The paper by Dglven et al. entitled “Response time correction of slow re-
sponse sensor data by deconvolution of the growth-law equation” deals with
the reconstruction of an ambient signal from a slow response/low pass filtered
sensor time series. They present the theoretical framework of their approach
and apply it to three examples, a step change idealized toy model as well as
a laboratory and a field experiment. While the examples center around a slow
response (equilibration-based) methane sensor, the scope of the respone time
correction method goes beyond those specific applications and can be applied
to a wide range of similar scenarios (as the authors note in the introduction).

What makes this work unique is that it (1) derives information on the level
of smoothing that should be applied to the reconstruction of the deconvolved
signal from the data themselves, and (2) provides an uncertainty bound to the
reconstruction, all while having only minimal requirements of number of input
parameters/assumptions on sensor behaviour. This sets it apart from previous
work (e.g., Miloshevich et al., 2004) with similar goals, and the current work
promises to have a large impact on the field going community.

The work is logically structured and written concisely and to the point,
sometimes a bit brief considering the likely non-math/signal processing audience
of the article. Nonetheless, it is one of the most excellent works I reviewed
recently.

Comments

1. In your simulated data and toy model, you use a measurement error pro-
portional to w,, plus a constant noise floor term. After reading the full
paper, I see where this comes from (your particular application/example),
but do not think that it serves your objectives here as outlined in sec-
tion 2.1 (1. 134ff.). While the lagged inflation/deflation of the estimate’s
i, uncertainty is well explained and understandable in the field example
(Figure 6d and corresponding text), it raises question marks and creates
wrong conclusions here, early on in your derivation, e.g., “So it seems that
the method accumulates/amplifies noise terms with time, as the 4, un-
certainty envelope grows and grows with time (Figure 3a and c). What
would happen if there were a longer O-period of say time 50 instead of
time 5, would the error envelope be huge already at the step change? Can
the method only be applied to short pieces of a longer time series??”

Instead, I’d suggest to use only a constant measurement error term in
the toy model for simplicity, to illustrate that your method does not suffer
from accumulation of noise and (in such a case) can keep a nearly constant
il uncertainty. However, ...

2. I find it hard to understand and believe that (e.g., with a constant o)
the uncertainty of the reconstruction 4, does not have/show a dependence
on the magnitude of correction (e.g., difference between @, and i,,). Le.,
that the reconstructed signal of a sensor pretty much in equilibrium (in



no-gradient regions) should be as certain or uncertain as the reconstructed
signal where the sensor experiences a strong gradient (and needs a strong
correction).

Intuitively, with small corrections required (no-gradient case), sensor noise
should not be of paramount importance (just slight amplification, reflected
in smaller estimate’s uncertainty envelope), whereas with large corrections
(strong gradient case), the same level of sensor noise should have a stronger
impact on the reconstructed signal (more strongly amplified, so larger
estimate’s uncertainty envelope), shouldn’t it?

The figures 2 and 3 tend to support this intuition: “Overshoots” in the
reconstructed signal 4, tend to be a more prominent issue in strong gradi-
ents (here: step change, which violates the smoothness assumption as not-
ed in the Appendix A, agreed. But the same is true if u, has a “smooth”
strong gradient within At; resolution). Similarly, fit residuals (Figure 2d)
show a different character at the step change/strong gradient, where they
are more coherent (and more coherently wrong) across multiple ¢; (sug-
gesting 1, (t;) uncertainty should be larger), whereas they show only high
frequency fluctuations around a zero-mean in the later no-/small gradient
(suggesting validity of a smaller @, (¢;) uncertainty).

This is probably the most important point that needs to be addressed by
the authors (and testifies to the otherwise really excellent work): Should
the uncertainty on 4, not be larger when there is a large correction com-
pared to a small one?

. The authors present examples where there are highly-resolved observations
together with a very long time constant. This is arguably a very favourable
case for response time corrections, where the high resolution allows for a
lot of averaging, thus keeping noise amplification low.

The authors should add a comment in their manuscript on more poorly-
resolved scenarios, where 7g3 is closer to At; and not orders of magnitude
between them (743 > At;). Is there a limit (e.g., to the applicability,
utility, ...) and if so, what to watch out for?

. As outlined in the introduction, the method may find application in a wide
range of fields and settings (e.g. in profiling, on moving platforms, ...).
Among them are scenarios, where there is a difference in scale across the
time series, both in expected dynamics (e.g., deep ocean with less dynamics
vs. surface layer with more dynamics) or in measurement resolution (e.g.,
a lower and a higher resolution At; part).

Please add some comment on how to deal with such irregularly spaced
scenarios: Would you recommend to split such a time series and use a
specific model At; for different parts for better resolution, or rather keep
it as one (with uniform scale At;) for better L-curve analysis? Or instead
of an evenly sampled grid ¢; (1. 71) stitch a few pieces with different At;
sample spacing together?



I understand that generic recommendations are hard to do, so if you want,
imagine a profiling scenario in the open ocean where response time is on
the order of 100 s and measurement resolution varies from 500 s from
2000 m to 1000 m depth (ca. 20 samples), to 100 s from 1000 m to 300 m
depth (ca. 80 samples), and finally to 20 s from 300 m depth to the surface
(ca. 150 samples).

Side question: Can a At; smaller than the max. At; be selected by the
regularization? From your example in Figure 3d it seems like it.

With your approach in general, is there a difference between full series or
subseries application (given same parameters and neglecting edge effects)?
Le., in case of very long time series (and thus a large matrix G), is there
a trade-off of splitting the time series to avoid memory problems?

Code and data availability: Providing the code of this manuscript will be
of tremendous help to anyone trying to apply this excellent work. For code
repository, I would however discourage a “static” manuscript supplement,
which does not allow for bug fixes or feature updates, and instead use a
code repository where this is possible (e.g., github/zenodo or similar).

Minor comments and typos

1.69: Please add a reference (e.g., to a textbook?)

1.106: “The constant v > 0‘;1 is a numerically large weighting constant”
Like 10x numerically large or like 1000x numerically large? (Does it mat-
ter?) Please add some guidance.

Eq. 8: k; + (At)™ when i=1landj=i Typo?

Eq. 15: This is not normalized by N (as N changes with different At;),
correct?

1.175: remove “is”
1.211: Worth adding an equation for this (like Eq. 15)7

1.242(f.): Please check the authors guidelines on how to format numbers
in exponential notation (I'd have expected 5.747 - 10~% s~ or similar).

1.248: Correct equation referenced?



