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Abstract. Ecosystem CO2−H2O data measured by infrared gas analyzers in open-path eddy-covariance (OPEC) systems 

have numerous applications, such as estimations of CO2 and H2O fluxes in the atmospheric boundary layer. To assess the 15 

applicability of the data for these estimations, data uncertainties from analyzer measurements a re needed. The uncertainties 

are sourced from the analyzers in zero drift, gain drift, cross-sensitivity, and precision variability. These four uncertainty 

sources are indiv idually specified for analyzer performance, but no methodology exists yet to combine these individual 

sources into a composite uncertainty for the specification of an overall accuracy, which is ult imately needed. Using the 

methodology for close-path eddy-covariance systems, this overall accuracy for OPEC systems is determined from all 20 

individual uncertainties via an accuracy model and further formulated into CO2 and H2O accuracy equations. Based on 

atmospheric physics and the biological environment, for EC150 infrared CO2−H2O analyzers, these equations are used to 

evaluate CO2 accuracy (±1.22 mgCO2 m−3, relatively ±0.19%) and H2O accuracy (±0.10 gH2O m−3, relatively ±0.18% in 

saturated air at 35 °C and 101.325 kPa). Both accuracies are applied to conceptual models addressing their roles in 

uncertainty analyses for CO2 and H2O fluxes. For the high-frequency air temperature derived from H2O density along with 25 

sonic temperature and atmospheric pressure , the ro le of H2O accuracy in its uncertainty is similarly addressed. Among the 

four uncertainty sources, cross-sensitiv ity and precision variability are minor, although unavoidable, uncertainties  whereas 

zero drift and gain drift are major uncertainties but are minimizable via corresponding zero and span procedures during field 

maintenance. The accuracy equations provide rationales to assess and guide the procedures. For the atmospheric background 

CO2 concentration, CO2 zero and CO2 span procedures can narrow the CO2 accuracy range by 40%, from ±1.22 to ±0.72 30 

mgCO2 m−3. In hot and humid weather, H2O gain drift potentially adds more to the H2O measurement uncertainty, which 

requires more attention. If H2O zero and H2O span procedures can be performed practically from 5 to 35 ºC, the H 2O 

accuracy can be improved by 30% at minimum, from ±0.10 to ±0.07 gH2O m−3. Under freezing condit ions, the H2O span 
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procedure is impractical but can be neglected because of its triv ial contributions to the overall uncertainty . However, the zero 

procedure for H2O, along with CO2, is imperative as an operational and efficient option under these conditions to minimize 35 

H2O measurement uncertainty.    

1 Introduction  

Open-path eddy-covariance (OPEC) systems are used most in quantity to measure boundary-layer CO2, H2O, heat, and 

momentum fluxes between ecosystems and the atmosphere (Lee and Massman, 2011). For flux  measurements, an OPEC 

system is equipped with a fast-response three-dimensional (3-D) sonic anemometer, to measure 3-D wind velocit ies and 40 

sonic temperature (Ts), and a fast-response infrared CO2−H2O analyzer (hereafter referred to as an infrared analyzer or 

analyzer) to measure CO2 and H2O concentrations or densities (Fig. 1). In this system, the analyzer is adjacent to the sonic 

measurement volume. Both anemometer and analyzer together provide synchronized high-frequency (e.g., 10 to 20 Hz) 

measurements, which are used to compute the fluxes at a  location represented by the measurement volume  (Aubinet et al., 

2012). Given that the measurement conditions, which are spatially homogenous in flux sources/sinks and temporally steady 45 

in turbulent flows without advection, satisfy the underlying theory for eddy -covariance flux techniques (Katul et al., 2004; 

Finnigan, 2008), the quality of each flux data primarily  depends on the exactness of field  measurements of the variables, 

such as CO2, H2O, Ts, and 3-D wind, at the sensor sensing scales (Foken et al., 2012; Richardson et al., 2012), although the 

quality may also be degraded by other biases if not fully  corrected. In an OPEC system, other b iases are commonly sourced 

from the tilt of vertical axis of the sonic anemometer away from the vertical vector of natural wind (Kaimal and Haugen, 50 

1969), the spatial separation between the anemometer and the analyzer (Laubach and McNaughton, 1998), the line and/or 

volume averaging of measurements (Wyngaard, 1971; Andreas, 1981), the response delay of sensors t o fluctuations in 

measured variables (Horst, 2000), the air density fluctuations due to heat and water vapor transfer (Webb et al., 1980), and 

the filtering in data processing (Rannik and Vesala, 1999). These biases are theoretically correctable through coordinate 

rotation corrections for the tilt (Tanner and Thurtell, 1960; Wilczak, 2001), covariance lag maximization for the separation 55 

(Moncrieff et al., 1997; Ibrom et al., 2007), low- and high-frequency corrections for the data filtering, line and/or volume 

averaging, and response delay (Moore, 1986; Lenschow et al., 1994; Massman, 2000; van Dijk, 2002), and Webb-Pearman-

Leuning (WPL) corrections for the air density fluctuations (Webb et al., 1980). Even though these corrections are thorough 

for corresponding biases, errors in the ultimate flux data still exist due to uncertainties related to measurement exactness at 

the sensor sensing scales (Fratini et al., 2014; Zhou et al., 2018). These uncertainties are not only unavoidable because of 60 

actual or apparent instrumental drifts due to the thermal sensitivity of sensor path lengths, long-term aging of sensor 

detection components, and unexpected factors in field operations (Fratini et al., 2014), but they are also not mathematically 

correctable because their sign and magnitude are unknown (Richardson et al., 2012). The overall measurement exactness 

related to these uncertainties would be a valuable addition to flux data analysis (Goulden et al., 1996; Anthoni et al., 2004).   

 65 
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Figure 1. Integration of an EC150 infrared CO2−H2O analyzer for CO2 density (ρCO2) and H2O density (ρH2O) with a 

CSAT3A sonic anemometer for three-dimensional (3-D) wind velocities and sonic temperature (Ts) in an open-path eddy-70 

covariance flux system (Campbell Scientific Inc., UT, USA).  

In addition to flux computations, the data for individual variables from these field measurements can be important in 

numerous applications. Knowledge of measurement exactness is also required for an accurate assessment of data 

applicability (Csavina et al., 2017; Hill et al., 2017). The infrared analyzer in an OPEC system output CO2 density (ρCO2 in 

mgCO2 m−3) and H2O density (ρH2O in gH2O m−3). For instance, ρH2O, along with Ts and atmospheric pressure (P), can be 75 

used to derive ambient high-frequency air temperature (Ta) (Swiatek, 2018). In this case, given an exact equation of Ta in 

terms of the three independent variables ρH2O, Ts, and P, the applicability of this equation to the OPEC systems for Ta 

depends wholly on the measurement exactness of the three independent variables. The higher the degree of exactness, the 

less uncertain the Ta. The assessment on the applicability necessitates the knowledge of  the measurement exactness. In 

reality, to the best of our knowledge, neither the overall measurement exactness of ρH2O from the infrared analyzers nor the 80 

exactness of Ts from the sonic anemometers (personal commnication: Larry Jecobsen, 2022) is available. This study defines 
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and estimates the measurement exactness of ρH2O including ρCO2 from infrared analyzers through the consolidation of the 

measurement uncertainties, which are not practically avoidable or mathematically correctable although they can be 

minimized through analzyer maintenance.   

As comprehensively reviewed by Richardson et al. (2012), numerous previous studies including Goulden et al. (1996), 85 

Lee et al. (1999), Anthoni et al. (1999, 2004), and Flanagan and Johonson (2005) have quantified various sources of flux 

measurement erorrs and have attempted to attach confidence intervals to the annual sums of net ecosystem exchange. These 

sources include measurement methods (e.g., sensor separation and site homogeneity  (Munger et al., 2012)), data processing 

algorithms (e.g., data filtering (Rannik and Vesala, 1999) and data gap filling (Richardson and Hollinger, 2007)), 

measurement conditions (e.g., advection (Finnigan, 2008)), energy closure (Foken, 2008), and sensor body heating effects 90 

(Burba et al., 2008). Instead of quantifying the flux errors, Foken et al. (2004, 2012) assessed the flux data into nine grades 

(1 to 9) based on steady state, turbulence conditions, and wind direction in the sonic anemometer co ordinate system. The 

lower the grade, the smaller error in flux data (i.e., h igher flux data quality); the higher grade, the greater error in flux data 

(i.e ., lower flux data quality). This grade matrix (Foken et al., 2004, 2012) has been adopted by AmeriFlux (2018) for their 

flux data quality assessments. To correct the measurement biases from infrared analyzers, Burba et al. (2008) developed a 95 

correction method for a  sensor body heating effects on CO2 and H2O fluxes, whereas Fratini et al. (2014) developed a 

method for correcting the raw high-frequency CO2 and H2O data using the interpolated zero and span coeffcients of an 

infrared analyzer from the analyzer maintenance such as zero and span procedures under the same conditions, but at the 

beginning and ending of each maintenance period. The corrected data were then used to re-estimate the fluxes. Nevertheless, 

no study has addressed the overall measurement exactness of ρH2O or ρCO2, which are related to the unavoidable and 100 

uncorrectable measurement uncertainties in  the CO2 and H2O data from the infrared anlyzers in OPEC systems even though 

this overall measurement exactness is fundamental for data analysis in applications (Richardson et al., 2012). Therefore, 

instead for the overall exactness of an individual field CO2 or H2O measurement, the infrared analyzers are specified only for 

their individual CO2 and H2O measurement uncertainties sourced from their zero  and gain drifts, cross-sensit ivity to 

background H2O/CO2, and measurement precision variability (LI−COR Biosciences, 2021c; Campbell Scientific Inc., 105 

2021b).  

For any sensor, the measurement exactness depends on its performances as commonly specified in terms of accuracy, 

precision, and other uncertainty descriptors such as sensor hysteresis. Conventionally, accuracy is defined as a systematic 

uncertainty, while precision is defined as a random measurement error (ISO, 2012, where ISO is the acronym of 

International Organization for Standardization). Other uncertainty descriptors are also defined for specific reliabilities in 110 

instrumental performance. For example, CO2 zero drift is one of the descriptors specified  for the performance of infrared 

analyzers in CO2 measurements (Campbell Scientific Inc., 2021b). Both accuracy and precision are universally applicable to 

any sensor for the specification of its performance in measurement exactness. Other uncertainty descriptors are more sensor-
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specific (e.g., cross-sensit ivity to CO2/H2O is used for infrared analyzers in  OPEC and CPEC systems, where CPEC is an 

acronym for closed-path eddy-covariance).  115 

Conventionally, sensor accuracy is the degree of closeness to which its measurements are to the true value in the 

measured variable; sensor precision, related to repeatability, is the degree to which  repeated measurements under unchanged 

conditions produce the same values (Joint Committee for Guides in Metro logy, 2008). Another definition advanced by the 

ISO (2012), revising the conventional definition of accuracy as trueness originally representing only systematic uncertainty, 

specifies accuracy as a combination of both trueness and precision. An  advantage of this definition for accuracy is the 120 

consolidation of all measurement uncertainties. Accord ing to this definit ion, the accuracy is the range of composited 

uncertainty from all uncertainty sources in field measurements. For CPEC systems, Zhou et al. (2021) developed a method 

and derived a model to assess the accuracy of CO2/H2O mixing ratio measurements of infrared analyzers. Their model was 

further formulated as a set of equations to evaluate the defined accuracies for CO2 and H2O mixing rato data from CPEC 

systems. Although the CPEC systems are very different from OPEC systems in their structural designs (e.g., measurements 125 

take place inside a closed cuvette vs. in  an open space) and in output variables (e.g., CO2/H2O mixing ratio vs. CO2/H2O 

density), similarities exist  between the two systems in measurement uncertainties as specified by their manufacturers 

(Campbell Scientif ic Inc., 2021a,; 2021b) because the infrared analyzers in both systems use the same physics theories and 

similar optical techinques for their measurements (LI−COR Biosciences, 2021b; 2021c). Accordingly, the method developed 

by Zhou et al. (2021) for CPEC systems can be reasonably applied to their OPEC counterparts with rederivation of model 130 

and reformulation of equations. Following the methdology of Zhou et al. (2021) and using the specifications of EC150 

infrared analyzers in OPEC systems as an example (Campbell Scientific Inc., 2021b), we can derive the model and formulate 

equations to assess the accuracies of CO2  and H2O measurements by infrared analyzers in  OPEC systems; discuss the usage 

of accuracies in flux analysis, data applications, and analyzer field maintenance; and ultimately provide a reference for the 

flux measurement community in order to specify the overall accuracy of field CO2/H2O measurements by infrared analyzers 135 

in OPEC systems.   

