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Reply to Reviewer 1

The authors thank both reviewers for carefully evaluating our manuscript, and for their valuable suggestions. The paper was

amended and corrected in several ways detailed below. Abstract and Introduction (Section 1) were rewritten to clarify the

objectives and the organization of the manuscript. In the revised version, it is emphasized that the focus of the study is on

the assessment of downward continuation (extrapolation) quality rather than the construction of a new parametric model of5

selected LTI variables. The LTI model presented in Section 2 is designed to demonstrate, illustrate, and test the probabilistic

DIPCont framework, and the expectations towards that model are made explicit at the beginning of Section 2. The first two

subsections of Section 2 were swapped to explain the LTI model setup further in the presentation of scale height parameters.

Below are our responses to the comments of the first reviewer Alessio Pignalberi.

In the manuscript I did not find any clear information about the magnetic latitudes the mission is going to cover, or10

better, which are the latitudes for which the calculations developed here are valid. From the figures shown in the

manuscript and from the discussion, I suppose that the main goal is the polar/auroral latitudes where the Pedersen

conductivity is of utmost importance at LTI altitudes, but this is not clearly stated in the manuscript. If so, this

should be clearly stated in the introduction.

I wonder if the Daedalus orbit configuration will make possible to get data at low latitudes, and also to estimate15

the Hall conductivity.

The following text was included in the revised version of the Introduction.
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Daedalus aims to perform in situ measurements in the LTI from an elliptical orbit, with a nominal perigee of 150 km and an

apogee on the order of 2000 km. Very low altitudes down to 120 km will be sampled by use of propulsion, through a series of

short excursions in the form of perigee descent maneuvers. These are planned to be performed at high latitudes (>65 degrees20

magnetic latitude), where Pedersen conductivity and Joule heating maximize. The highly elliptical orbit of Daedalus leads to a

natural precession of the orbit’s semi major axis, both in magnetic latitude and in magnetic local time; this means that Daedalus

will perform measurements along its elliptical orbit down to the nominal perigee of 150 km throughout all magnetic latitudes.

The geophysical observables sampled by Daedalus will enable obtaining a series of derived products, as described in Table 1 of

the Daedalus Report for Assessment (ESA, 2020), which, among many others, include the calculation of Pedersen conductivity25

and Hall conductivity.

Line 57: About "and disregarding the contribution from electron-neutral collisions", please provide a reference to

support this hypothesis or, alternatively, provide a numerical example.

The following text was included in the revised version of Section 2.

As explained in reviews of ionospheric physics (e.g., Rishbeth, 1997), contributions from electron-neutral collisions peak in30

the D-region but are unimportant at higher altitudes, see also Figure 4 in Sarris et al. (2023b).

Line 87: About "Disregarding altitude changes of atmospheric composition", ?I wonder how much the hypothesis

of disregarding altitude changes of atmospheric composition could impact on the derivation of the neutral scale

height vertical gradient. In fact, as also the authors explained before, in the LTI the atmosphere is not uniform

in composition and every constituent obeys to its own barometric law. The hypothesis made here seems to be in35

contrast with what has been said before. To substantiate your working hypothesis, I would suggest to verify the

range of its applicability through the NRLMSISE-00 model.

The empirical atmospheric model NRLMSIS 2.0 was run for different seasons and a range of latitudes, to produce profiles

of neutral LTI variables that are displayed in the supplementary figures S1a-S1d. The following text was included in the revised

version of Subsection 2.1.40

Variations of gravity g across the LTI are in the range of a few percent and can be neglected in this context. Profiles of Tn,

Mn, and HP
n as predicted by the empirical atmospheric model NRLMSIS 2.0 (Emmert et al., 2021) for different seasons and

latitudes are displayed in Figures S1a–S1d as part of the supplementary material to this paper, indicating that relative variations

of average molar mass are indeed significantly smaller than those of neutral temperature. We thus disregard altitude changes in

average molar mass Mn as imposed by changes in atmospheric composition, and further assume that temperature Tn, pressure45

scale height HP
n , and density HN

n vary linearly with altitude in a self-consistent manner as described by Eqs. (4) and (5).

Line 152: About "For simplicity, the ion gyrofrequency is set to a constant.", I suppose constant with the respect

to the altitudinal variation once the location is set, isn’t it?

