
Response time correction of slow response sensor data by
deconvolution of the growth-law equation
Knut Ola Dølven1, Juha Vierinen2, Roberto Grilli3, Jack Triest4, and Bénédicte Ferré1

1Centre for Arctic Gas Hydrate, Environment, and Climate,UiT The Arctic University of Norway, Tromsø, Norway
2Institute for Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
3CNRS, University of Grenoble Alpes, IRD, Grenoble INP, 38000 Grenoble, France
44H-JENA engineering GmbH Wischhofstrasse 1-3, 24148 Kiel, Germany

Correspondence: Knut Ola Dølven (knut.o.dolven@uit.no)

Abstract. Accurate, high resolution measurements are essential to improve our understanding of environmental processes.

Several chemical sensors relying on membrane separation extraction techniques have slow response times due to a depen-

dence on equilibrium partitioning across the membrane separating the measured medium (i.e., a measuring chamber) and the

medium of interest (i.e., a solvent). We present a new technique for deconvolving slow sensor response signals using statistical

inverse theory; applying a weighted linear least squares estimator with the growth-law as measurement model. The solution5

is regularized using model sparsity, assuming changes in the measured quantity occurs with a certain time-step, which can

be selected based on domain-specific knowledge or L-curve analysis. The advantage of this method is that it: 1) models error

propagation, providing an explicit uncertainty estimate of the response time corrected signal, 2) enables evaluation of the so-

lutions self consistency, and 3) only requires instrument accuracy, response time, and data as input parameters. Functionality

of the technique is demonstrated using simulated, laboratory, and field measurements. In the field experiment, the coefficient10

of determination (R2) of a slow response methane sensor in comparison with an alternative, fast response sensor, significantly

improved from 0.18 to 0.91 after signal deconvolution. This shows how the proposed method can open up a considerably wider

set of applications for sensors and methods suffering from slow response times due to a reliance on the efficacy of diffusion

processes.

Keywords Diffusion, Equilibrium, Error propagation, Membrane, Sensor, Laboratory experiment, Field experiment, Inverse15

methods

1 Introduction

High resolution in situ data are crucial to observe high variability in environmental processes when surrounding environmental

parameters are continuously changing. Many contemporary measurement techniques have a limited response time due to signal
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convolution inherited from a diffusion process, such as in Vaisala radiosondes (Miloshevich et al., 2004) or in continuous flow20

analysis of ice cores (Faïn et al., 2014). In oceanic sciences, measurement of dissolved analytes often requires an extraction

technique based on membrane separation, where the property of interest (a solute) equilibrate across a membrane separating

the medium of interest (a solvent) from the medium where the actual measurement takes place (a measurement chamber). This

makes the sensor response time (RT) directly governed by how fast the analyte of interest can diffuse through the membrane.

This process is mainly driven by the difference in partial pressure between the two media and can be relatively slow. This25

results in high sensor RTs, leading to unwanted spatial and temporal ambiguities in recorded signals for sensors used in

profiling (Miloshevich et al., 2004), on moving platforms (Bittig et al., 2014; Canning et al., 2021) or deployed in dynamic

environments (Atamanchuk et al., 2015). Herein, we refer to sensors with this particular design as Equilibrium Based (EB)

sensors and we seek to establish a robust, simple and predictable method for correcting high RT induced errors in data from

these sensors.30

Considering an EB sensor during operation, we define ua(t) as the instantaneous ambient partial pressure of interest and

um(t) as the partial pressure within the measuring chamber of an EB sensor, where the measurement occurs. In this situation, a

model of um(t) as a function of time can be obtained via the growth-law equation (Miloshevich et al., 2004), which describes

diffusion of the property of ua(t) through the separating barrier (in this case the membrane):

∂tum = k(ua−um), (1)35

where k is a sensor specific growth coefficient, which determines how fast a change in ua(t) will be reflected in um(t). The RT

of EB sensors are often given in τ63 = 1/k, which corresponds to the time the sensor requires to achieve 63% (one e-folding)

of an instantaneous step-change in ambient concentration. If k in Eq. 1 is sufficiently small (i.e. τ63 is large), the diffusion will

be slow and any fast fluctuations in ua(t), will be smeared out in time.

A numerical technique has already been proposed to recover fast fluctuations in ua(t) from measurements of um(t) using40

a closed form piece-wise solution to Eq. 1 (Miloshevich et al., 2004). However, due to the ill-posed nature (see e.g. Tikhonov

et al., 1977) of the forward model, errors in the measurements will be amplified when reconstructing ua(t). Miloshevich et

al., (2004) counteracts this using an iterative algorithm that minimizes third derivatives to obtain locally smooth (noise-free)

time-series prior to the reconstruction of ua(t). While this and similar methods seems to usually work well in practice (Bittig

et al., 2014; Canning et al., 2021; Fiedler et al., 2013; Miloshevich et al., 2004), it is difficult to determine the uncertainty of45

the estimate, as the iterative scheme does not model error behavior. Predicting the expected solution of the iterative estimator

is also difficult and there is no straightforward way of choosing suitable smoothing parameters. These are important attributes

for the reliability of solutions to these types of problems, due to the error amplification that occurs during deconvolution.