2 Specification implications 

An OPEC system for this study includes, but is not limited to, a  CSAT3A sonic anemometer and an EC150 infrared analyzer 

(Fig. 1). The system operates in a Ta range from –30 to 50 °C and in a P range from 70 to 106 kPa. Within these operational 

ranges, the specifications for CO2 and H2O measurements (Campbell Scientific Inc., 2021b) are given in Table 1. 140 
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Table 1. Measurement specifications for EC150 infrared CO2−H2O analyzers (Campbell Scientific Inc., UT, USA)  

 

___________CO2____________________ _________H2O____________ 

Note 

notation value unit notation value unit 

Calibration range  0 − 1,553 mgCO2 m–3  0 − 44 gH2O m–3 
For CO2 up to 4,500 
mgCO2 m

−3 if 

specially needed. 

Zero drift dcz ±0.55 mgCO2 m−3 dwz ±0.04 gH2O m–3 

Zero/gain drift is the 

possible maximum 

range within the 
system operational 

ranges in ambient air 

temperature (Ta) and 

atmospheric pressure. 

The actual drift 
depends more on Ta. 

Gain drift dcg 
±0.10% a/ 

true ρCO2 
mgCO2 m−3 dwg 

±0.30% b/ 

true ρH2O gH2O m–3 

Cross-sensitivity 

to H2O 
sH2O ±2.69×10–7 

mgCO2 m−3 

(gH2O m−3)−1 
N/A  

Cross-sensitivity 

to CO2 
N/A sCO2 ±4.09×10−5 

gH2O m−3 

(mgCO2
 m−3)−1 

 

Precision σCO2 0.200 mgCO2 m–3 σH2O 0.004 gH2O m–3  

a 0.10% is the CO2 gain drift percentage denoted by δCO2_g in text, and ρCO2 is CO2 density. 

b 0.30% is the H2O gain drift percentage denoted by δH2O_g in text, and ρH2O is H2O density. 150 

 

In Table 1, the top limit  of 1,553 mgCO2 m−3 in the calibration range for CO2 density in dry air is more than double 

the atmospheric background CO2 density of 767 mgCO2 m−3, or 419 μmolCO2 mol−1, where mol is the unit for dry air, 

reported by Global Monitoring Laboratory (2022) with a Ta of 20 °C under a P of 101.325 kPa (i.e., normal temperature and 

pressure - Wright et al. (2003)). The top limit  of 44 gH2O m−3 in  the calibration range for H2O density  is equivalent to a 155 

37 °C dew point, higher than the highest 35 °C dew point ever recorded under natural conditions on the Earth (National 

Weather Service, 2022). 

The measurement uncertainties of infrared analyzers for CO2 and H2O in Table 1 are specified by individual 

uncertainty components along with their magnitudes: zero drift, gain drift, cross-sensitiv ity to CO2/H2O, and precision 

variability. Zero drift uncertainty is an analyzer non-zero response to zero air/gas (i.e., air/gas free of CO2 and H2O). Gain 160 

drift uncertainty is an analyzer trend-deviation response to a measured gas species away from its true value in proportion 

(Campbell Scientific Inc., 2021b). Cross-sensit ivity is an analyzer background response to either CO2 if H2O is measured, or 

H2O if CO2 is measured. Precision variability is an analyzer random response to minor unexpected factors. For CO2 and H2O, 

respectively, these four components should be composited as an overall uncertainty in order to evaluate the accuracy, which 

is ultimately needed in practice.   165 
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Precision variability is a random error, and the other specifications can be considered as trueness. Zero drifts are 

primarily impacted by Ta, and so are gain drifts (see the note column in Table 1  and also Fratini et  al, (2014)). Addit ionally, 

each gain drift is also positively  proportional to the true magnitude of CO2/H2O density (i.e., true ρCO2 or true ρH2O) under 

measurements. Lastly, cross-sensitivity to H2O/CO2 is related to the background amount of H2O/CO2 as indicated by its units, 

mgCO2 m−3 (gH2O m−3)−1 for CO2 measurements, and gH2O m−3 (mgCO2 m−3)−1 for H2O measurements.   170 

Accordingly, beyond statistical analysis, the accuracy of CO2/H2O measurements should be evaluated over a Ta 

range of −30 to 50 °C, a ρH2O range of up to 44 gH2O m−3, and a ρCO2 range of up to 1,553 mgCO2 m−3.   

3 Accuracy model  

The measurement accuracy of infrared analyzers is the possible maximum range of overall measurement uncertainty from 

the four uncertainty sources as specified in  Table 1: zero drift, gain drift, cross-sensit ivity, and precision variability. The four 175 

uncertainties interactionally or independently contribute to the overall uncertainty of a measured value. Given the true α 

density (ραT, where subscript α can be either CO2 or H2O) and measured α density (ρα), the difference between the true and 

measured α densities (Δρα) is given by  

    = − T
.           (1)  

The analyzer overestimates the true value if Δρα > 0, exactly estimates the true value if Δρα = 0, and underestimates the true 180 

value if Δρα < 0. The measurement accuracy is the maximum range of Δρα (i.e ., an accuracy range). According to the 

analyses of Zhou et al. (2021) for CPEC infrared analyzers, as mathematically shown in Appendix A, this range is 

interactionally contributed by the zero drift uncertainty ( )
z , gain drift uncertainty ( )

g , and cross-sensitiv ity 

uncertainty ( )
s along with an independent additon from the precision uncertainty ( )

s . However, any interactional 

contribution from a pair of uncertainties is three orders smaller in magnitude than each individual contribution in the pair. 185 

The contribution to the accuracy range due to interactions can be reasonably neglected. Therefore, the accuracy range can be 

simply modeled as a sum of the absolute values of the four component uncertainties. From Eq. (A7) in Appendix A, the 

measurement accuracy of α density from OPEC systems by infrared analyzers is defined in an accuracy model as  

( )              + + +z g s p
.        (2)  

Assessment of the accuracy of field CO2 or H2O measurements is, by use of known and/or estimable variables, the 190 

formulation and evaluation of the four terms on the right side of this accuracy model.  

4 Accuracy of CO2 density measurements  

Based on accuracy Model (2), we define the accuracy of field CO2 measurements from OPEC systems by infrared analyzers 

(ΔρCO2) as 
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( )        CO CO

z

CO

g

CO

s

CO

p

2 2 2 2 2
  + + + ,       (3) 195 

where CO

z

2
is CO2 zero drift uncertainty,CO

g

2

is CO2 gain drift uncertainty, CO

s

2

is cross-sensit ivity-to-H2O uncertainty, 

and CO

p

2

is CO2 precision uncertainty. 

CO2 precision (σCO2) is the standard deviation of ρCO2 random errors among repeated measurements under the same 

conditions (Joint Committee for Guides in Metrology, 2008). The random errors generally have a normal statistical 

distribution (Hoel, 1984). Therefore, using this deviation, the precision uncertainty for an individual CO2 measurement at a 200 

95% confidence interval (P-value of 0.05) can be statistically formulated as  

 CO

p

CO2 2
196=  . .           (4)  

   The other uncertainties, due to CO2 zero drift, CO2 gain drift, and cross-sensitivity-to-H2O, are caused by the 

inability of the working equation inside the analyzer operating system (OS) to adapt the changes in  analyzer-internal and 

ambient environmental conditions, such as internal housing CO2 and/or H2O levels and ambient air temperature. From the 205 

derivations in the Theory and operation section in LI−COR Biosciences (2001; 2021b; 2021c), a  general model of the 

working equation for ρCO2 is given by  

CO ci
c

cs

w
w

wsi

i
i

P a
A

A
S

A

A P2
1 1

1

5

= − + −






































=

 Z
G

c
c  ,       (5) 

where subscripts c and w indicate CO2 and H2O, respectively; aci (i = 1, 2, 3, 4, or 5) is a  coefficient of the five-order 

polynomial for the terms inside curly brackets; Acs and Aws are the power values of analyzer source lights at the chosen 210 

wavelengths for CO2 and H2O measurements, respectively; Ac and Aw are their respective remaining power values after the 

source lights pass through the measured air sample; Sw is cross-sensit ivity of the detector to H2O, while detecting CO2, a t the 

wavelength for CO2 measurements (hereafter referred to as sensit ivity-to-H2O); Zc  is the CO2 zero adjustment (i.e., CO2 zero 

coefficient); and Gc is the CO2 gain adjustment (i.e ., commonly known as the CO2 span coefficient). For an individual 

analyzer, the parameters aci, Zc, Gc, and Sw in Model (5) a re statistically estimated in the production calibration against a 215 

series of standard CO2 gases at different concentration levels over the ranges of ρH2O and P (hereafter referred to as 

calibration). Since the estimated parameters are specific for the analyzer, Model (5) with these est imated parameters 

becomes an analyzer-specific CO2 working equation. The working equation is used internally by the infrared analyzer to 

compute ρCO2 as the closet proxy for true ρCO2 from field measurements of Ac, Acs, Aw, Aws, and P.  

The analyzer-specific working equation is deemed to be accurate immediately after the calibration through estimations 220 

of aci, Zc, Gc, and Sw in production while Zc and Gc can be re-estimated in the field  (LI−COR Biosciences, 2021c). However, 

as used internally by an optical instrument under changing environments vastly different from its calibration conditions in its 
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manufacturer, the working equation may not be fully adaptable to the changes, which might be reflected through CO2 zero 

and/or gain drifts of the deployed infrared analyzer. In the work ing equation for ρCO2 from Model (5), the parameter Zc is 

related to CO2 zero drift; Gc, to CO2 gain drift; and Sw, to sensitivity-to-H2O. Therefore, the analyses of Zc and Gc, along with 225 

Sw, are an approach to understand the causes of CO2 zero drift, CO2 gain drift, and sensitiv ity-to-H2O. Such understanding is 

necessary to formulate
2

z

CO ,
2

g

CO , and
2

s

CO in Model (3).     

4.1 Zc and 
2

z

CO (CO2 zero drift uncertainty)  

In production, an infrared analyzer is calibrated for zero air/gas to report  zero ρCO2 plus an unaviodable random error. 

However, when using the analyzer in measurement environments that are different from calibration conditions, the analyzer 230 

often reports this zero ρCO2, while exposed to zero air, as a value that migrates gradually away from zero and possibly beyond

2

p

CO , which is known as CO2 zero drift. Th is drift is primarily affected by a combination of the three factors: i) the 

temperature surrounding the analyzer away from the calibration temperature , ii) t raceable CO2 and H2O accumulations, such 

as during use, inside the analyzer light housing due to a n inevitable, although litt le, leaking exchange of housing air with the 

ambient air (hereafter referred to as housing CO2−H2O accumulation), and iii) aging of analyzer components (Richardson et 235 

al., 2012). 