The International Reference Model (IRI) 2020 was run for different seasons and a range of latitudes, to produce the supple-

mentary figures S1a-S1d. The following text was included in the revised version of Subsection 2.7.50
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Furthermore, in the logic of the LTI model constructed for the initial version of the DIPCont package, changes in atmospheric

composition and thus average ion mass are disregarded. Inspection of Figures S2a–S2d in the supplementary material to this

report indicate that in the lower part of the LTI (altitudes below about 150 km) being the focus of downward continuation

quality in the current study, variations of average ion mass with altitude are relatively small. Hence, altitude variations of

ion gyrofrequency are neglected. In the same way as for other LTI model variables, namely, through the dependence of the55

parameters in the vector p = p(x) (see Subsection 2.8 below) on the coordinate x, horizontal variations of magnetic field

strength B and thus ion gyrofrequency Ωi can be modeled.

Lines 304-306: About "electron density makes the main contribution to the peaked height variation of Pedersen

conductivity...", this is true but, to convince a skeptical reader about this, I would present also the plots for the

neutral density, ion temperature and ion-collision frequency for the case shown in Figures 4-6. It is enough to show60

vertical profiles like Figure 5. These plots would also make clearer the altitudinal variations of these parameters

as defined by the equations derived in the paper, and could be useful for the discussion of the results.

Supplementary Figure S3 contains additional information on the DIPCont model run producing the results in Figures 4, 5,

6. The following text was included in the revised version of Subsection 3.4.

Figure S3 in the supplementary material to this report provides additional information on this DIPCont model run, visualizing65

model distributions, ensembles of altitude profiles, and extrapolation horizons also for neutral temperature Tn, neutral density

Nn, ion temperature Ti, and ion-neutral collision frequency νin.

Lines 306-307: About "Pedersen conductivity controls the height variation of Joule heating", I would show the an-

alytical dependence between these two parameters. Adding another equation to the paper should not be a problem

given the number of equations already present.70

The following text was included in the revised version of Section 4.

In the neutral wind reference frame, Joule heating is j⊥ ·E⊥ = σP |E⊥|2 where the subscript ⊥ indicates a vectorial compo-

nent perpendicular to the ambient magnetic field direction B̂. Height variations of E⊥ are negligible according to the following

rationale, see, e.g., (Rishbeth, 1997). Due to high parallel conductivity, the electric field componentE‖ = Es parallel to B̂ van-

ishes, i.e., 0 = Es =−∂Φ
∂s , where s is the magnetic field line coordinate, and Φ denotes the electric potential. The electric field75

componentEq in a direction perpendicular to B̂ captured by a coordinate q then satisfies ∂Eq

∂s =− ∂
∂s

∂Φ
∂q =− ∂

∂q
∂Φ
∂s = ∂Es

∂q = 0.

Lines 317-317: About "In Figure 1 and in the following, latitudinal inhomogeneity of electron density....", is the

crossing of the auroral oval taken just as an example or will be constrained by the orbit configuration?

The Daedalus orbit configuration is characterized in the revised version of the Introduction. Regarding the horizontal varia-

tion of electron density in Figures 1, 7, 8, the following text was included in the revised version of Section 4.80

Since the physics of energetic particle precipitation is not incorporated in this initial version of the DIPCont package, the

horizontal variation of electron density expected for an auroral oval crossing is prescribed through ad hoc choices of horizontal
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electron density peak parameters profiles, see the option LTIModelType=’NeAuroralZoneCrossing’ in the DIPCont

code as part of the supplementary material to this report.

Lines 371-372: About "The DIPCont package contains a parameter to study the effect of F-layer residuals on...",85

probably, the dayside F1 layer might slightly affect the electron density in the range 150-200 km of altitude, above

all in the summer season. This is a point to check in future as a function of the perigee altitude.

Thanks for the suggestion.

Lines 410-414: In my opinion, this part is not very clear as it is written. Indeed, the derivation of (A4) on the base

of (A3) is based on the fact that d lnNn =−dz/HN
n which in turn leads to (A5). As a consequence, in my view, is90

the adoption of d lnNn =−dz/HN
n who leads to (A4) and not vice versa. I am not questioning the correctness of

this part but only the way in which it is presented. Moreover, it should be make clearer the difference between the

pressure scale height and the density scale height. Line 436: About "In the isothermal limit. . . ", as a consequence,

HN tells us how the scale height HP changes for a non-isothermal atmosphere. This will solve my previous

comment regarding the relation between HN and HP , and should be put in evidence in the text.95

The respective paragraphs were rewritten as follows.