Herein, we establish an alternative method for estimating ua(t) from a measurement of um(t). This solution is based on

the framework of statistical inverse problems and linear regression. Using a weighted linear least squares estimator, the growth50

law equation as measurement model, and a sparsity regularized solution, we are able to take into account uncertainties in the

measurements, provide an intuitive and/or automated way of specifying an a priori assumption for the expected solution, and

determine the uncertainty of the estimate. This approach also enables us to evaluate the self-consistency of the solution and
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detect potential model and/or measurement issues. A time-dependent k can also be employed, which suits membranes with

varying permeability (e.g. where k is a function of temperature). We show that automated L-curve analysis produces well55

regularized solutions, thereby reducing the number of input parameters to sensor response time, measurement uncertainty, and

the measurements themselves. The robustness/functionality of our technique was validated using simulated data, laboratory

experiment data, and comparison of simultaneous field data from a prototype fast response Diffusion Rate Based (DRB) sensor

(Grilli et al., 2018) and a conventional slow response EB sensor in a challenging Arctic environment.

2 Method60

We assume that the relationship between observed quantity ua(t) and measured quantity um(t) are governed by the growth-

law equation as given in Eq. 1. Estimating ua(t) from um(t) is an inverse problem (Kaipio and Somersalo, 2006; Aster et al.,

2019), and a small uncertainty in um(t) will result in a much larger uncertainty in the estimate of ua(t), making it impossible

to obtain accurate estimates of ua(t) without prior assumptions.

To formulate the measurement equation (Eq. 1) as an inverse problem that can be solved numerically, we need to discretize65

the theory, model the uncertainty of the measurements, and establish a means for regularizing the solution by assuming some

level of smoothness (prior assumptions). We will denote estimates of ua(t) and um(t) as ûa(t) and ûm(t). Measurements of

um(t) will be noted as m(t). Each element of the following steps is illustrated in Figure 1.

We discretize Eq. 1, using a time-symmetric numerical derivative operator (e.g. Chung, 2010):

1

2∆t
ui+1−

1

2∆t
ui−1 + kiui− kiai = 0, (2)70

We have used the following short-hand to simplify notation: um(ti) = ui and ua(ti) = ai. Here ti is an evenly sampled grid

of times and ∆ti = ti+1− ti is the sample spacing. We refer to ti as model time, and for simplicity we assume that this is on a

regular grid ∆ti = ∆t with a constant time step. Note that the growth coefficient ki = k(ti) can vary as a function of time.

We assume that sensor measurements mj of the quantity um(t) obtained at times t′j (see Figure 1) have additive indepen-

dently distributed zero-mean Gaussian random noise:75

mj = um(t′j) + ξj (3)

where ξj ∼N (0,σ2
j ) with σ2

j the variance of each measurement, which in practical applications can be estimated directly

from the data or by using a known sensor accuracy. The t′j is the measurement time, which refers to the points in time where

measurements are obtained. Coupling between um(ti) and measurements mj is obtained through gridded re-sampling. Note

that the measurement time-steps t′j do not need to be regularly spaced, nor coincide with the model times ti.80

To reliably estimate ua(t), we need to regularize the solution by assuming some kind of smoothness for this function. A

common a priori assumption in this situation is to assume small second derivatives of ua(t), corresponding to the second order

Tikhonov regularization scheme (Tikhonov and Arsenin, 1977). Although this provides acceptable solutions, the choice of the

regularization parameter (i.e. adjusting the amount of regularization applied) is not particularly intuitive. Since our method is
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Figure 1. a) Schematic representation of Eq. 3-10 showing the relationship between the measurements (mj , red dots), modelled measure-

ments (red line) and de-convolution process for a step change in ambient property (ua orange line) lasting 2 e-foldings (τ63) of the growth

law equation. Thickness of lines in zoomed inlet indicates weighting during re-sampling onto tj grid. b) Schematic representation of EB-

sensor (grey box) during operation and physical location of the different properties in Eq. 1-10. Note that in this schematic, we follow the

assumptions of linearity in um(t′j) between the model points um(ti) (and not the "true" concentration within the measuring chamber).

intended for a variety of domains where validation can be challenging, we have chosen to employ a different regularization85

method, where the regularization parameter relates directly to simple, real world characteristics and the ability of the instrument

to resolve the ambient environment.

Model sparsity regularization (see e.g. Hastie et al., 2015) provides an intuitive model regularization by assuming that the

observed quantity can be thoroughly explained by a reduced number of samples in some domain. In our case, we have used time

domain sparsity, which translates to setting the number of model time (ti) steps N smaller than the number of measurement90

time (t′j) steps M. The a priori assumption we make to achieve this is that the observed quantity can only change with a time

step of

∆t=
max(ti)−min(ti)

N − 1
= ti+1− ti, (4)

and change piece-wise linearly between these points. Using this approach, an optimal regularization parameter becomes the

lowest ∆t at which the observed quantity can change significantly. This means that choosing the regularization parameter can95

be done based on domain specific knowledge or scientific requirements for temporal resolution, within the limitations posed

by the ill-posed nature of the problem and sensor performance.
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We can now express the theory, relationship between the measurements and the theory, and the smoothness assumption in

matrix form as follows:

m = Gx (5)100  0

m′

 =

γA γU

0 V

a
u

 (6)