Firstly, the dependency of analyzer CO2 zero drift on ambient air temperature arises due to a thermal 

expansion/contraction of analyzer components that slightly changes the analyzer geometry (Fratini et al., 2014). Th is change 

in geometry can deviate the light path length for measurement a little away from the length under manufacturer calibration, 

contributing to the drift. Additionally, inside an analyzer, the performance of the light source and absorption detector for 240 

measurement, as well as the electronic components for measurement control, can vary slightly with temperature. In 

production, an analyzer is calibrated to compensate for the ensemble of such dependencies as assessed in a calibration 

chamber. The compensation algorithms are implemented in the analyzer OS, which is kept as proprietary by the analyzer 

manufacturer. However, the response of an analyzer to a temperature varies as conditions change over time (Fratini et al., 

2014). Therefore, manufacturers typically specify an expected range of typical or maximal drift per ºC (see Table 1  and also 245 

see the section for analyzer specifications in Campbell Scientific Inc. (2021b)). Secondly, the housing CO2−H2O 

accumulation is caused by unavoidable little  leaks in the light housing of an infrared analyzer. The housing is technically 

sealed to keep housing air close to zero  air by implementing scrubber chemicals into the housing to absorb any CO2 and H2O 

that may sneak into the housing through an exchange with any ambient air (LI−COR Biosciences, 2021c). Over t ime, the 

scrubber chemicals may be saturated by CO2 and/or H2O or lose their active absorbing effectiveness, which can result  in 250 

housing CO2−H2O accumulations. Third ly, as optical components, the light source may gradually become dim, and the 

absorption detector may gradually become less sensitive. The accumulation and aging develop less obviously and slowly in 

the relative long term (e.g., months or longer), whereas the dependencies of drift on ambient air temperature occur obviously 
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and quickly as soon as an analyzer is deployed in the field (Richardson et al., 2012). Apparently, the drift with ambient air 

temperature is a  major concern if an analyzer is maintained as scheduled by its manufacturer for the replacement of scrubber 255 

chemicals (Campbell Scientific Inc., 2021b). 

               Due to the CO2 zero drift, the working equation needs to be adjusted through its parameter re -estimation to adapt 

the ambient air temperature near which the system is running, housing CO2−H2O accumulation, and analyzer component 

aging. Th is adjustment technique is the zero procedure, which brings the ρCO2 and ρH2O in zero air/gas measurement back to 

zero as closely as possible. In this sect ion, our discussion focuses on CO2, and the same application to H2O will be described 260 

in following sections. In the field, the zero procedure should be feasibly operational using one air/gas benchmark to re-

estimate one parameter in  the work ing equation. This parameter must be adjustable to output zero ρCO2 from the zero air/gas 

benchmark. By setting the left side of Model (5) to zero  and re-arranging it, it  is clear that Zc is such a parameter that can be 

adjusted to result in a zero ρCO2 value for zero air/gas, 

Zc = + −




















−

A

A
S

A

A

c

cs

w
w

ws

0 0

1

1 ,          (6) 265 

where Ac0 and Aw0 are the counterparts of Ac and Aw for zero air/gas, respectively. For an analyzer, the zero procedure for CO2 

is thus to re-estimate Zc in balance of Eq. (6).   

If Zc could continually balance Eq. (6) after the zero procedure, the CO2 zero drift would not be significant; 

however, this is not the case. Similar to its performance after the manufacturer calibration, an analyzer may still drift after 

the zero procedures due to frequent changes in ambient air temperature, housing CO2−H2O accumulation, and/or analyzer 270 

component age. Nevertheless, the Zc  value needed for an analyzer to be adaptable for these changes is unpredictable because 

these changes are not foreseeable. Assuming on-schedule maintenance (i.e., the scrubber chemicals inside the analyzer light 

housing is replaced following the manufacturer’s guidelines), the housing CO2−H2O accumulation should not be a concern. 

While the ambient temperature surrounding the infrared analyzer is not controlled, the CO2 zero drift is therefore mainly 

influenced by Ta and can be ±0.55 mgCO2 m−3 at the most within the operational ranges in Ta and P for the EC150 infrared 275 

analyzers in OPEC systems (Table 1). 

Given that an analyzer performs best almost without zero drift at the ambient air temperature for the 

calibration/zeroing procedure (Tc), and that it possib ly drifts while Ta gradually changes away from Tc, then the further away 

Ta is from Tc, the more it possibly  drifts in  the CO2 zero. Over the operational range in  P  of EC150 infrared ananlyzers used 

for OPEC systems, this drift is more proportional to the difference between  Ta and Tc but is still within the specif ications 280 

(Campbell Scientific Inc., 2021b). Accordingly, CO2 zero drift uncertainty at Ta can be formulated as  

CO

z cz

rh rl

a c c a rh

c a a rl

d

T T

T T T T T

T T T T T2
=

−


−  

−  



 c

,        (7) 
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where, over the operational range in Ta of EC150 infrared analyzers used for OPEC systems, Trh is the h ighest-end value 

(50 °C) and Trl is the lowest-end value (–30 °C, Table 1). CO

z

2

from this equation has the maximum range, as specified in 

Table 1, equal to dcz in magnitude as if Ta and Tc were separately at the two ends of operational range in Ta of OPEC systems.  285 

4.2 Gc and CO

g

2

 (CO2 gain drift uncertainty)  

An infrared analyzer was also calibrated against a series of standard CO2 gases. The calibration sets the work ing equation 

from Model (5) to closely follow the gain trend of change in ρCO2. As was determined with the zero drift, the analyzer, with 

changes in  housing CO2−H2O accumulation, ambient conditions, and age during its deployment, could report CO2 gradually 

drifting away from the real gain trend of the change in ρCO2, which is specif ically termed CO2 gain drift. Th is d rift is affected 290 

by almost the same factors as the CO2 zero drift (Richardson et al., 2012; Fratini et al., 2014; LI−COR Biosciences, 2021c). 

          Due to the gain drift, the infrared analyzer needs to be further adjusted, after the zero procedure, to tune its working 

equation back to the real gain trend in ρCO2 of measured air as close as possible. This is done with the CO2 span procedure. 

This procedure can be performed through use of either one or two span gases (LI−COR Biosciences, 2021c). If two are used, 

one span gas is slightly below the ambient CO2 density and the other is at a  much higher density to fully cover the CO2 295 

density range by the work ing equation. However, commonly, like the zero procedure, this procedure is simplified  by the use 

of one CO2 span gas, as a benchmark, with a known CO2 density ( ~CO2

) around the typical CO2 density values in the 

measurement environment. While one CO2 span gas is used, only one parameter in the working equation is available for 

adjustment. Weigh ing the gain of the working equation more than any other parameter, this parameter is the CO2 span 

coefficient (Gc) (see Model 5). The CO2 span gas is used to re-estimate Gc to satisfy the following equation (for details, see 300 

LI−COR Biosciences, 2021c)   

( )~ min ~   CO CO c CO COG
2 2 2 2
−  − .         (8) 

Similar to the zero drift, the CO2 gain drift continues after the CO2 span procedure. Based on a similar consideration 

for the specifications of CO2 zero drift, the CO2 gain drift is specified by the maximum CO2 gain drift percentage (δCO2_g = 

0.10%) associated with  ρCO2 as ±0.10%×(true ρCO2) (Table 1). This specification is the maximum range of CO2 measurement 305 

uncertainty due to the CO2 gain drift within the operational ranges in Ta and P of OPEC systems.  

Given that an analyzer performs best, almost without gain drift, at the ambient air temperature for calibration/span 

procedure (also denoted by Tc, because zero and span procedures should be performed under similar ambient air temperature 

conditions) but also drifts while Ta gradually changes away from Tc, then the further away Ta is from Tc, the greater potential 

the drift has. Accordingly, the same approach to the formulation of CO2 zero drift uncertainty can be applied to the 310 

formulation of approximate equation for CO2 gain drift uncertainty at Ta as  



12 

 

   2 2

2

_CO g CO T a c c a rhg

CO

c a a rlrh rl

T T T T T

T T T T TT T

 


−  
 =  

−  −  c

,        (9) 

where ρCO2T is true CO2 density unknown in measurement. Given that the measured value of CO2 density is represented by 

ρCO2, by referencing Eq. (1), ρCO2T can be expressed as  

     CO T CO CO

z

CO

g

CO

s

CO

p

2 2 2 2 2 2
= − + + +( )    .        (10) 315 

The terms inside the parentheses in this equation are the measurement uncetrainties for ρCO2T that are smaller in magnitude, 

by at least two orders, than ρCO2T, whose magnitude in atmospheric background under the normal temperature and pressure as 

used by Wright et  al. (2003) is 767 mgCO2 m -3 (Global Monitoring Laboratory, 2022). Therefore, ρCO2 in Eq. (10) is the best 

alternative, with the most likelihood, to ρCO2T for the application of Eq. (9). As such, ρCO2T in Eq. (9) can be reasonably 

approximated by ρCO2 for equation applications. Using this approximation, Eq. (9) becomes  320 


 

CO

g CO g CO

rh rl

a c c a rh

c a a rlT T

T T T T T

T T T T T2

2 2= 
−


−  

−  





_

c

.        (11) 

 With ρCO2 being measured, this equation is applicable in estimating the CO2 gain drift uncertainty. The gain drift uncertainty 

( CO

g

2
) from this equation has the maximum range of ±δCO2_g ρCO2, as if Ta and Tc were separately at the two ends of 

operational range in Ta of OPEC systems. With the most likelihood, this maximum range is the closest to ±δCO2_g×(true ρCO2) 

as specified in Table 1. 325 

4.3 Sw andCO

s

2
 (sensitivity-to-H2O  uncertainty)  

The infrared wavelength of 4.3 μm for CO2 measurements is minorly  absorbed by H2O (LI−COR Biosciences, 2021c; 

Campbell Scientific Inc., 2021b). This minor absorption slightly interferes with the absorption by CO2 in the wavelength 

(McDermitt et al., 1993). The power of the same measurement light (i.e., Acs as a steady value in the CO2 working equation 

from Model 5) through several gas samples with the same CO2 density, but different backgrounds of H2O densities, is 330 

detected with different values of Ac into the working equation from Model (5). Without parameter Sw and its joined term in 

the working equation, different Ac values must result in significantly different ρCO2 values, although they are actually the 

same. To report the same ρCO2 for air flows with the same CO2 density under different H2O backgrounds, the different values 

of Ac in such a case to report similar ρCO2 are accounted for by Sw associated with Aw and Aws in the working equation from 

Model (5). Similar to Zc and Gc in the CO2 working equation, Sw is not perfectly accurate and can have uncertainty in the 335 

determination of ρCO2. This uncertainty for EC150 infrared analyzers is specified by sensitivity-to-H2O (sH2O) as ±2.69×10−7 

mgCO2 m−3 (gH2O m−3) −1 (Table 1). As indicated by its unit, this uncertainty is linearly related to ρH2O. Assuming the 

analyzer for CO2 works best, without this uncertainty, in dry air, CO

s

2
could be formulated as 

2 2 2 2

3

20 44 gH On ms

CO H O H O H Os   − =   ,         (12) 
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where 44 gH2O m−3, as addressed in section 2, is the top limit of H2O density measurements. Accord ingly, 
2

s

CO can be in a 340 

range of  

CO

s

H Os
2 2

44 .                     (13) 

4.4 ΔρCO2 (CO2 measurement accuracy) 

Substituting Eqs. (4), (7), (11), and (13) into Model (3), ΔρCO2 for an individual CO2 measurement from OPEC systems can 

be expressed as  345 

 
 

CO CO H O

cz CO g CO

rh rl

a c c a rh

c a c a rl

s
d

T T

T T T T T

T T T T T2 2 2

2 2196 44=  + +
+

−


−  

−  

















.
_

.       (14) 

This is the CO2 accuracy equation for EC150 infrared analyzers within OPEC systems. It expresses the accuracy of  a field 

CO2 measurement from the OPEC systems in terms of its specifications σCO2, sH2O, dcz, δCO2_g, and the OPEC system 

operational range in Ta as indicated by Trh and Trl; measured variables ρCO2 and Ta; and a known variable Tc. Given the 

specifications and the known variable, this equation can be used to evaluate the CO2 accuracy as a range in relation to Ta and 350 

ρCO2.   