Rearranging − dz
HP

n
= dPn

Pn
= dlnPn and integrating leads to

Pn(z) = Pn0 exp

−
z∫

z0

dz̃

HP
n (z̃)


where the altitude dependence of HP

n directly reflects the change of temperature Tn with z.

Analogous differential and integral expressions for the neutral density, namely, dlnNn = − dz
HN

n
and

Nn(z) = Nn0 exp

−
z∫

z0

dz̃

HN
n (z̃)

 ,

are derived as follows. Combining the differential of the ideal gas law dPn = NnkdTn + kTn dNn with the hydrostatic condi-

tion yields−Nnmngdz = NnkdTn + kTn dNn and thus−mng
kTn

dz− 1
Tn

dTn = 1
Nn

dNn = dlnNn. Since dTn

Tn
= dlnTn =

dlnHP =
dHP

n

HP
n

, one obtains
dlnNn

dz
= − 1

HP
n

(
1 +

dHP
n

dz

)
.

Therefore, the density scale height HN
n in the expression dlnNn = − dz

HN
n

is given by

HN
n = HP

n

(
1 +

dHP
n

dz

)−1

.
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Line 438: About "Following the approach first presented by Chapman (1931),", Your derivation is based on the

assumption of a single atmospheric constituent, like in the Chapman original derivation. Have you verified the100

reliability of this assumption in the LTI region and in the formation of the E layer? I suppose that the E layer

should be the superposition of Chapman-like layers from O2+, N2+ and NO+ ions. This point should be at least

discussed.

In the revised version of the manuscript, the single-constituent assumption is discussed in detail in Section 2, supported by

model runs of the empirical models NRLMSIS 2.0 and IRI 2020, with results shown in supplementary figures S1a–S1d and105

S2a–S2d. Specifically, concerns regarding the multi-ion composition in the lower part of the LTI are addressed in the revised

version of Subsection 2.7 as follows.

Furthermore, in the logic of the LTI model constructed for the initial version of the DIPCont package, changes in atmospheric

composition and thus average ion mass are disregarded. Inspection of Figures S2a–S2d in the supplementary material to this

report indicate that in the lower part of the LTI (altitudes below about 150 km) being the focus of downward continuation110

quality in the current study, variations of average ion mass with altitude are relatively small. Hence, altitude variations of ion

gyrofrequency are neglected.

Appendix B: From the equations in Appendix B, I suppose that the z axis has been taken increasing towards the

ground. Otherwise, the minus sign should appear in (B1) and in the following equations in the exponential. In

my view, this choice is not the best one because it does not make clear that the radiation is absorbed by neutral115

particles through the radiation path. Anyway, the direction of the z axis should be clearly stated in the text.

In Appendix B, the z axis points upwards. Radiation enters from above, energy is absorbed between altitudes z+ dz and

z, the intensity change dI = I(z+ dz)− I(dz) is positive. Radiation intensity decreases along its path down the atmosphere,

hence it must increase with altitude, and dI/dz > 0 as given by (B1). The direction of the z axis has been made explicit in

Appendix B through the following addition.120

Here z is altitude, and the z axis is pointing upwards as before.

Line 84: Suggestion about the use of P for the scale height. Many people working in the ionosphere field could

confuse it with the plasma scale height because of the presence of P.

Thanks for alerting us to this potential source of confusion. The symbol P is further overused in this context as it also

indicates Pedersen conductivity and Pedersen currents. Since we could not think of another symbol that could equally well125

indicate pressure, however, we kept the notation.

Line 366: controling –> controlling

Corrected.

Line 367: the the –> the
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Corrected.130

Line 442: precipitaion –> precipitation

Corrected.

Eq. (B7) is just a repetition of Eq. (A15), it is not necessary to repeat it.

This is correct, but we decided to keep the repetition to facilitate the reading of the integral in (B8).