Here, m′ = [σ−11 m1,σ
−1
2 m2, . . . ,σ

−1
M mM ]T contains the standard deviation normalized measurements and a = [a1,a2, · · · ,aN ]T

and u = [u1,u2, · · · ,uN ]T the discretized concentrations ai = ua(ti) and ui = um(ti) (see Eq. 2). N is the number of model

grid points i and M is the number of measurements mj . A ∈ RN×N and U ∈ RN×N express the growth-law relationship be-

tween discretized ai and ui as given in Eq. 2. The matrix V ∈ RM×N handles the regularization and the relationship between105

measurements and the discretized model of um(t). The constant γ� σ−1j is a numerically large weighting constant (we used

γ = 2∆t · 105σ−1), which ensures that when solving this linear equation, the solution of the growth-law equation will have

more weight than the measurements. In other words, the solution satisfies the growth-law equation nearly exactly, while the

measurements are allowed to deviate from the model according to measurement uncertainty. The definitions of the matrices

are as follows, where ki is the growth coefficient:110

Aij =

 −ki when i= j

0 otherwise
(7)

In matrix U we also need to express the time derivative of um(t) and consider edge effects:

Uij =



ki when i > 1 and i < N and i= j

(2∆t)−1 when i > 1 and i < N and j = i+ 1

−(2∆t)−1 when i > 1 and i < N and j = i− 1

ki− (∆t)−1 when i= 1 and j = i

(∆t)−1 when i= 1 and j = i+ 1

ki + (∆t)−1 when i=N and j = i

−(∆t)−1 when i=N and j = i− 1

0 otherwise

(8)

The matrix V ∈ RM×N relates concentration ui to measurements of this concentration mj (see Figure 1 and Eq. 2 and 3). We

use a weighted linear interpolation between grid points ti when assigning measurements to the model:115

Vji =

 (1− |t′j − ti|/∆t)σ
−1
j when |t′j − ti| ≤∆t

0 otherwise
(9)

Where ∆t is the model timestep and regularization parameter (see Eq. 4). It is now possible to obtain a maximum a posteriori

estimate of ua(t) and um(t) by solving for the least-squares solution to matrix Eq. 5:

x̂ = (GTG)−1GTm. (10)
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The vector x̂ = [â; û] contains the maximum a posteriori estimate of vectors a and u. The matrix G is described in Eq.120

5-9. The estimate â of ua(t) is the primary interest; however, the solution also produces an estimate û of um(t). This can

be a useful side-product for detecting outliers from fit residuals or other issues with the measurements (as shown in the field

experiment).

Equation 10 allows the estimate to also be negative, which can be unwanted if the observed quantity is known positive. In

such cases, it is possible to apply a non-negativity constraint using a non-negative least-squares solver (Lawson and Hanson,125

1995).

As the uncertainties of measurements are already included in the theory matrix G, the a posteriori uncertainty of the solution

is contained in the covariance matrix ΣMAP, which can be obtained as follows:

ΣMAP = (GTG)−1. (11)

This uncertainty includes the prior assumption of smoothness.130

The quality of the solution relies on an appropriate choice of regularization parameter ∆t and noise/uncertainty in the

measurements, but also on the ratio between the RT of the sensor and variance in the property of interest. We develop this

further through an application of the theory in a simulation experiment.

2.1 Simulation and ∆t determination

To test the numerical validity of our method and develop a regularization parameter selection tool, we used a toy model. This135

gives us the possibility to prove that the method gives well behaved consistent solutions as we know the correct results and

control all input variables.

We defined the simulated concentration ua(t) (see also Figure 1) as a step-wise change in partial pressure:

ua(t) =

 0 when t < 5

1 when t≥ 5,
(12)

where units for time and partial pressure are arbitrary. While this is not a realistic scenario encountered under field conditions,140

step-change simulations is a conventional calibration. It is also the most challenging scenario for testing our method, since it

directly violates our smoothness assumption.

The measurement chamber partial pressure um(t) was simulated with a dense grid using a closed form solution of Eq. 1

from ua(t) using a growth coefficient k = 0.1 (τ63 = 10). Sampling from um(t) and adding Gaussian noise ξj ∼N (0,σ2
j )

gives the simulated measurements:145

mj = um(t′j) + ξj (13)

We assume that measurement errors are proportional to um(t) (measurement uncertainty increases with increasing concentra-

tion) in addition to a constant noise floor term, providing a standard deviation for each measurement given by:

σj = εum(t′j) +σ0 (14)
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We used ε= 0.01 and σ0 = 0.001 (0.1+1% uncertainty).150

As A, U , and m′ of the matrix equation (Eq. 6) are now known, only the regularization parameter ∆t in V (Eq. 9) needs

to be defined to obtain the gridded estimate of time and RT-corrected measurements(i.e. û and â) for the simulated model.