4.5 Evaluation of ΔρCO2  

Given the analyzer specifications, the accuracy of field CO2 measurements from an infrared analyzer after calibration,  zero, 

and/or span at Tc can be evaluated using the CO2 accuracy equation (14) over a domain of Ta and ρCO2. To visualize the 

relationship of accuracy with Ta and ρCO2, the accuracy is presented better as the ordinate along the abscissa of Ta for ρCO2 at 355 

different levels and must be evaluated within possib le maximum ranges of Ta and ρCO2 in ecosystems. In evaluation, the Ta is 

limited to the –30 to 50 °C range with in which EC150 infrared analyzers used for OPEC systems operate, Tc can be assumed 

to be 20 ºC (i.e., standard air temperature as used by Wright et  al. (2003)), and ρCO2 can be ranged acoording to its variation 

in ecosystems.   

4.5.1 ρCO2 range 360 

Upper measurement lim it of CO2 density by the infrared analyzers can reach up to 1,553 mgCO2 m−3. In the atmosphere, its 

CO2 background mixing ratio currently is 419 µmolCO2 mol−1 (Global Monitoring Laboratory, 2022). Under the normal 

temperature and pressure conditions (Wright et al., 2003), this background mixing ratio is equivalent to 767 mgCO2 m-3 in 

dry air. CO2 density in  ecosystems commonly ranges from 650 to 1,500 mgCO2 m−3 (LI−COR Biosciences, 2021c), 

depending on biological processes (Wang et al., 2016), aerodynamic regimes (Yang et al., 2007), and thermodynamic states 365 

(Ohkubo et al., 2008). In this study, this range is extended from 600 to 1,600 mgCO2 m -3 as a common range within which 

ΔρCO2 is evaluated. Because of the dependence of ΔρCO2 on ρCO2 (Eq. 14), to show the accuracy at different CO2 levels, the 

https://www.esrl.noaa.gov/gmd/
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range is further div ided into five grades of 600, 767 (atmospheric background), 1000, 1300, and 1600 mgCO2 m−3 for 

evaluation presentations as in Fig. 2.  

According to a brief review by Zhou et al. (2021) on the plant physiological threshold in air temperature for growth 370 

and development and the soil temperature dynamic related to CO2 from microorganism respiration and/or wildlife activities 

in terrestrial ecosystems, ρCO2 at any grade of 1,000, 1300, or 1600 mgCO2 m−3 should start, at 5 ºC, to converge 

asymptotically to the atmospheric CO2 background (767 mgCO2 m−3 at –30 ºC, Fig. 2). Without the asymptotical function 

for the convergence curve, conservatively assuming the convergence has a simple linear trend with Ta from 5 to –30 ºC, 

ΔρCO2 is evaluated up to the magnitude of  ρCO2 along the trend (Fig. 2).  375 

4.5.2 ΔρCO2 range 

At Ta = Tc , the CO2 accuracy is best at its narrowest range to be the sum of precision and sensitivity-to-H2O uncertainties 

(±0.39 mgCO2  m−3). However, away from Tc, its range near-linearly becomes wider. The ΔρCO2 range can be summarized as 

±0.40 − ±1.22 mgCO2 m−3 over the domain of Ta and ρCO2 (Fig. 2a and CO2 columns in Table 2). The maximum CO2 relative 

accuracy at the different levels of ρCO2 is in a range of ±0.07% at 1,600 mgCO2 m−3 to 0.19% at 600 mgCO2 m−3 (from data 380 

for Fig. 2b). 
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Figure 2. Accuracy of field CO2 measurements from open-path eddy-covariance flux systems by EC150 infrared CO2−H2O 

analyzers (Campbell Scientific Inc., UT, USA) over their operational range in  Ta at atmospheric pressure of 101.325 kPa. 

The vertical dashed line represents ambient temperature Tc at which an analyzer was calibrated, zeroed, and/or spanned. 385 

Above 5 °C, accuracy is evaluated up to the possible maximum CO2 density in ecosystems (black curve). Assume that this 

maximum CO2 density starts linearly decreasing at 5 °C to the atmospheric CO2 background value 767 mgCO2 m -3 at –30 °C. 

Accordingly, below 5 °C, the accuracy for CO2 density at a  level above the background value (green, blue, or b lack curve) is 

evaluated up to this decreasing trend of CO2 densities. Relative accuracy of CO2 measurements is the ratio of CO2 accuracy 

to CO2 density.   390 
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Table 2. Accuracies of field CO2 and H2O measurements from open-path eddy-covariance systems by EC150 infrared 

CO2−H2O analyzers (Campbell Scientif ic Inc., UT, USA) on the major values of background ambient air temperature, CO2, 

and H2O in ecosystems. (Atmospheric pressure: 101.325 kPa. Calibration ambient air temperature: 20 ºC.) 

A
m

b
ie

n
t 

a
ir

 

te
m

p
e
ra

tu
re

 _______________CO2_______________ _______________H2O_______________ 

767 mgCO2 m−3 a/ 1,600 mgCO2 m−3 b/ 60% Relative humidity Saturated 

Accuracy 

± 

Relative 

accuracy 

± 

Accuracy 

± 

Relative 

accuracy 

± 

Accuracy 

± 

Relative 

accuracy 

± 

Accuracy 

± 

Relative 

accuracy 

± 

°C mgCO2 m−3 % mgCO2 m−3
 % gH2O m−3 % gH2O m−3 % 

–30 1.215 0.16 

N/Ac/ 

0.065 32.00 0.066 19.27 

–25 1.133 0.15 0.063 18.92 0.063 11.42 

–20 1.051 0.14 0.061 11.41 0.061 6.90 

–15 0.968 0.13 0.059 7.00 0.059 4.26 

–10 0.886 0.12 0.056 4.38 0.057 2.67 

–5 0.804 0.10 0.054 2.78 0.056 1.70 

0 0.721 0.09 0.052 1.78 0.054 1.10 

5 0.639 0.08 0.795 0.05 0.049 1.22 0.051 0.75 

10 0.557 0.07 0.661 0.04 0.047 0.83 0.049 0.51 

15 0.474 0.06 0.526 0.03 0.044 0.57 0.045 0.35 

20 0.392 0.05 0.392 0.02 0.040 0.38 0.040 0.23 

25 0.474 0.06 0.526 0.03 0.045 0.33 0.047 0.20 

30 0.557 0.07 0.661 0.04 0.052 0.28 0.056 0.19 

35 0.639 0.08 0.795 0.05 0.061 0.26 0.070 0.18 

37 0.672 0.09 0.849 0.05 0.065 0.25 0.077 0.17 

40 0.721 0.09 0.930 0.06 0.073 0.24 

N/Ad/ 
45 0.804 0.10 1.064 0.07 0.089 0.23 

48 0.853 0.11 1.145 0.07 0.099 0.23 

50 0.886 0.12 1.198 0.07 N/Ae/ 

a 767 mgCO2 m−3 is the atmospheric background CO2 density (Global Monitoring Laboratory, 2022).  

b 1,600 mgCO2 m−3 is assumed to be the maximum CO2 density in ecosystems.    395 

c CO2 density in ecosystems is assumed to be lower than 1,600 mgCO2 m−3 when ambient air temperatures is below 5 °C. 

d H2O density in saturated air above 37 °C is out of the measurement range of EC150 infrared CO2−H2O analyzers (0 – 44 

gH2O m−3).   

e H2O density in air of 60% relative humidity above 48 °C is out of the measurement range of EC150 infrared CO2−H2O 

analyzers (0 – 44 gH2O m -3).   400 

5 Accuracy of H2O density measurements 

Model (2) defines the accuracy of field H2O measurements from OPEC systems by infrared analyzers (ΔρH2O) as 
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( )        H O H O

z

H O

g

H O

s

H O

p

2 2 2 2 2
  + + + ,       (15) 

where
2

z

H O is H2O zero drift uncertainty, H O

g

2

 is H2O gain drift uncertainty, H O

s

2

is cross-sensitivity-to-CO2 uncertainty, 

and H O

p

2

 is H2O precision uncertainty. Using the same approach as for CO

p

2
, H O

p

2
is formulated as   405 

 H O

P

H O2 2
196=  . ,             (16)  

where σH2O, as defined in Table 1, is the precision of EC150 analyzers for H 2O measurements. The other uncertainty terms in 

Model (15) can be understood and formulated using the similar approach for their counterparts in Model (3).   

5.1 H O

z

2
(H2O zero drift uncertainty) andH O

g

2
(H2O gain drift uncertainty)  

The model of the analyzer working equation for ρH2O is similar to Model (5) for ρCO2 in formulation, given also by the 410 

derivations in the Theory and operation section in LI−COR Biosciences (2001; 2021b; 2021c)  

H O wi
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
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 Z
G

w
w  ,       (17) 

where awi (i = 1, 2, o r 3) is a  coefficient of the three-order polynomial in  the terms inside curly  brackets; Sc is the cross-

sensitivity of a detector to CO2, while detecting H2O, at the wavelength for H2O measurements (hereafter referred to as 

sensitivity-to-CO2); Zw  is the H2O zero  adjustment (i.e ., H2O zero coefficient); Gw is the H2O gain adjustment (i.e., 415 

commonly referred as to H2O span coefficient); and Aw, Aws, Ac, and Acs represent the same as in Model (5). The parameters 

of awi, Zw Gw, and Sc in  Model (17) a re statistically  estimated to establish an H2O work ing equation in the production 

calibration against a series of air standards with different H 2O contents under ranges of ρCO2 and P (i.e., calibration). The 

H2O working equation (i.e., Model 17 with estimated parameters) is used inside the analyzer OS to compute ρH2O as the 

closest proxy for true ρH2O from field measurements of Aw, Aws, Ac, Acs, and P.    420 

Because of the similarities in model princip les and parameter implications between Models (5) and (17), following the same 

analyses and rationales as for CO

z

2
and CO

g

2
, H O

z

2
 is formulated as   

H O

z wz

rh rl

a c c a rh
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d
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T T T T T

T T T T T2
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’         (18)  

and H O

g

2
is formulated as  


 

H O

g H O g H O

rh rl
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T T T T T
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

_
.        (19) 425 



18 

 

5.2 H O

s

2
(sensitivity-to-CO2 uncertainty) 

The infrared light at wavelength of 2.7 μm for H2O measurement is traceably absorbed by CO2 (see Fig. 4.7 in  Wallace and 

Hobbs, 2006). This absorption interferes slightly with the H2O absorption at this wavelength (McDerm itt et al., 1993). As  

such, the power of identical measurement lights (i.e ., Aws as a steady value in the H2O work ing equation from Model 17) 

through several air standards with the same H2O density but different backgrounds of CO2 amounts would result in d ifferent 430 

values of Aw into the H2O work ing equation from Model (17). In this equation, without parameter Sc and its jo ined term, 

different Aw values will resu lt in significantly different ρH2O values, although ρH2O is essentially the same. To report the same 

ρH2O for air flows with the same H2O amount under different CO2 backgrounds, different values of Aw in such a case to report 

the same ρH2O are accounted for by Sc associated with Ac  and Acs in the H2O work ing equation from Model (17). However, Sc 

is not perfectly accurate, either, having uncertainty in the determination of ρH2O. This uncertainty in the EC150 infrared 435 

analyzer is specified by the sensit ivity-to-CO2 (sCO2) value as the maximum range of ±4.09×10−5 gH2O m−3 (mgCO2 m−3)−1 

(Table 1). Assuming the infrared analyzers for H2O have the lowest sensit ivity-to-CO2 uncertainty for air flow with an 

atmospheric background CO2 amount (i.e., 767 mgCO2 m-3), 
2

s

H O could be formulated as 

( )
2 2 2 2

3

2767 1,553 mgCO n ms

H O CO CO COs   − = −  .      (20) 

Accordingly, 
2

s

H O can be reasonably expressed as  440 

2 2
786s

H O COs  .                     (21) 

5.3 ΔρH2O (H2O measurement accuracy) 

Substituting Eqs. (16), (18), (19) and (21) into Model (15), ΔρH2O for an individual H2O measurement from OPEC systems 

can be expressed as 

2 2

2 2 2

_
1.96 786

wz H O g H O a c c a rh

H O H O CO

c a c a rlrh rl

d T T T T T
s

T T T T TT T

 
 

 + −  
 =  + +  

−  −  
.    (22) 445 

This equation is the H2O accuracy equation for the OPEC systems with infrared analyzers. It expresses the accuracy of H2O 

measurements from the OPEC systems in terms of the specifications σH2O, sCO2, dwz, δH2O_g, Trh, and Trl; measured variables 

ρH2O and Ta; and a known variable Tc. Using this equation and the specification values as in Table 1 for EC150 infrared 

analyzers, the accuracy of field H2O measurements can be evaluated as a range for OPEC systems with such anlyzers. For an 

OPEC system with another model of open-path infrared anlyzer, such as the LI−7500 series (LI−COR Biosciences, NE, 450 

USA) or IRGASON (Campbell Scientific Inc., UT, USA), its corresponding specification values are used.  
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5.4 Evaluation of ΔρH2O 

H2O accuracy (ΔρH2O) can be evaluated using the H2O accuracy equation over a domain of Ta and ρH2O. Similar to the CO2 

accuracy equation in Fig. 2, ΔρH2O is presented as the ordinate along the abscissa of Ta at different ρH2O levels with in the 

ranges of Ta and ρH2O in ecosystems (Fig. 3). As with the evaluation of ΔρCO2, Ta is limited from –30 to 50 °C and Tc can be 455 

assumed to be 20 ºC. The range of ρH2O at Ta needs to be determined using atmospheric physics (Buck, 1981).    

