 onwards, every day a 15-day
ensemble forecast is made from the BASGRA N model. As time progresses, each day the CO: flux forecast is informed with
the observed and gap-filled daily CO: flux values within an iterative forecast-analysis cycle using the Extended Ensemble
Kalman filter algorithm implemented in PEcAn (Dietze, 2017). When LAI observations are also available, they are jointly
assimilated with the CO: flux measurements as well. Although we are currently only assimilating the CO; flux and LAI

observations, related states are also updated within the model through the analysis step as the model encodes and simulates

17



https://doi.org/10.5194/gi-2021-21 Geoscientific
Preprint. Discussion started: 2 August 2021 Instrumentation

Method d
(© Author(s) 2021. CC BY 4.0 License. Datea soy;:;s

Discussions

13 relations and covariances among different ecosystem processes. Among the model output variables, we share the LAI and CO2
14 flux (Fig. 5), as well as Latent Heat and Yield Potential forecasts with the users through the Field Observatory user interface,
15 albeit only for the Qvidja site for the time being.
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17 Figure S 15-day LAI (top) and COz flux (bottom) forecast at Qvidja. The 90 % confidence intervals for hindcast and forecast
18 are generated by 250 ensemble members, with different combinations of model parameters, initial conditions and

19 meteorological drivers. Units in the COz flux graph are given per second to reflect the measurement frequency, however,
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observations were aggregated to daily time step here to align with the model predictions. The scythe icon indicates a harvest

event on June 14th, 2021.

5 Discussion

This paper introduced the Field Observatory Network (FiON) and its unified methodology leading the way to monitor and
forecast the functioning of agricultural ecosystems, geared towards verification of soil carbon sequestration. This methodology
combines the existing spatially scattered measurements, modeling and computing networks, and disseminates the model-data
computation outcomes through the Field Observatory user interface. In the following, we discuss the scientific and practical

contributions of FiON and the Field Observatory, and the future steps planned for both.
5.1 Scientific contribution

FiON adopts state-of-the-art field and laboratory methods, open data sources, near real-time satellite imagery processing and
model-data integration cyberinfrastructures—all of which are needed for a reliable MRV platform. A distinct feature of FION
is the network of ordinary farms, ACA sites, to establish baseline trends and verify additional changes. As soil carbon pool
changes slowly, even after a shift in management practices, long-term monitoring is needed. The ACA sites (with control and
treatment plots) were specifically designed for this purpose and will be monitored continuously for at least the next five years,
and FiON aspires to continue even longer. This is an adequate time frame to detect SOC changes because the fastest carbon
re-accumulation occurs in the first 10-20 years, depending on soil type, management practices, climate and initial SOC (Bossio
etal., 2020), all of which are monitored by FiON. The intensive and ACA sites provide an important benchmarking opportunity
to our model-data synthesis methodology which will be applied to all 100 Carbon Action farms. The PEcAn platform is central
to our methodology; it enables synthesizing different data sources and process-based models, managing observational and

model uncertainties, and near real-time forecasting. It distinguishes FiION from observations-only approaches.
5.2 Practical contribution

The Field Observatory user interface has not only enabled farmers to monitor impacts of their carbon farming practices, but
also to connect and compare their own and others’ data and practices. Features in the user interface are co-created with the
farmers and developed accordingly. For example, farmers requested to see a cumulative sum of NDVI through the growing
season which was in return calculated and included on the website. Likewise, simple and clear descriptions to interpret each
data type have been found helpful. The gap-filled COz fluxes at the intensive study sites have made it easier to communicate
carbon exchanges between land and the atmosphere and how carbon budget calculations are done. As a result, the Field
Observatory has already been used in workshops and meetings with stakeholders, and in training and scientific outreach for

the Carbon Action farmers.
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One of our aims with this framework is to provide decision support for the end users. Although such functionality is not fully
in place yet (but planned for the future versions), establishing the operational data assimilation and iterative forecasting pipeline
is a milestone towards this direction. Users are quantitatively informed about the progression of various ecosystem states and
services by these Field Observatory near-term forecast updates. The current pipeline is further being developed to improve the
model performance and to be put into an adaptive decision making framework where alternative scenarios will be simulated

with the model to aid users in their day-to-day operations.

There is a large interest towards adopting and developing Field Observatory further. Therefore, the website is under constant
development with new features, and new information about carbon farming and findings of FiON are increasingly being made

available.
5.3 Avenues for future research and development

We have planned future steps for both FION and the Field Observatory. The first step is to add more agricultural models to
PEcAn. This enables us to extend model-data analysis to all FiON sites where different species and management practices are
involved (i.e. other than grass harvest timing and amount). Coupling of one such additional model (Simulateur
mulTIdisciplinaire pour les Cultures Standard, STICS, Brisson et al., 1998) to PEcAn has already been completed, and others
are in progress. In the meantime, more sites will be added to FiON, not only in number but also in type. For example, with
carbon-smart planning, urban vegetation also has potential to store more carbon. We study this also in FiON and consequently
urban sites will be added. Another goal is to include forests and peatlands in FiON, which requires incorporating new process-
based models in the FION workflow. During the coming years, more field and laboratory measurement data will be collected

and used to validate the model estimates and re-calibrate the models.

The development of the online application to gather field activity data from farmers is also in progress. This application will
not only allow using field activity data in visualization and model-data synthesis but it will also enable the farmers to simulate
a predefined number of scenarios regarding their day-to-day operations by triggering automated PEcAn workflows—for
example, given the next 15-day forecast they will be able to optimize the timing and amounts of their field activity. In this

context, Field Observatory’s interoperability with commercial farm management information systems needs to be studied.

We are currently also investigating the use of satellite data sources other than Sentinel-2 in retrieving information on vegetation
and soil properties. In addition to satellite imagery, drones could be used as a source of remote sensing data. Finally, the data
streams used in data assimilation (to inform and update forecasts) will be increased and improvement in forecasting skills will

be analyzed.
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6 Conclusions

The Field Observatory Network (FiON) introduced in this paper is primarily a network of researchers, farmers, companies and
other stakeholders developing carbon farming practices. FiION provides a unified methodology to monitor and forecast
agricultural carbon sequestration by combining offline and near real-time field measurements, weather data, satellite imagery,
modeling and computing networks. FiON disseminates data through the Field Observatory user interface
(www.fieldobservatory.org). For farmers, FiON serves as a monitoring and decision support tool. In contrast to the mainstream
decision support tools, FION also provides the farmers access to other carbon farmers’ data in the network. This enables

comparisons and knowledge transfer between the carbon farmers.

FiON has several analogies to other ecological observatory networks, but unlike these existing networks, FiON is designed to
provide near real-time information and forecasts concerning the carbon farming practices and to facilitate monitoring and
verification of carbon sequestration. In this sense, FION takes several steps forward from the mainstream of the ecological

observatory networks known so far.

7 Data availability

The data displayed in the Field Observatory are available from the Field Observatory website (www.fieldobservatory.org) and

from Amazon Simple Storage Service at https://field-observatory.data.lit.fmi.fi/index.html. Field measurements conducted at

ACA sites in 2019 and 2020 are available from Zenodo data repository (Mattila, 2020: Mattila and Heinonen, 2021).

8 Code availability

The satellite data processing codes are available from a public GitHub repository

(https://github.com/ollinevalainen/satellitetools). All PEcAn code is available openly on a GitHub repository

(https://github.com/PecanProject/pecan). Field Activity data collection and curation application code which is under

development is also available via GitHub (https://github.com/Ottis1/fo_management data_input). Rest of the codes by the

authors are not yet openly available.
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