For solutions regularized through smoothing, a well regularized solution captures a balance between smoothness and model fit

residuals. Or in more practical terms, the provided solutions are sharp enough so critical information is not lost (i.e., detection of

short term signal fluctuations are not removed by smoothing integration), but with reasonable noise and uncertainty estimates.155

We have chosen a heuristic approach to this optimization problem, by applying the L-curve criterion (see Hansen, 2001)

Statistical methods based on Bayesian probability (Ando, 2010), such as the Bayesian information criterion were also tested

with similar results. We chose to apply the L-curve criterion due to its robustness and ability to intuitively display the effect

the regularization parameter has on the solution, which we believe is an advantage in practical applications of our method.

In our case, the L-curve criterion involves calculating a norm Es, which measures how noisy the estimate is and a norm Em,160

which measures how large the fit residual is (i.e., an estimate of how well the model describes the measurements). These norms

are calculated for a set of different regularization parameters, which are compared in a log-log plot (see Figure 2a) where the

data points align to trace a curve that resembles the letter "L". The under-regularized (or too noisy) solutions are found in

the upper left corner where perturbation errors dominate. The over-regularized (or over-smoothed) solutions are located in the

lower right corner, where regularization errors dominate. Good regularization parameters are located in the middle of the bend165

or kink of the L, where smoothness and sharpness are well balanced, limiting both noise and fit residuals.

We have used the first-order differences of the maximum a posteriori solution â as the norm measuring solution noise:

Es =

N−1∑
i=1

|âi+1− âi|2 (15)

and to approximate the fit residual norm, we use:

Em =

M∑
j=1

|ûm(t′j)−mj |2 (16)170

where mj is the measurement of the quantity um(t):

ûm(t) =

N∑
i=1

wi(t)ûi (17)

which comes directly from the least squares solution (Eq. 10) of matrix equation 6, where

wi(t) =

 (1− |t− ti|/∆t) when |t− ti| ≤∆t

0 otherwise
(18)

corresponds to Vji (see Eq. 9) but without scaling for measurement error standard deviation. In essence, ûm(t′j) is the best fit175

model for the measured quantity um(t) obtained using linear interpolation in time from the least squares estimates in vector

û. Note that our definition of Es is not normalized with the number of model points (N ), implying a slight favoring of less
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complex solution (it is possible to normalize with N − 1 and M in Es and Em resulting in slightly more complex solutions in

the bend of the L).

We calculated a set of estimates using a wide range of ∆t and produced the L-curve in Figure 2a using our norm and fit180

residual definitions (Eq. 15 and 16). We plotted estimates of ua(ti) from mj using three different values of the ∆ts shown

in this L-curve to inspect an over-regularized, under-regularized, and well regularized solution. The error estimate, given as a

95% confidence interval (2σ uncertainty), is obtained from Eq. 11 using the simulated measurement uncertainty as variance

(which is proportional to um(t), Eq. 14). The solution in Figure 3a resulted from a low ∆t=0.25 (upper left in the L-curve in

Figure 2a) and is under-regularized and too noisy. The solution has small fit-residuals (Figure 2b), since the high resolution185

enables the model to represent almost instantaneous changes. Figure 3b, shows an over-regularized solution, with a high ∆t=5

(lower right in the L-curve, Figure 2a). In this scenario, the noise is minimal; however, the coarse resolution of the model

gives poor fit with the signal. This can be clearly seen in (Figure 2c) as a spike in the fit residuals at the location of the step

change (t= 5) where the model is unable to represent the process that produced our measurements due to the poor resolution.

Choosing ∆t=1.35, located in the bending point of the L in Figure 2a, provides a well regularized solution with good balance190

between noise and model fit residuals. Since we assume that the property of interest changes linearly between our model points,

a small irregularity in the model fit residuals remains at the step also here (Figure 2d) due to the models inability to capture the

high frequency components of the step function. In practice, the fit residual irregularity arise due to the discrepancy between

um(t′j) and mj at the step change (the effect is illustrated in Figure 1). Nonetheless, with ∆t=1.35 the step-change is well

represented within the limits of the resolution provided by the model assumption without very eye-catching fit residuals, nor195

unreasonable noise amplification (Figure 2d).

Using ∆t=1.35, we can also inspect how a well-regularized solution is affected by edges and missing measurements (shown

in Figure 3d). The missing measurements resulted in an increased uncertainty in the region where there are no measurements,

but the maximum a posteriori estimate still provided a reasonable solution. Uncertainties grow near the edges of the measure-

ment as expected, since there are no measurements before or after the edges which contain information about ua(t).200

Choosing the best ∆t is a pragmatic task, where the L-curve criterion is a useful guideline. The kink in the L-curve can be

chosen manually through visual inspection, or automatically by identifying the point of maximum curvature. We numerically

approximated the maximum curvature location using a spline parameterization of the L-curve (method described in Appendix

A) to find ∆t=1.35. Estimating ∆t using the L-curve criterion gives a solution with a numerically optimal compromise

(according to our definitions of Es and Em) between noise and information about variability. Increasing or decreasing ∆t205

slightly can be justified in instances where scientific hypotheses requires interpretation of very rapid variability or where

model fit residuals suggests too crude model complexity for crucial parts of the time-series. Nonetheless, if no regularization

parameters ∆t satisfying the scientific requirements are found in relative proximity of the bend of the "L", this could indicate

that the measurement device is unable to resolve the phenomenon of interest due to low accuracy and/or a too convoluted

signal.210

Even though the step function is an unrealistic scenario in a practical application, it is likely that the variability of a measured

property can change considerably within a single time-series. Since the L-curve criterion provides a ∆t which is a compro-
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mise between error amplification and model fit residuals, this can result in a model complexity which is too crude to resolve

important high variability sections of the data. In this case, inspection of model fit residuals can identify sections of the data

set with too low complexity. Generally, the model fit residuals should be roughly normally distributed, and should not have215

strong irregularities or systematic patterns. Too low complexity causes residual spikes, as shown in the simulation experiment.