5.4.1 ρH2O range  

The EC150 analyzers were calibrated for H2O density from 0 to 44 gH2O m -3 due to the reason addressed in Sect. 2. The 

highest limit  of measurement range for H2O density by other models of analyzers also should be near 44 gH 2O m -3. However, 

due to the positive exponential dependence of air water vapor saturation on Ta (Wallace and Hobbs, 2006), ρH2O has a range 460 

that is wider at higher Ta and narrower at lower Ta. Below 37 ºC at 101.325 kPa, ρH2O is lower than 44 gH2O m -3, and its 

range becomes narrower and narrower, reaching 0.34 gH2O m -3 at –30 ºC. To determine the H2O accuracy over the same 

relative range of air moisture, even at different Ta, the water vapor saturation density is used to scale air moisture to 20, 40, 

60, 80 and 100% (i.e., relative humidity, or RH). For each scaled RH value, ρH2O can be calculated at different Ta and P 

(Appendix B) for use in the H2O accuracy equation. In this way, over the range of Ta, H2O accuracy can be shown as curves, 465 

along each of which RH is equal (Fig. 3).  

5.4.2 ΔρH2O range  

In the same way as with CO2 accuracy, the H2O accuracy at Ta = Tc is best at its narrowest as the sum of precision and 

sensitivity-to-CO2 uncertainties (<0.040 gH2O m−3 in magnitude). However, away from Tc, its non-linear range becomes 

wider, very gradually below this Tc value but more abruptly above, because, as Ta increases, ρH2O at the same RH increases 470 

exponentially (Eqs. B1 and B2 in Appendix B) while ΔρH2O increases linearly with ρH2O in the H2O accuracy equation (22). 

This non-linear range can be summarized as the widest at 48 °C to be ±0.099 gH 2O m -3 for air with 60% RH (Fig. 3a and 

H2O columns in Table 2). The number can be rounded up to ±0.10 gH 2O m -3 for the overall accuracy of field H2O 

measurements from OPEC systems by the EC150 infrared analyzers.  

Fig. 3b shows an interesting trend of H2O relative accuracy with Ta. Given the RH range shown in Fig. 3b, the 475 

relative accuracy diverges with a Ta decrease and converges with a Ta increase. The H2O relative accuracy varies from 0.17% 

for saturated air at 37 ºC to 96% for 20% RH air at –30 ºC (data for Fig. 3b) and, at this low Ta, can be much greater if RH 

goes further lower. The H2O relative accuracy in magnitude is < 1% while ρH2O > 5.00 gH2O m−3, < 5% while ρH2O > 1.20 

gH2O m−3, and >10% while ρH2O < 0.60 gH2O m−3.  

 480 
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Figure 3. Accuracy of field H2O measurements from open-path eddy-covariance systems by EC150 infrared CO2−H2O 

analyzers (Campbell Scientific Inc., UT, USA) over their operational range in Ta under atmospheric pressure of 101.325 kPa. 

The vertical dashed line represents the ambient air temperature (Tc) at which an analyzer was calibrated, zeroed, and/or 

spanned. Relative accuracy of H2O measurements is the ratio of H2O accuracy to H2O density.   485 
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6 Application 

The primary objective of this study is to develop an assessment methodology to evaluate the overall accurac ies of field CO2 

and H2O measurements from the infrared analyzers in OPEC systems by compositing their individual measurement 

uncertainties as specified with four uncertainty descriptors: zero drift, gain drift, sensitiv ity-to-CO2/H2O, and precision 

variability  (Table 1). Ultimately, the overall accuracies ( i.e ., ΔρCO2 and ΔρH2O) make uncertainty analyses possible for the 490 

various applications of CO2 and H2O data and the composited accuracy equations (i.e., Eqs. 14 and 22) make the field 

maintenance rationale for infrared analyzers.   

6.1 Application of ΔρCO2 and ΔρH2O to the uncertainty analyses for CO2 and H2O flux data   

As discussed in  Introduction, the uncertainty of each flux data is contributed by numerous sub-uncertainties in the processes 

of measurements and computations, among which ΔρCO2 and ΔρH2O are two fundamental uncertainties of the measurements 495 

from infrared analyzers. For this study topic, a ssuming 3-D wind speeds are accurately measured by a sonic anemometer, 

Appendix C demonstrates that neither ΔρCO2 nor ΔρH2O brings an uncertainty into the covariance of vertical wind speed (w) 

with ρCO2, ρH2O, or Ta even after coordinate rotations, lag maximization, and low- and high-frequency corrections, given by 

Eqs. (C8) and (C9) in the appendix as  

( ) ( )

( ) ( )

( ) ( )

2 2

2 2

' ' ' '

' ' ' '

' ' ' '

CO CO T rmf
rmf

H O H OT rmf
rmf

a aT rmfrmf

w w

w w

wT wT

 

 

=

=

=

       (23) 500 

where the overbar is a Reynolds’ averaging operator, prime denotes the fluctuations of a variable away from its mean (e.g., 

'

i iw w w= − ), subscript  T ind icates “true” value (see Appendix C for the implication of “true” value), and subscript rmf 

indicates the covariance was corrected through coordinate rotations (r), lag maximization (m), and low- and high-frequency 

corrections (f). The three equalities in Eq. (23) that are proved in Appendix C prove that the measured covariance of w with 

ρCO2, ρH2O, or Ta is not affected by corresponding ΔρCO2, ΔρH2O or ΔTa (i.e ., accuracy of Ta), being equal to the true covariance. 505 

Further, through WPL corrections, the three terms on the left side of Eq. (23) can be used to derive an analytical equation for 

measured CO2 or H2O flux whereas the three terms on the right side of this equation can be used to derive an analytical 

equation for true CO2 or H2O flux. The comparison of both analytical equations can demonstrate the partial effects of ΔρCO2 

and ΔρH2O on the uncertainty of CO2 or H2O flux data .    
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6.1.1 Roles of ΔρCO2 and ΔρH2O in the uncertainty of CO2 flux data  510 

Using the terms on the left side of Eq. (23), through the WPL corrections for CO2 f lux from ( )
2

' '

CO
rmf

w  (Webb et  al., 1980), 

the measured CO2 flux (FCO2) is given by   

( ) ( ) ( )2 2 2

2 2 2

' ' ' ' ' '
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1
CO H O CO

CO CO H O a rmfrmf rmf
d d a

F w w wT
T
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 

  
= + + +  

  

,    (24)  

where µ is the ratio of dry air to water molecular weight, ρd is dry air density, and TaK is air temperature in Kalvin. 

According to Eqs. (C1) and (23), this equation can be written as  515 
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,    (25)  

where 
aT  is the accuracy of 

KaT . 
aT  is well defined as ±0.20 K in compliance with the WMO standard (WMO, 2018). 

According to Eqs. (23) and (24), from ( )
2

' '

CO T
rmf

w , the nominal true CO2 flux (FCO2T) can be given by 

( ) ( ) ( )2 2 2

2 2 2
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.    (26)    

From Eqs (25) and (26), the uncertainty of CO2 flux (ΔFCO2) can be expressed as  520 
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      (27) 

This derivation provides a conceptual model for the partial effects of ΔρCO2 and ΔρH2O on the uncertainty of CO2 flux data . 

This uncertainty is added by ΔρCO2 and ΔρH2O interactively with the density effect due to H2O flux (i.e., the term with 

( )
2

' '

H O
rmf

w in Eq. 27) and temperature flux (i.e., the term with ( )' '

a rmf
wT in Eq. 27).  

6.1.2 ΔρH2O on uncertainty of H2O flux data 525 

Using the same approach to Eq. (27), the uncertainty of H 2O flux (ΔFH2O) can be expressed as  
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   (28) 

This formulation provides a conceptual model for the partial effects of ΔρH2O on the uncertainty of H2O flux data. This 

uncertainty is added only by ΔρH2O also interactively with the density effect due to H2O flux (i.e., the term with ( )
2

' '

H O
rmf

w

in Eq. 28) and temperature flux (the term with ( )' '

a rmf
wT  in  Eq. 28). Further analysis and more discussion about Eqs. (27) 530 

and (28) go beyond the scope of this study.        

6.2 Application of ΔρH2O to the uncertainty analysis for high-frequency air temperature  

The measured variables ρH2O, along with Ts and P can be used to compute high-frequency Ta in  OPEC systems (Swiatek, 

2018). If T T Pa H O s( , , )
2

 were an exact function from the theoretical princip les, it would not have any error itself. However, 

in our applications, variables ρH2O, Ts, and P are measured from the OPEC systems experiencing seasonal climates. As 535 

addressed in this study, the measured values of these variables have measurement uncertainty in ρH2O (ΔρH2O, i.e., accuracy of 

field H2O measurement); in Ts (ΔTs, i.e., accuracy of field Ts measurement); and in P (ΔP, i.e., accuracy of field P 

measurement). The uncertainties from the measurements propagate to the computed Ta as an uncertainty (ΔTa, i.e., accuracy 

of T T Pa H O s( , , )
2

). Th is accuracy is a reference by any application of Ta. It should be specified through the relationship of 

ΔTa to ΔρH2O, ΔTs, and ΔP.         540 

As field measurement uncertainties, ΔρH2O, ΔTs, or ΔP are reasonably small increments in numerical analysis 

(Burden et al., 2016). As such, depending on all the small increments, ΔTa is a  total differential of T T Pa H O s( , , )
2

with 

respect to ρH2O, Ts, and P, which are measured independently by three sensors, given by  

2

2

a a a
a H O s

H O s

T T T
T T P

T P

  


  
 =  +  +  .         (29) 

In this equation, ΔρH2O from the application of Eq. (22) is a necessary term to acquire ΔTa, ΔTs can be acquired from the 545 

specifications for 3-D sonic anemometers (Zhou et al., 2018), ΔP can be acquired from the specifications for the barometer 

used in the OPEC systems (Vaisala, 2020), and the three partial derivatives can be derived from the explicit function

T T Pa H O s( , , )
2

. With ΔρH2O, ΔTs, ΔP, and the three partial derivatives, ΔTa can be ranged as a function of ρH2O, Ts, and P.    
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6.3 Application of accuracy equations in analyzer field maintenance  

An infrared analyzer performs better if the field environment is near its manufacturing conditions (e.g., Ta at 20 °C), which is 550 

demonstrated in Figs. 2a and 3a for measurement accuracies associated with Tc. As indicated by the accuracies in both 

figures, the closer to Tc at 20 °C while Ta is, the better analyzers perform. However, the analyzers are used in OPEC systems 

mostly for long-term field campaigns through four-seasonal climates vastly different from those in the manufacturing 

processes. Over time, an analyzer gradually drifts in  some ways and needs field maintenance although within  its 

specifications.   555 

The field maintenance cannot improve the sensitivity-to-CO2/H2O uncertainty and precision variability, but both are 

minor (their sum < 0.392 mgCO2 m−3 for CO2, Eqs. 4 and 13; < 0.045 gH2O m−3 for H2O, Eqs. 16 and 21) as compared to the 

zero or gain drift uncertainties. However, the zero and gain drift uncertainties are major in determination of field CO2/H2O 

measurement accuracy (Figs. 2 to 4 and Eqs. 14 and 22), but adjustable, through the zero and/or span procedures, to be 

minimized. Therefore, manufacturers of infrared analyzers have provided software and hardware tools for the procedures 560 

(Campbell Scientific Inc., 2021b) and scheduled the procedures using those tools (LI−COR Biosciences, 2021c). Fratini et al. 