Line 508: aopgee –> apogee135

Corrected.
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Supplementary Figures S1a–S1d

The four diagrams show profiles of atmospheric density and temperature parameters computed from output of the empirical

atmospheric model NRLMSIS 2.0 for 12:00 UT, geographic longitude 0◦, and three latitudes: β = 15◦ (first row), β = 45◦

(second row), β = 75◦ (third row). Simulation results have been provided by the Community Coordinated Modeling Center at

Goddard Space Flight Center through their publicly available simulation services (https://ccmc.gsfc.nasa.gov). The empirical5

atmospheric model NRLMSIS 2.0 was developed by John Emmert and Douglas Drob at NRL. For further information, see

Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M. Jr., Mlynczak, M. G., et al. (2020). NRLMSIS 2.0:

A whole-atmosphere empirical model of temperature and neutral species densities. Earth and Space Science, 7,

e2020EA001321. https://doi.org/ 10.1029/2020EA001321

The first column displays the total mass density together with partial mass densities of N2, O2, O, and Ar. The second column10

shows the average neutral molar mass 〈Mn〉 in units of g/mol as given by 〈Mn〉=
∑

sMn,sNn,s/
∑

sNn,s, where Mn,s is

the molar mass of species s. The corresponding number densities Nn,s are provided by the NRLMSIS 2.0 model, as well as

the neutral temperature profile shown in the third column. In the fourth column, the resulting profle of pressure scale height is

shown. The fifth column displays the relative change of neutral temperature and of average neutral molar mass. Each diagram

represent one of the four seasons in the year 2018: Figure S1a – Spring equinox, 20 March 2018; Figure S1b – Summer solstice,15

21 June 2018; Figure S1c – Autumn equinox, 23 September 2018; Figure S1d – Winter solstice, 21 December 2018.
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Figure S1a (Spring equinox, 20 March 2018, 12:00 UT, geographic longitude 0◦)
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Figure S1b (Summer solstice, 21 June 2018, 12:00 UT, geographic longitude 0◦)
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Figure S1c (Autumn equinox, 23 September 2018, 12:00 UT, geographic longitude 0◦)
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Figure S1d (Winter solstice, 21 December 2018, 12:00 UT, geographic longitude 0◦)
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Supplementary Figures S2a–S2d

The four diagrams show profiles of ionospheric parameters computed from output of the Ionospheric Reference Ionosphere

(IRI) 2020 model for 12:00 UT, geographic longitude 0◦, and three latitudes: β = 15◦ (first row), β = 45◦ (second row),

β = 75◦ (third row). Simulation results have been provided by the Community Coordinated Modeling Center at Goddard Space

Flight Center through their publicly available simulation services (https://ccmc.gsfc.nasa.gov). The International Reference5

Ionosphere (IRI) 2020 Model was developed by the URSI/COSPAR Working Group on IRI. For further information, see

Bilitza, D., Pezzopane, M., Truhlik, V., Altadill, D., Reinisch, B. W., Pignalberi, A. (2022). The International

Reference Ionosphere model: A review and description of an ionospheric benchmark. Reviews of Geophysics, 60,

e2022RG000792. https://doi. org/10.1029/2022RG000792

The first column displays the percentages Ps of the three main contributor species s to ion density in the region below10

200 km, namely, NO+, O+
2 , and O+ ions. The second column shows the average ion molar mass 〈Mi〉 in units of g/mol

as given by 〈Mi〉=
∑

sMi,sPs/
∑

sP
s, where Mi,s is the molar mass of species s. Profiles of neutral temperature Tn, ion

temperature Ti, and electron temperature Te are shown in the third column. Note that a dashed linestyle was chosen for the Ti

profile to show that in the range between 100 km and 200 km, it coincides with the Tn profile. Each diagram represent one of

the four seasons in the year 2018: Figure S2a – Spring equinox, 20 March 2018; Figure S2b – Summer solstice, 21 June 2018;15

Figure S2c – Autumn equinox, 23 September 2018; Figure S2d – Winter solstice, 21 December 2018.
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Figure S2a (Spring equinox, 20 March 2018, 12:00 UT, geographic longitude 0◦)
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Figure S2b (Summer solstice, 21 June 2018, 12:00 UT, geographic longitude 0◦)
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Figure S2c (Autumn equinox, 23 September 2018, 12:00 UT, geographic longitude 0◦)
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Figure S2d (Winter solstice, 21 December 2018, 12:00 UT, geographic longitude 0◦)

0 20 40 60 80 100
100

120

140

160

180

200
Ion percentages (lat = 15 )

NO +

O +
2

O +

15 20 25 30 35
100

120

140

160

180

200
Average ion mass (lat = 15 )

0 200 400 600 800 1000
100

120

140

160

180

200
Temperatures (lat = 15 )

Tn [K]
Ti [K]
Te [K]