By identifying such sections in the data set, considerations can be made, for instance by cautionary data interpretation. Alter-

natively, it is possible to manually increase model complexity for the whole or certain parts of the time-series (by splitting the

time-series) to reduce the fit residuals in these regions.

3 Laboratory experiment220

We evaluated our proposed technique in a controlled laboratory experiment using a Contros HydroC CH4 EB methane sensor

by exposing the sensor to step changes (similar to the numerical experiment) in concentration. We connected the instrument

to an air tight water tank (12.9 L) with a small headspace (∼0.25L) via hoses where water was pumped at 6.25 L min−1 and

kept at constant temperature (22oC) (see setup in Appendix B). The setup first ran for two hours to ensure stable temperature

and flow. In this period, the sampling rate was 60 seconds, while it was changed to 2 seconds for the rest of the experiment to225

provide high measurement resolution for the step changes.

Four step-changes (two up and two down) were approximated by opening the lid and adding either 0.2 L of methane enriched

or ultrapure water. The RT of the sensor was determined to 23 minutes at 22oC (k=0.000725s−1) prior to the experiment

following standard calibration procedure of the sensor, and parameters affecting membrane permeation was controlled (i.e.

water flow rate over membrane surface and water temperature). We therefore used signal noise represented by the standard230

deviation of the single point finite differences as measurement uncertainty

σj=1,2,3,...M =
√

1
M−1

∑M−1
j=1 (mj+1−mj −µ)

2
, where µ= 1

M−1
∑M−1

j=1 (mj+1−mj) (19)

Input uncertainty was lower for the first 2 hours as the lower sampling rate reduces signal noise due to a longer internal

averaging period. ∆t was determined to 179 s using the automatic ∆t selection based on the L-curve criterion (see Appendix

A). This also gave well confined fit residuals, with a difference in signal noise at around 7000 s due to the change in input noise235

(caused by changes in sampling rate from 60 seconds to 2 seconds after 2 hours, Figure 4a and b).

At the first step change, the RT-corrected concentration rapidly increased from around 2.6 µAtm to ∼41 µAtm (Figure

4c and d). This was followed by a slower increase taking place over around 30 minutes up to ∼47 µAtm and then a slow

decrease for another 30 minutes down to ∼45 before the next step change. The following step increase and subsequent two

step decreases followed the same pattern, which can be explained by three processes indicated in Figure 4d): The first rapid240

increase (process 1) results from the initial turbulent mixing caused by the abrupt addition of methane enriched water to the

tank. This is followed by a slower diffusive mixing phase occurring after the water has settled (process 2). While these processes

are occurring, there is also a gradual diffusion of methane to the headspace, which is shown as decreasing concentrations in

9



Figure 2. a) L-curve for sweep of different ∆t values for estimated property (RT correction) of simulated measurements given by mj =

um(tj) + ξj . The y-axis, Es is the noise in the data given by the step difference between adjacent data-points which is high for models that

are too complex (lower ∆t/higher number of data points) in the model. The x-axis is the fit error residual Em, which shows how well the

results (the uas) explains the measurements m. The latter is high for too sparse models (high ∆t/low number of data points). b), c), and d)

show fit residuals û(t′j)−mj for each point in measurement time using ∆t=0.25 (b), ∆t=5 (c), and ∆t=1.35.
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Figure 3. Estimated property using simulated data and different regularization parameters (time intervals). The simulated measurements

mj = um(tj)+ξj are shown with red points, and the estimated property ûa(t) is shown with a blue line with 2-σ uncertainty indicated with

a light blue line. Panel a) shows a high temporal resolution estimate, which is very noisy, due to the ill-posed nature of the deconvolution

problem, b) shows a too low temporal resolution estimate, which fails to capture the sharp transition at t= 5, and c) shows a good balance

between estimation errors and time resolution. Panel d) shows estimated property for a simulated data set with missing measurements between

t = 15-17, which results in an increased error around the missing measurements for the estimated quantity. Error estimates are given as 95%

confidence intervals.
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Figure 4. a) L-curve for sweep of different ∆t values for estimated RT corrected EB sensor data. The y-axis, Es, is the noise in the data

given by the step difference between adjacent data-points which is high for models that are too complex (lower ∆t/higher number of data

points) in the model. The x-axis is the fit error residual, ûm(t′j)−mj , which shows how well the best fit model explains the measurements.

b) Fit residuals ûm(t′j)−mj (black line) for each point in measurement time using ∆t=179 s. c) show the result of the deconvolution (black

line), uncertainty estimate (grey shading) and raw EB sensor data (blue line). d) is a zoomed in version of c) with area specified in c).

approximately the last half of the plateau periods (process 3). As expected, this decrease was faster for higher concentrations,

due to the larger concentration gradients across the water/headspace interface. The step decreases show the same behavior,245

although with process 2 inverted.
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Estimated uncertainty of the RT-corrected data averaged 0.64 µAtm (95% confidence) which is roughly double the raw data

noise of 0.29 µAtm. Due to the long concentration plateaus, the balanced ∆t lies in a quite strongly regularized solution.