(2014) provided a technique implemented into the EddyPro ® Eddy Covariance Software (LI−COR Biosciences, 2021a) to 

correct the drift biases from a raw time series of CO2 and H2O data through post-processing. This study provides rationales 

how to assess, schedule, and perform the zero and span procedures (Figs. 2a, 3a, and 4).  
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 565 

Figure 4. Component measurement uncertainties due to the zero and gain drifts of EC150 infrared CO2−H2O analyzers 

(Campbell Scientific Inc, UT, USA) in open-path eddy-covariance flux systems over their operational range in Ta under an 

atmospheric pressure of 101.325 kPa. The vertical dashed line represents the ambient air temperature (Tc) at which  an 

analyzer was calibrated, zeroed, and/or spanned.  
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6.3.1 CO2 zero and span procedures 570 

Figure 4a shows that the CO2 zero drift uncertainty linearly increases with Ta away from Tc over the full Ta range within 

which OPEC systems operate; so, too, does CO2 gain  drift uncertainty increase for a given CO2 concentration. As suggested 

by Zhou et al. (2021), both drifts should be adjusted near the Ta value around which the system runs. The zero and gain drifts 

should be adjusted, through zero and span procedures, at a  Ta close to its daily mean around which the system runs. Based on 

the range of Ta daily cycle, the procedures are set at a  moderate, instead of the highest or lowest, moment in Ta. Given the 575 

daily cycle range is much narrower than 40 °C, an OPEC system could run at Ta within ±20 of Tc if the procedures are 

performed at a right moment of Ta. For our study case on atmospheric CO2 background (left CO2 column in Table 2), the 

procedures can narrow the widest possible range of ±1.22 mgCO2 m−3 for field CO2 measurement at least 40% to ±0.72 

mgCO2 m -3 (i.e., accuracy at 0 or 40 ºC when Tc = 20 ºC), which would be a sign ificant improvem ent to ensure field CO2 

measurement accuracy through CO2 zero and span procedures.  580 

6.3.2 H2O zero and span procedures  

Figure 4b shows that the H2O zero drift uncertainty increases as Ta moves away from Tc in the same trend as CO2 zero drift 

uncertainty. Therefore, an H2O zero procedure can be performed in the same technique as for CO2 zero procedure. H2O gain 

drift uncertainty has a different trend. It exponentially d iverges, as Ta increases away from Tc, to  ±5.0 × 10−2 gH2O m−3 near 

50 °C, and gradually converges by two orders smaller, as Ta decreases away from Tc, to ±6.38 × 10−4 gH2O m−3 at –30 °C 585 

(data for Fig. 4b). The exponential divergence results from the linear relationship of H 2O gain drift uncertainty (Eq. 19) with 

ρH2O, which  exponentially increases (Eq. B1)  with a Ta increase away from Tc for the same RH (Buck, 1981). The 

convergence results from the linear relationship offset by the exponential decrease in ρH2O with a Ta decrease for the same 

RH. This trend of H2O gain drift uncertainty with Ta is a  rationale to guide the H2O span procedure, which adjusts the H2O 

gain drift.   590 

The H2O span procedure needs standard moist air with known H2O density from a dew point generator. The 

generator is not operational near or below freezing conditions (LI−COR Biosciences, 2004), which limits the span procedure 

to be performed only under non-freezing conditions. This condition, from 5 to 35 ºC, may be considered for the generator to 

be conveniently operational in the field. Accordingly, the zero and span procedures for H2O should be discussed separately 

for a Ta above and below 5 ºC.   595 

6.3.2.1 Ta above 5 ºC 

Looking at the right portion with Ta above 5 ºC in Fig. 4b, H2O gain drift has a more obvious impact on measurement 

uncertainty in a higher Ta range (e.g., above Tc), within which  the H2O span procedure is most needed. In this range, the 

maximum accuracy range of ±0.10 gH2O m -3 can be narrowed by 30% to ±0.07 (assessed from data for Fig 3a) if the zero 

and span procedures for H2O can be sequentially performed as necessary in a Ta range from 5 to 35 ºC.  600 
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6.3.2.2 Ta below 5 ºC 

Looking at the left portion with Ta below 5 ºC in Fig 4b, H2O gain drift has a less obvious contribution to the measurement 

uncertainty in a lower Ta range (e.g., below 5 ºC), within which the H2O span procedure may be unnecessary. An H2O gain 

drift uncertainty at 5 ºC is 50% of the H2O zero drift uncertainty (dotted curve in Fig. 5). This percentage decreases to 3% at 

–30 ºC. On average, this percentage over a range of –30 to 5 ºC is 18% (assessed from data for dotted curve in Fig. 5). Thus, 605 

for H2O measurements over the lower Ta range, it can be concluded that H2O zero drift is a  major uncertainty source, and 

H2O gain drift is a  minor uncertainty source. 

 A close examination of the other curves in  Fig. 5 for the portion in  the accuracy range from H 2O zero/gain drift 

makes this conclusion more convincing. Given Tc = 20, in accuracy range, the portion from H2O zero drift uncertainty is 

much greater (maximum 38% at –30 ºC) than that from H2O gain d rift uncertainty (maximum only 7% at 5 ºC). On  average 610 

over the lower Ta range, the former is  27% and the latter only 4%. Further, given Tc = 5 ºC, in the accuracy range, the portion 

from H2O gain drift uncertainty is even smaller (maximum only 3% at –5 ºC); in  contrast, the portion from zero drift 

uncertainty is more major (one order higher, 30% at –30 ºC). On average over the lower Ta range, the minor gain drift 

uncertainty is 1.7%, and the major zero drift uncertainty is 17%. Both percentages underscore that the H 2O span procedure is 

reasonably unnecessary under cold/dry conditions, and, under such conditions, the H2O zero p rocedure is the only necessary 615 

option to efficiently minimize H2O measurement uncertainty in OPEC systems. This finding gives confidence in H 2O 

measurement accuracy to users who are worried  about H 2O span procedures for infrared analyzers in  the cold  seasons when 

a dew point generator is not operational in the field (LI−COR Biosciences, 2004).  
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Figure 5. For a range of low Ta, the portion in the accuracy range from zero/gain drift uncertainty (left ordinate) and the ratio 620 

of gain to zero drift uncertainty (right ordinate). The curves are evaluated by Eqs. (18), (19), and (22) from measurement 

specifications for EC150 infrared CO2−H2O analyzers (Campbell Scientific Inc, UT, USA) in open-path eddy-covariance 

flux systems over the Ta range from –30 to 5 ºC under atmospheric pressure of 101.325 kPa. Tc is the ambient air 

temperature at which an analyzer was calibrated, zeroed, and/or spanned. 

 625 

6.3.3 H2O zero procedure in cold and/or dry environments 

In cold environments, although the non-operational H2O span procedure is unnecessary, the H2O zero procedure is asserted 

to be a prominently important option for minimizing the H 2O measurement uncertainty in OPEC systems. This procedure, 

although operational under freezing conditions, is st ill inconvenient for users when weather is very  cold (e.g., when Ta is 

below –15 °C). If the field H2O zero p rocedure is performed as needed above this Ta value, an OPEC system can be assumed 630 

to run at Ta with ±20 °C of Tc. Under this assumption, the poorest H2O accuracy of ±0.066 gH2O m -3 below 5 °C in Table 2 

can be narrowed, through the H2O zero procedure, by at least 22% to 0.051 gH2O m -3 (assessed from data for Fig. 3a). 

Correspondingly, the relative accuracy range can be narrowed by the same percentage. The H 2O zero procedure can ensure 

both accuracy and relative accuracy of H2O measurements in a cold environment (Fratini et al., 2014). In a dry environment, 
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it plays the same role as in a cold environment, but it would be more convenient for users to perform the zero procedure if 635 

warmer.   

In a cold and/or dry environment, H2O zero procedures that are undergone on a regular schedule would best 

minimize the impact of zero drifts on measurements. Under such an environment, the automatic zero procedure for CO2 and 

H2O together in CPEC systems is an operational and efficient option to ensure and improve field CO2 and H2O measurement 

accuracies (Campbell Scientific Inc., 2021a; Zhou et al., 2021).   640 

7 Discussion 

An assessment methodology to evaluate the overall accuracies of field CO2 and H2O measurements from the infrared 

analyzers in OPEC systems is developed using analyzer individual measurement uncertainties as specified using four 

uncertainty descriptors:  zero drift, gain d rift, sensit ivity-to-CO2/H2O, and precision variability (Table 1). For the evaluation, 

these uncertainty descriptors are comprehensively composited into the accuracy model (2) and then formulated as a CO2 645 

accuracy equation (14) and an H2O accuracy equation (22) (Sects. 3 to 5 and Appendix A). The assessment methodology, 

along with the model and the equations, presents our development for the objective (Sects. 4.5 and 5.4).  

7.1 Accuracy model 

Accuracy model (2) composites the four measurement uncertainties (zero drift, gain drift, sensitiv ity-to-CO2/H2O, and 

precision variability) specified for analyzer performance as an accuracy range. This range is modeled as a simple addition of 650 

the four uncertainties. The simple addition is derived from our analysis assertion that the four measurement uncertainties 

interactionally or independently contribute to the accuracy range, but the contribution s from the interactions inside any pair 

of uncertainties are negligible since they are three orders smaller in magnitude than an individual contribution in  the pair 

(Appendix A). This derived model is simple and applicable, paving an approach to the formulation of accuracy equations 

that are computable for evaluating the overall accuracies of field CO2 and H2O measurements from infrared analyzers in 655 

OPEC systems.        

Additionally, included in the accuracy model, the four types of measurement uncertaint y sources (i.e., zero drift, 

gain drift, sensit ivity-to-CO2/H2O, and precision variability) to specify the performance of infrared CO2−H2O analyzers for 

OPEC systems have been consistently used over last two decades (LI−COR Biosciences, 2001; 2021b; 2021c; Campbell 

Scientific Inc., 2021). With the advancement of optical technologies, the number of these uncertainty sources for analyzer 660 

specifications is not expected to increase rather some current uncertainty sources could be eliminated from the current 

specification list, even if not in the near future. If eliminated, in Models (3) and (15) and Eqs. (14) and (22), the parameters 

and variables related to the eliminated uncertainty sources could be easily removed for adoption of the new set of 

specifications for infrared CO2−H2O analyzers.  
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7.2 Formulation of uncertainty terms in Model (2) for accuracy equations 665 

In Sects. 4 and 5, each of the four uncertainty terms in accuracy model (2) is formulated as a computable sub -equation for 

CO2 (Eqs. 4, 7, 11, and 13) and H2O (Eqs. 16, 18, 19, and 21), respectively. The accuracy model, whose terms are replaced 

with the formulated sub-equations for CO2, becomes a CO2 accuracy equation and, for H2O, becomes an H2O accuracy 

equation. In the formulation, approximation is used for zero drift, gain drift, and sensitivity-to-CO2/H2O, while statistics are 

applied for precision variability.   670 

For the zero/gain drift, although it  is well known that the drift is influenced more by Ta if housing CO2−H2O 

accumulation is assumed to be minimized as insignificant under normal field maintenance (LI−COR Biosciences, 2021c; 

Campbell Scientific Inc., 2021b), the exact relationship of drift to Ta does not exist. Alternatively, the zero/gain drift 

uncertainty is formulated by an approximation of drifts away from Tc linearly in  proportion to the difference between Ta and 

Tc but within  its maximum range over the operational range in Ta of OPEC systems (Eqs. 7, 11, 18, and 19). A drift 675 

uncertainty equation formulated through such an approximation is not an exact relationship of drift to Ta, but it does 

represent the drift t rend, as influenced by Ta, to be understood by users. The accuracy from this equation at a  given Ta is not 

exact either, but the maximum range over the full range, which is the most likelihood estimation, is most needed by users.  