Nonetheless, the de-convolved instrument data gives a considerably better representation of the step-changes with a relatively

small uncertainty estimate and reveals known features of the experiment setup (processes 1-3 in Figure 4d) which is obscured250

in the convolved data.

4 Field experiment

Continuted evaluation of our proposed technique was applied under more challenging conditions in a field based study using

simultaneous data from two different methane sensors towed over an intense seabed methane seep site offshore West Spitsber-

gen (Jansson et al., 2019). A slow response EB Contros HISEM CH4 and a fast response Membrane Inlet Laser Spectrometer255

(MILS) DRB sensor (Grilli et al., 2018) were mounted on a metal frame and dragged at various heights over the seabed (∼20-

300 m) at 0.4-1.1 m s−1 in an area with many hydro-acoustically mapped methane seeps. The rapid and large variability in

methane concentration, direct comparison with the DRB sensor, and the particularly high RT of the EB sensor in cold water

made this an ideal test scenario for field based applications.

4.1 Growth coefficient and measurement uncertainty260

We determined the growth coefficient k (or the inverse, the τ63) for the EB sensor prior to the field experiment (see Appendix

C) to be 5.747·10−4 s−1 (τ63=1740 s) at 25oC. Taking the temperature dependency for the permeability of the polydimethyl-

siloxane sensor membranes into account (Robb, 1968) we found the following relationship for k:

k(T ) = k0 +αkT (20)

where k0 =3.905·10−4 s−1 is k at temperature T= 0oC and αk =7.38·10−6s−1 oC−1 (4.200·10−4s−1 ≤ k ≤4.377·10−4s−1265

for water temperature 4oC≤T≤6.4 oC in the field experiment). We did not take the RT of the DRB sensor into account in the

comparison, since its τ63 was negligible (8.0 s< τ63 <8.3 s at 25oC) compared to the EB sensor.

The measurement uncertainty (σj in Eq. 14) was set to either the estimated raw data noise or to the stated sensor accuracy

after equilibrium is achieved, depending on which of these parameters was higher. The EB accuracy is stated to 3% using the

ISO 5725-1 definition of accuracy, which involves both random and systematic errors. High concentrations during the field270

experiment made the 3% sensor accuracy our main input parameter for measurement uncertainty.

4.2 ∆t determination

We produced an L-curve from a set of estimates of ua(t) with ∆ts ranging from 10 to 550 seconds (Figure 5a). Using a

polynomial spline to approximate the maximum curvature point (see Appendix A) we found the optimal ∆t to be 55 s, which

is in good agreement with our visual inspection of the L-curve. Upon inspection of the fit residual plot (Figure 5b), we observed275
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large spikes at several time points, meaning that the model failed to describe the transformation between the measurements

mj and the RT-corrected estimate ua(ti). Inspection of raw data (red line in Figure 5b) uncovered sharp signatures in the

measured dissolved concentration at these instances - too sharp to be a real signal (as these should have been convolved by

the instrumental function). We concluded that there was an unidentified problem with the EB sensor system at these instances,

most likely related to power draw, pump failure or other instrumental artifacts. Removing these problematic sections and re-280

doing the estimates provided an L-curve with an unchanged maximum curvature location. We therefore kept using ∆t=55 s in

the final deconvolution which now gave a solution with approximately Gaussian distributed fit residuals without spikes (Figure

5d), meaning that we have a self-consistent and valid solution.

4.3 Sensor data comparison

The comparison between DRB, EB, and RT-corrected EB sensor data collected during the transect offshore west Spitsbergen285

is shown in Figure 6. We used the coefficient of determination (R2) and the Mean Absolute Error to compare the data sets

(having already validated the method numerically and in the laboratory test).

The untreated EB sensor data clearly show how the convolution creates a strong hysteresis effect and makes the sensor

unable to directly detect rapid changes in methane concentration. This results in a low coefficient of determination (R2 = 0.18),

high Mean Absolute Error (MAE = 9.77 ppm), and flat slope angle (α = 0.47) when compared to DRB data (Figure 6a and290

b). RT-corrected EB data, on the other hand, match well with the DRB data (R2=0.91, MAE = 4.1 and α=0.82, Figure 6a

and c), showing that high resolution data was indeed convolved in the EB data and that our method managed to retrieve them

successfully.

The high R2 of the RT-corrected data confirms that the EB sensor captured most of the variability in dissolved methane;

however, there is a slight bias in the differences between the two data sets (α=0.82). Inspecting the absolute differences295

reveals that the RT-corrected EB data have more moderate concentrations during periods of very strong variability. This can

partly be explained by the inherent smoothing of a sparse model (for larger ∆t). In theory, increasing the model complexity

(reducing ∆t) should return a slope closer to 1 and reduce differences. However, our attempt at decreasing ∆t for achieving

this did not improve the slope, but increased the noise as expected. The flat slope could also at least partly originate from the

previously problematic sections (spikes in Figure 5) in the EB sensor data (arrows in Figure 5b). Even though we ignored300

the data at these intervals, the offset in absolute concentration still affects our end-estimate. Another explanation could be an

overestimation of the k of the EB sensor in the laboratory procedure prior to the field campaign. Indeed, when using a lower

k, e.g. corresponding to τ63 =3600 s (keeping ∆t=55 s), which matches better with calibration results for similar sensors, the

slope goes to 1 and differences are evenly distributed between high and low methane concentrations. The small slope offset

could also be a combined effect of the above iterated reasons.305

Using the framework of inverse theory allows us to model error behavior, enabling a comparison of the uncertainty estimates

of the two sensors (shaded regions in Figure 6). For the DRB sensor data, we used the stated 12% accuracy as the uncertainty

estimate (Grilli et al., 2018). For the RT-corrected EB data, we used the 95% confidence of the deconvoluted estimate using

input measurement uncertainty, resulting in a median uncertainty range of 22%. Linearly interpolating the RT-corrected EB
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Figure 5. a) L-curve for sweep of different ∆t values for estimated RT corrected EB sensor data. The y-axis, Es, is the noise in the data

given by the step difference between adjacent data-points which is high for models that are too complex (lower ∆t/higher number of data

points) in the model. The x-axis is the fit error residual, ûm(t′j)−mj , which shows how well the best fit model explains the measurements.

b) Fit residuals ûm(t′j)−mj (blue line) for each point in measurement time using ∆t=55 s and raw EB sensor data (red line). Residual

spikes attributed to a malfunctioning of the EB sensor are indicated by the black arrows (and zoom in oval inlet) c) and d) reported the results

from the same analysis as a and b, but on the dataset where the problematic regions defined in figure b were removed.
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Figure 6. a) Field data from the DRB (yellow), EB (red), and RT-Corrected EB (blue) sensors. b) and c) show direct comparison between

DRB and the EB sensor data. Coefficient of determination (R2), Mean Absolute Error (MAE), and slope angle (α) is given for comparison

between the DRB sensor data and either raw (b) or RT-corrected (c) EB sensor data. d) show the error estimate of the RT-corrected signal,

ua(ti).

data onto DRB data time and taking the mutual error bounds into account, the two data sets agree within the uncertainties310

92% of the time. This is despite the lower resolution of the RT-corrected data and other error sources (some of them described

above) and we consider this a successful result.

The DRB data has a lower median relative (%) uncertainty estimate, but to compare these relative uncertainty estimates

directly can be slightly misleading as the relative uncertainty estimate of the RT-corrected data varies in time (Figure 6d). This

is due to the EB sensor convolution occurs prior to the time when the actual measurement (including measurement uncertainty)315

takes place (see Figure 1b). Since input measurement uncertainty mostly follows 3% of measured (already convolved) value,

the uncertainty estimate becomes a function of the EB raw data. Consequently, due to the raw data hysteresis, the uncertainty

becomes lower for increasing concentrations compared to decreasing concentrations, and vice versa. We can observe this at

∼00:15 and∼07:15, when the RT-corrected concentration increases dramatically, but the uncertainty estimate is still relatively

small (Figure 6a and d). On the other hand, between 04:40 and 05:30, the RT-corrected concentration data is relatively low320

and constant, but the uncertainty estimate is large and shrinks slowly due to the slow decrease in um(t). Comparing the
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error bounds of the data-sets using the relative uncertainty is therefore a simplification because of the raw-data -inherited RT-

corrected uncertainty estimate. Overall, this adversely affects the relative uncertainty estimate of the RT-corrected data set,

since high error bounds inherited from the raw-data hysteresis during decreasing concentrations is divided by RT-corrected

low concentration values which results in high relative uncertainties. A more narrowly defined (if possible) input uncertainty325

estimate for the EB sensor could help constrain this uncertainty.

5 Conclusions

We presented and successfully applied a new RT-correction algorithm for membrane based sensors through a deconvolution

of the growth-law equation using the framework of statistical inverse problems. The method requires few and well-defined

input parameters, allows the user to identify measurement issues, models error propagation and uses a regularization param-330

eter which relates directly to the resolution of the response time corrected data. Functionality testing was done using both a

laboratory and a field experiment. Results from the laboratory experiment uncovered features of the experimental setup which

were obscured by convolution in the raw data and the field experiment demonstrated the robustness of the algorithm under

challenging environmental conditions. In both tests, the sensors ability to describe rapid variability was significantly improved

and better constraints on input uncertainty and response time are areas which can potentially further enhance results.335