In fact, the H2O accuracy as influenced by the linear trend of zero and gain drifts with the difference between Ta and 

Tc is shadowed by the exponential trend of saturated H2O density with Ta (Fig. 4b). Similarly, the CO2 accuracy as 680 

influenced by the linear trend of zero and gain drifts with this difference is dominated by the CO2 density of the ecosystem 

background with Ta, particularly in the low temperature range (Fig. 2 ). Ult imately, the assumed linear trend does not play a 

dominant role in the accuracy trends of CO2 and H2O, which shows the merits of our methodology in the uses of atmospheric 

physics and biological environment principles for the field data.   

The sensit ivity-to-CO2/H2O uncertainty can be formally formulated as Eq. (20) or (12), but, if directly used, this 685 

formulation would add an additional variable to the CO2/H2O accuracy equation. Equation (12) would add H2O density (ρH2O) 

to the CO2 accuracy equation, and Eq. (20) would add CO2 density (ρCO2) to the H2O accuracy equation. For either accuracy 

equation, the additional variable would  complicate the uncertainty analysis. Accord ing to the ecosystem environment 

background, the maximum range of sensitivity-to-CO2/H2O uncertainty is known and, as compared to the major uncertainty 

of zero/gain drift (Table 1), this range is narrow (Table 1 and Eqs. 13 and 21). Therefore, the sensitivity -to-CO2/H2O 690 

uncertainty is approximated as Eq. (21) or (13). This approximation widens the accuracy range slightly, in a magnitude 

smaller than each of major uncertainties from the drifts at least in one order; however, it eliminates the need for ρH2O in the 

CO2 accuracy equation and for ρCO2 in the H2O accuracy equation, which makes the equations easily applicable.   

Precision uncertainty is statistically formulated as Eq. (4) for CO2 and Eq. (16) for H2O. This formulation is a 

common practice based on statistical methods (Hoel, 1984).   695 
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7.3 Use of relative accuracy for infrared analyzer specifications 

Relative accuracy is often used concurrently with accuracy to specify sensor measurement performance. The accuracy is the 

numerator of relative accuracy whose denominator is the true value of a measured variable. When evaluated for the 

applications of OPEC systems in ecosystems, CO2 accuracy in magnitude is small in a range within one order (0.39 ~ 1.22 

mgCO2 m -3, data for Fig. 2a), and so is H2O accuracy (0.04 ~ 0.10 gH2O m -3, data for Fig. 3a). In ecosystems, CO2 is 700 

naturally high, as compared to its accuracy magnitude, and does not change much in terms of a magnitude order (e.g., no 

more than one order from 600 to 1,600 gH2O m -3, assumed in this study). However, unlike CO2, H2O naturally changes in its 

amount dramatically across at least three orders in magnitude (e.g., at 101.325 kPa, from 0.03 gH 2O m -3 when RH is 10% at 

–30 ºC to 40 gH2O m -3 when dew point temperature is 35  ºC at the highest as reported by National Weather Service  (2022); 

under drier conditions, the H2O amount could be even lower). Because, in ecosystems, CO2 changes differently from H2O in 705 

amount across magnitude orders, the relative accuracy behaviors in CO2 differ from H2O (Figs. 2b and 3b).      

7.3.1 CO2 relative accuracy 

Because of the small CO2 accuracy magnitude relative to the natural CO2 amount in ecosystems, the CO2 relative accuracy 

magnitude varies within a narrow range of ±0.07 to ±0.19% (Sect. 4.5.2). If the relative accuracy is used, either a range of 

±0.07 − ±0.19% or an inequality of ≤ 0.19% can be specified as the CO2 relative accuracy magnitude for field CO2 710 

measurements. Both range and inequality would be equivalently perceived by users to be a fair performance of OPEC 

systems. For simplicity, our study with the OPEC systems can be specified for their CO2 relative accuracy to be ±0.19%.  

7.3.2 H2O relative accuracy 

Although the H2O accuracy magnitude is also small, the “relatively” great change in  natural air H 2O across several 

magnitude orders in ecosystems results in a much wider range of the H 2O relative accuracy magnitude, from ±0.23% at 715 

maximum air moisture to ±96% when RH is 20% at –30 ºC (Fig. 3b and Sect. 5.4.2). H2O relative accuracy can be much 

greater under dry conditions at low Ta (e.g., ±192% for air when RH is 10% at –30 ºC). Accordingly, if the relative accuracy 

is used, either a range of ±0.23 − ±192% or an inequality of ≤ 192% can be specified as the H 2O relative accuracy magnitude 

for field H2O measurements. Either ±0.23 − ±192% or ≤ 192% could be perceived by users intrinsically as poor 

measurement performance of the infrared analyzers, although either specification is conditionally right for fair H 2O 720 

measurement.  

Apparently, the relative accuracy for H2O measurements in ecosystems is not intrinsically interpretable by users to 

correctly perceive the performance of the infrared analyzers in OPEC systems. Instead, if H2O relative accuracy is 

unconditionally specified just in an inequality of ≤ 192%, it could  easily  mislead users to wrongly assess the performance as 

unacceptable for H2O measurements, although this performance of the infrared analyzers in OPEC systems is fair for air 725 

when RH is 10% at –30 ºC. Therefore, H2O relative accuracy is not recommended to be used for specification of infrared 
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analyzers for H2O measurement performance. If this descriptor is used, the H2O relative accuracy under a standard condition 

should be specified. This condition may be defined as saturated air at 35 ºC (i.e ., the highest natural dew point (National 

Weather Service, 2022)) under normal P  of 101.325 kPa (Wright et  al., 2003). For our study case, under such a standard 

condition, the H2O relative accuracy can be specified within ±0.18% after manufacturing calibration (data for Fig. 3b).  730 

8 Conclusions 

The accuracy of field CO2/H2O measurements from the infrared analyzers in OPEC systems can be defined as a maximum 

range of composited measurement uncertainty (Eqs. 14 and 22) from the specified sources: zero drift, gain drift, sensitivity-

to-CO2/H2O, and precision variability (Table 1), all of which are included in the system specif ications for infrared CO2-H2O 

analyzers currently used in field OPEC systems. The specif ied uncertainties interactionally or independently contribute to the 735 

overall uncertainty. Fortunately, the interactions between component uncertainties in each pair is three orders smaller than 

either component individually (Appendix A). Therefore, these specified  uncertainties can be simply added together as the 

accuracy range in a general CO2/H2O accuracy model for OPEC systems (Model 2). Based on statistics, bio -environment, 

and approximation, the specification descriptors of the infrared analyzers in OPEC systems are incorporated into the model 

terms to formulate the CO2 accuracy equation (14) and the H2O accuracy equation (22), both of which are computable to 740 

evaluate corresponding CO2 and H2O accuracies. For the EC150 infrared analyzers used in the OPEC systems over their 

operational range in Ta at the standard P of 101.325 kPa (Figs. 2 and 3 and Table 2), the CO2 accuracy can be specified as 

±1.22 mgCO2 m-3 (relatively within ±0.19%, Fig. 2) and H2O accuracy as ±0.10 gH2O m-3 (relatively within ±0.18% for 

saturated air at 35 ºC at the standard P, Fig. 3).     

Both accuracy equations are not only applicable for further uncertainty estimation for CO2 and H2O fluxes due to 745 

CO2 and H2O measurement uncertainties (Eqs. 27 and 28) and the error/uncertainty analyses in CO2 and H2O data 

applications (e.g., Eq. 29), but they also may be used as a rationale to assess and guide field maintenance on infrared 

analyzers.  Equation (14) as shown in Fig. 2a , along with Eqs. (7) and (11) as shown in Fig. 4a , guides users to adjust the 

CO2 zero and CO2 gain drifts, through the corresponding zero and span procedures, near a Ta value that minimizes the Ta 

departures, on average, during the period of interest if this period were not under extreme and hazard conditions (Fratini et 750 

al., 2014). As assessed on atmospheric CO2 background, the procedures can narrow the maximum CO2 accuracy range by 

40%, from ±1.22 to ±0.72 mgCO2 m-3, and thereby greatly improve the CO2 measurement accuracies with these regular zero 

and span procedures for CO2.  

Equation (22) as shown in Fig. 3a, along with Eqs. (18) and (19) as shown in Fig. 4b, presents users with a rationale 

to adjust the H2O zero drift of analyzers in the same technique as for CO2, but the H2O gain drift under hot and humid 755 

environments needs more attention (see the right portion above Tc in Figs. 3a and 4b); under cold and/or dry environments, it 

needs no further concern (see the left portion below 0 ºC in Fig. 4b). In a Ta range above 5 ºC, the maximum H2O accuracy 

range of ±0.10 gH2O m−3 can be narrowed by 30% to ±0.07 gH2O m−3 if both zero and span procedures for H2O are 
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performed as necessary. In a Ta range below 5 ºC, the H2O zero  procedure alone can narrow the maximum H2O accuracy 

range of ±0.066 gH2O m−3 by 22%, to ±0.051 gH2O m−3. Under cold environmental conditions, the H2O span procedure is 760 

found to be unnecessary (Fig. 5), and the H2O zero procedure is proposed as the only, and prominently efficient, op tion to 

minimize H2O measurement uncertainty in OPEC systems. This procedure plays the same role under dry conditions. Under 

cold and/or dry environments, the zero procedure for CO2 and H2O together would be a practical and efficient option not 

only to warrant, but also to improve, measurement accuracy. In a cold environment, adjusting the H2O gain drift is 

impractical because of the failure of a dew point generator under freezing conditions.  765 

Additionally, as a specification descriptor for OPEC systems used in ecosystems, relative accuracy is applicable for 

CO2 instead of H2O measurements. A small range in the CO2 relative accuracy can be perceived intuitively by users as 

normal. In contrast, without specifying the condition of air moisture, a  la rge range in H2O relative accuracy under cold 

and/or dry conditions (e.g., 100%) can easily mislead users to an incorrect conclusion in interpretation of H2O measurement 

reliability, although, it is the best achievement of the modern infrared analyzers under such conditions. If the H2O relative 770 

accuracy is used, the authors suggest to conditionally define it for saturated air at 35 °C (i.e., 39.66 gH2O m−3 at 101.352 

kPa). Ult imately, this study provides some scientific bases for the flux community to specify the accuracy of CO2−H2O 

measurements from infrared analyzers in OPEC systems although only one model of infrared analyzers (i.e., EC150) is used 

for this study.     