This method and validation experiments using the Contros/HISEM sensors uncovers a new set of applications for these and

similar sensors, such as ship-based profiling/towing and monitoring highly dynamic domains. Conventional EB sensors are

also more abundant and affordable compared to more specialized equipment, increasing the availability and possibilities for

scientists requiring high resolution data to solve their research questions. Additionally, we believe this deconvolution method

could be applicable to other measurement techniques as well, where diffusion processes hampers response time.340
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Appendix A: Automatic ∆t selection

Even though ∆t sometimes can be chosen purely based on the practical problem at hand, we also want to provide a more

rigorous way of choosing ∆t applicable at any circumstance. There are several ways to approach this problem (see e.g. Ando,

2010), but we have used the L-curve criterion. Even though ∆t can be chosen through visual inspection of the L-curve, we

also provide the option of automatic ∆t selection to further simplify and provide more robustness to the methodology. This is345

done by finding the point of maximum curvature in the L-curve, which corresponds to the kink of the L. We do this by fitting

a 4th degree smoothness regularized cubic spline to a sweep of a given number of solutions estimated using evenly distributed

∆ts between a ∆t corresponding to one half of the measurement time-step up to a maximum of 2000 model points and a ∆t

corresponding to a 10 point model grid. A ∆t located in the bend of the L can then be found by using the derivatives of the

polynomials in the spline and maximizing the curvature given by350

K =
S′Em

S′′Es
−S′′Em

S′Es

(S′2Em
+S′2Es

)
3
2

,

where SEm
and SEs

are the splines ofEm andEs and using Lagrangian differential notation. Smoothing is done by including

the second derivatives weighted by a smoothing parameter in the minimization criteria of the spline fit.

One issue that arose during development of the automatic ∆t selection algorithm was that it was applied to data from a toy

model where we tried to estimate a step-change in property (Figure 3 in manuscript). This is of course an unrealistic situation355

to encounter in any field application of a real instrument and is also in violation of any smoothness assumption we make on the

solution. More specifically, we assume that changes in ua(t) can only occur following a piece-wise linear model with a time

resolution of ∆t, which is violated in the case of an instantaneous step-change. The L-curve criterion will nonetheless give

us the best possible approximation we can get to the most likely solution of our problem. However, the fit residuals between

m̂j and mj will be dependent on the match or mismatch between the time-steps in ua(ti) (with resolution defined by ∆t) and360

the time when the instantaneous step change occurs. In essence, if there is a good match between the model time-steps and

the instantaneous step-change, the model will be able to produce lower fit-residual and vice-versa. The result of this is that the

spline fit can, depending on the location of the knots, produce local points with very high curvature which are not located in

the kink of the L. We counteracted this effect when using the toy model data by doing a simple running mean and sorting of the

noise and fit residual data for the solutions produced during the ∆t sweep, which resulted in consistent results. In a real world365

application where there is constant, but less abrupt variability, this should not be an issue, but we kept the running mean filter

to increase the robustness of this approach. We also compared the automated model selection based on the L-curve criterion

as iterated herein with model selection based on the Bayesian information criterion (see e.g. Ando, 2010), which gave similar

results. Nonetheless, it is recommended that the ability to visually inspect the L-curve is exploited, to ensure the automatic

selection has worked as expected.370
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Appendix B: Laboratory setup

Figure B1. a) Schematic representation of the experiment setup and b) picture of the experiment setup. The tank had a air tight dome shaped

lid with a small headspace (∼0.3 L) and was 27.5 cm high and 24.5 cm diameter. Room temperature was controlled and kept constant.
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Appendix C: Growth coefficient determination for field experiment

To apply our methodology to the EB field sensor data set and compare with the DRB data, the sensor growth coefficients k (or

τ63) are required. Since no calibration data was available on location, we estimated k directly prior to the field campaign by

placing both instruments in a freshwater filled container (25 L, 25◦C), where ∼500 ml of methane enriched water was added375

instantaneously to simulate a step change in concentration. The water was continuously mixed using the two submersible pumps

provided by the instruments and corrected for degassing to the atmosphere. With this setup, k was estimated to 5.747·10−4 s−1

(τ63=1740 s) for the EB sensor and 7.69·10−2s−1 (τ63=13 s) for the DRB sensor.

Water temperature and salinity have a direct impact on k for both these sensors due to changes in gas permeation of the

membrane Robb (1968). This makes k a function of time in a field experiment where these properties are varying. Based on380

laboratory testing on the permeation efficiency of the polydimethylsiloxane (PDMS) membranes used in both sensors (see

Grilli et al., 2018) we found that k increased linearly with temperature following

k(T ) = k0 +αkT

where k0 is k at T= 0oC and αk is a constant individually determined for each sensor. The effect of salinity was negligible

at the low water temperatures at our field study site. To keep the RT of the fast response sensor as low as possible during the385

field campaign, we increased the total gas flow in the DRB sensor, thereby counteracting some of the loss in responsiveness

due to lower water temperature. The water temperature range during the field study was 4.0-6.4oC, which gave a k between

4.200·10−4 and 4.377·10−4s−1 (τ63 =2285-2381 s) for the EB sensor and between 0.120 and 0.125 s−1 (τ63 =8.0-8.3 s) for

the DRB sensor, taking increased gas flow into account.
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