Appendix A: Derivation of the accuracy model for infrared CO2−H2O analyzers  775 

As defined in the Introduction, the measurement accuracy of infrared CO2−H2O analyzers is a range of the difference 

between the true α density (ραT, where α can be either H2O or CO2) and measured α density (ρα) by the analyzer. The 

difference is denoted by Δρα, given by Eq. (1) in Sect. 3. The range of this difference is contributed from the analyzer 

performance uncertainties, as specified by use of the four descriptors: zero drift, gain drift, cross-sensitiv ity, and precision 

(LI−COR Biosciences, 2021c; Campbell Scientific Inc., 2021b).    780 

According to the definitions in Sect. 2, zero drift uncertainty ( )
z is independent of ραT value and gain trend 

related to analyzer response; so, too, is cross-sensit ivity uncertainty ( )
s , which depends upon the amount of background 

H2O in the measured air if α is CO2, and upon the amount of background CO2 in the measured air if α is H2O. In the case that 

both gain drift and precision uncertainties are zero,
z

and
s

are simply additive to any true value as a measured value, 

including zero drift and cross-sensitivity uncertainties (ρα_zs)  785 

      _ zs T

z s= + +  ,          (A1) 

where subscript z indicates zero drift uncertainty included in the measured value, and subscript s indicates cross-sensit ivity 

uncertainty included in the measured value. During the measurement process, while zero is drifting and cross-sensitiv ity is 

active, if gain also drifts, then the gain drift interacts with the zero drift and the cross-sensitiv ity. This is because ρα_zs is a 
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linear factor for this gain drift (see the cells along the gain drift row in the value columns in Table 1) that is added to ρα_zs as 790 

a measured value additionally including gain drift uncertainty (ρα_zsg, where subscript g indicates gain drift uncertainty 

included in the measured value), given by 

     a zsg zs g zs_ _ _ _= + ,           (A2) 

where δα_g is gain drift percentage (δCO2_g = 0.10% and δH2O_g = 0.30%, Table 1). Substituting ρα_zs, as expressed in Eq. (A1), 

into this equation leads to    795 

                 a zsg T

z s

g T g

z

g

s

_ _ _ _= + + + + +    .      (A3) 

In this equation,   _ g

z  is the zero-gain interaction, and   _ g

s is the cross-sensitivity-gain interaction. In magnitude, 

the former is three orders smaller than either zero drift uncertainty (
z ) or gain drift uncertainty (δα_gραT) and the latter is 

three orders smaller than either cross-sensitiv ity uncertainty (
s ) o r gain drift uncertainty. Therefore, both interactions are 

relatively small and can be reasonably dropped. As a result, Eq. (A3) can be approximated and rearranged as:  800 

     

   

    

   

a zsg T

z

g T

s

T

z g s

_ _ + + +

= + + +

 

  
 ,        (A4)  

where 
g  is gain drift uncertainty (i.e.,   _ g

z ). Any measured value has random error (i.e ., p recision uncertainty) 

independent of ραT in  value (ISO, 2012). Therefore, ρα_zsg plus precision uncertainty (
p ) is the measured value including 

all uncertainties (ρα), given by  

  a a zsg

p= +_  .           (A5) 805 

The insertion of Eq. (A4) into this equation leads to  

         a T

z g s p− = + + +    .         (A6)  

This equation holds  

           a

z g s p + + + .         (A7) 

The range of the right side of this equation is wider than the measurement uncertainty from all measurement uncertainty 810 

sources, as shown on the right side of Eq. (A6), and the difference of ρα minus ραT (i.e., Δρα). Using this range, the 

measurement accuracy is defined in Model (2) in Sect. 3. 

Appendix B: Water vapor density from ambient air temperature, relative humidity, and atmospheric pressure   

Given ambient air temperature (Ta in °C) and a tmospheric pressure (P in kPa), air has a limited capacity to hold an amount 

of water vapor (Wallace and Hobbs, 2006). This limited capacity is described in terms of saturation water vapor density (ρs 815 

in gH2O m−3) for moist air, given through the Clausius−Clapeyron equation (Sonntag, 1990; Wallace and Hobbs, 2006) 
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where Rv  is the gas constant for water vapor (4.61495 ×10 -4 kPa m3 K-1 gH2O-1), and f(P) is an enhancement factor for moist 

air, being a function of P: f P P P( ) . . .= +  −− −10016 315 10 0 00745 1 . At relative humidity (RH in %), the water vapor 

density [ ( )H O aT P
2

RH ,  in gH2O m−3] is       820 

( ) ( ) H O a s aT P T P
2

RH , ,= RH .           (B2) 

This equation, along with Eq. (B1), is used to calculate H O2

RH
 used in Fig. 3 in Sect. 5.4 and Figs. 4b and 5 in Sect. 6.3. 

Appendix C: The relationship of measured to “true” covariance of vertical wind speed with CO2, H2O, or air 

temperature     

For open-path eddy-covariance systems, the computation of CO2/H2O flux between ecosystems and the atmosphere starts 825 

from covariance of an individual 3-D wind component with a CO2/H2O density. To express the covariance, as similarly used 

in Eqs. (1), α is used as a subscript of ρ to represent either CO2 or H2O and subscript T is used to indicate a measurement free 

of uncertainty as if it were “true”. According to Eq. (1), a  measured α density (ρα) with a measurement uncertainty (Δρα) can 

be expressed as  

T    = + ,           (C1)  830 

where ραT is an assumed α density free of measurement uncertainty as if measured by an accurate sensor with the same 

frequency response as the one measuring ρα. Th is assumed α density (ραT) is also referred to as “true α density” although not. 

The covariance of vertical wind speed (w) with ρα is given by  

( )( )' '

1

1 n

i i

i

w w w
n

   
=

= − − ,          (C2)  

where n is the sample number over an averaging interval (e.g., 36,000 over an hour interval if wi and ραi are measured at 10 835 

Hz), subscript i indexes the sequential numbers for wi and ραi, the overbar is the Reynolds’ averaging operator, and prime 

denotes the fluctuation of a variable away from its mean (e.g., 
'

i iw w w= − ). Without considering the measurement error of 

w for this study topic, submitting Eq. (C1) into (C2) leads to  



36 

 

( ) ( )

( )( ) ( )( )

' '

1

1 1

1

1 1
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w w w w
n n
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   

    

   

=

= =
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 

= − − + −  −



 

     (C3) 

Within  an averaging interval (e.g., an hour), the systematic error components inside terms Δραi and 
 are not only constant, 840 

but also equal. Accordingly, the systematic errors inside the term 
i   − are cancelled out (Richardson et al., 2012). In 

essence, this term is a random error whose statistical distribution generally is assumed to be normal with a zero mean (i.e., 

i   − is expected to be zero. Hoel, (1984)). The correlation of w with a random variable normally distributed with an 

expected zero mean tends to be zero, particularly for a large sample of 36,000 under discussion, even 18,000 for half hours 

(Snedecor and Cochran, 1989), which is the shortest period commonly used for flux computations. Accordingly, the second 845 

term in the second line of Eq. (C3) can be considered a s zero. Therefore, the covariance of w with measured α density is 

equal to the covariance of w with the true α density, given by  

' ' ' '

Tw w  = .                        (C4)  

If w from a sonic anemometer and ρα from an infrared analyzer are not measured through spatial and temporal 

synchronization, the values of covariance of w with ρα in the different lags of measurement (hereafter referred to as the 850 

lagged covariance) are computed for use in the lag maximization to find their maximum covariance as if w and ρα were 

measured at the same time in the same space (Moncrieff et al., 1997; Ibrom et al., 2007). Each lagged  covariance from field 

measurements can be expressed as ' '

lw  , where subscript l is the index for a lag number. If l = i, wi and ραl were measured at 

the same time.  If l = i –1, wi was measured one measurement interval (i.e., 100 ms for 10-Hz measurements) later than ραl 

whereas wi was measured one measurement interval earlier than ραl if l = i+1. The index l can be –k to k where k is a  positive 855 

integer, includ ing 0, to represent the maximum number of the lags that is optional to users. Therefore, given l from -k to k, 

the number of ' '

lw  values is 2k+1. Using the same approach to Eq. (C4), ' ' ' '

l Tlw w  =  can be proved.  

The lagged covariance values for ' '

lu  and ' '

lv  (l is -k, -k+1, …,0, …, or k) are also computed for each lag where, 

in the sonic anemometer coordinate system, u is the wind speed in the x direction and v is the wind speed in the y direction. 

Both ' ' ' '

l Tlu u  = and ' ' ' '

l Tlv v  = are also can be proved in the same way for Eq. (C4). Given the rotation angles from 860 

2 2 2 ' ' ' ', , , , , , ,u v w u v w u v u w , and 
' 'v w (Tanner and Thurtell, 1960), each set of ' ' ' ',l lu v   , and ' '

lw  are rotated to be 

( ) ( )' ' ' ',l lr r
u v   , and ( )' '

l r
w  , respectively, where u, v , and w through the rotations are transformed into the natural wind 

coordinate system correspondingly as stream-wise, lateral, and vertical wind speeds. In the rotation process, ρα is not 

additionally involved. Because '

l inside the covariance is a scalar rather than a vector variable, the rotation would not be 



37 

 

influenced by 2andl l   as by the three means and three variance values of 3-D wind components (Tanner and Thurtell, 865 

1960). Because the same set of rotation angles are also  used for the rotations of ' ' ' ',Tl Tlu v   , and ' '

Tlw  , the covariance 

values rotated from these three covariance values are correspondingly equal to those rotated from ' ' ' ',l lu v   , and ' '

lw  , 

given by   

( ) ( )' ' ' '

l Tl rr
w w  = .          (C5) 

Therefore, from the lag maximization (Moncrieff et al., 1997; Ibrom et al., 2007), the maximum covariance in magnitude 870 

among ( )' '

l r
w  (l from -k to k) is equal to the maximum in magnitude among ( )' '

Tl r
w 

. Denoting the former maximum 

covariance by ( )' '

rm
w 

, where subscript m indicates the maximum, and the latter one by  ( )' '

T rm
w 

 , this equality leads to  

( ) ( )' ' ' '

T rmrm
w w  = .          (C6)  

For flux  computations, both covariance values in  this equation need further corrections for their low- and high-frequency 

loss (Moore, 1986). The correction factor for ( )' '

rm
w  can be denoted by fcα and for ( )' '

T rm
w 

can be denoted by fcαT. Both fcα 875 

and fcαT are integrated in the same way from the cospectrum of w with a scalar as represented by Ta (air temperature) and the 

transfer functions of high-frequency loss separately for w and α density (Moore, 1986; van Dijk, 2002), and low-frequency 

loss for Reynolds’ averaging ' 'w  (Massman, 2000). Although depending on the structure of boundary-layer turbulent flows 

(Kaimal and Finnigan, 1994), under the same boundary-layer turbulent flows, the cospectrum for w with ρα is the same as for 

w with ραT. Because the sensor for ραT is assumed to have the same frequency response as the sensor for ρα, both sensors have 880 

the same high-frequency loss, sharing the same transfer function (Moore, 1986). The transfer function for low-frequency loss 

due to Reynolds’ averaging either side of Eq. (C6) is also used for its other side (Massman, 2000). Therefore, fcα is equal to 

fcαT, which, from Eq. (C6), leads to  

( ) ( )' ' ' '

c c T T rmrm
f w f w    = .          (C7)  

In this equation, the left term is the frequency-corrected ( )' '

rm
w  , which  can be denoted by ( )' '

rmf
w  where subscript f 885 

indicates this covariance to be corrected for frequency loss, and the right term is the frequency-corrected ( )' '

T rm
w  , which 

can be denoted by ( )' '

T rmf
w  (Moore, 1986; Massman, 2000; van Dijk, 2002). Accordingly, Eq. (C7) becomes  

( ) ( )' ' ' '

T rmfrmf
w w  = ,          (C8)  
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where subscript rmf  indicates the covariance was corrected through coordinate rotations (r), lag maximization (m), and low- 

and high-frequency corrections (f). Equation (C8) shows the covariance of w with measured ρα is equal to its counterpart of 890 

w with true ρα even after a  series of corrections before used to calculate α flux through Webb-Pearman-Leuning (WPL) 

corrections (Webb et al., 1982).  

For the covariance of w with Ta, the same conclusion can be derived, given by 

( ) ( )' ' ' '

a aT rmfrmf
wT wT=           (C9) 

Assume w to be an accurate value for this study topic, through WPL correct ions, ( )' '

rmf
w  and ( )' '

rmf
wT

can be used to 895 

derive an analytical equation for α flux from ρα with an error as ranged by its accuracy and Ta with its error specif ied for the 

air temperature sensor whereas ( )' '

T rmf
w 

and ( )' '

T rmf
wT

can be used to derive an analytical equation for α flux from ραT and 

TaT, each of which is assumed not to include an error. The comparison of both analytical equations derived after the WPL 

corrections can demonstrate the partial effects of Δρα on the uncertainty of α flux data (see Sect. 6.2).   
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