0 20 40 60 80 100
100

120

140

160

180

200
Ion percentages (lat = 45 )

NO +

O +
2

O +

15 20 25 30 35
100

120

140

160

180

200
Average ion mass (lat = 45 )

0 200 400 600 800 1000
100

120

140

160

180

200
Temperatures (lat = 45 )

Tn [K]
Ti [K]
Te [K]

0 20 40 60 80 100
Ion percentage [%]

100

120

140

160

180

200
Ion percentages (lat = 75 )

NO +

O +
2

O +

15 20 25 30 35
Average ion mass [g/mol]

100

120

140

160

180

200
Average ion mass (lat = 75 )

0 200 400 600 800 1000
Temperature [K]

100

120

140

160

180

200
Temperatures (lat = 75 )

Tn [K]
Ti [K]
Te [K]

3



Daedalus Ionospheric Profile Continuation (DIPCont): Monte Carlo
Studies Assessing the Quality of In Situ Measurement Extrapolation

— Supplementary Figure S3 —
Joachim Vogt1,7, Octav Marghitu2, Adrian Blagau2,1,7, Leonie Pick3,1,7, Nele Stachlys4,1,7,
Stephan Buchert5, Theodoros Sarris6, Stelios Tourgaidis6, Thanasis Balafoutis6, Dimitrios Baloukidis6,
and Panagiotis Pirnaris6

1School of Science, Constructor University, Campus Ring, 28759 Bremen, Germany
2Institute for Space Science, Str. Atomistilor 409, Ro 077125, Bucharest-Magurele, Romania
3Institute for Solar-Terrestrial Physics, German Aerospace Center, Kalkhorstweg 53, 17235 Neustrelitz, Germany
4Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
5Swedish Institute of Space Physics, Uppsala, 75121, Sweden
6Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, 67132, Greece
7Until December 2022, Constructor University operated under the name Jacobs University Bremen

Correspondence: Joachim Vogt (jvogt@constructor.university)

Supplementary Figure S3

The graphics provides additional information on the DIPCont modeling results shown in Figures 4, 5, 6. Variables displayed in

Figure S3: neutral temperature (first row), neutral density (second row), electron density (third row), ion temperature (fourth

row), ion-neutral collision frequency (fifth row), Pederson conductivity (sixth row).

First column: Model distributions of LTI variables. Synthetic measurements are produced along the two satellite orbits (white5

dashed lines). The parameters of vertical profiles are estimated using measurements within a window (white solid rectangle)

around two locations in horizontal direction (blue and green dashed lines).

Second column and fourth column: Visualization of the ensemble of altitude profiles generated from the Monte Carlo distri-

butions of model parameters. Shown are selected quantiles evaluated at the vertical grid of LTI altitudes. Second column: center

position (blue dashed line) indicated in the first column diagram. Fourth column: right position (green dashed line) indicated10

in the first column diagram.

Third column and fifth column: Solid lines (blue and green) give the relative root-mean-square deviations of Monte Carlo

altitude profiles from the respective input model profiles. Vertical dotted and solid lines represent a set of chosen error levels,

ranging from 0.5 % and 1 % (yellow) to 32% and 64% (magenta). The corresponding horizontal lines show the extrapolation

horizons indicating at which altitude the relative deviation equals the respective error level. Third column: center position (blue15

dashed line) indicated in the first column diagram. Fifth column: right position (green dashed line) indicated in the first column

diagram.
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Figure S3
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Supplementary Figure S4a

The diagram illustrates how visit times of ground horizontal distances are expected to differ for the two satellites of a dual-

spacecraft mission to the LTI, provided they share the same orbital plane, have identical semi-major axes, and pass through their

perigees at the same time. In the example, satellite A is on a Keplerian orbit with perigee altitude zAper = 130km and apogee

altitude zAapo = 3000km. Perigee and apogee altitudes of satellite B are zBper = 150km and zBapo = 2980km, respectively. The5

orbits are computed using Stoermer-Verlet integration of the equation of motion. Left panel: Satellite altitudes z versus ground

horizontal distance x. Center panel: Satellite visit times tA = tA(x) and tB = tB(x) at ground horizontal distance x. Right

panel: Difference ∆t(x) = tB(x)− tA(x) of satellite visit times at ground horizontal distance x.

Supplementary Figure S4b

The diagram provides additional information on the satellite orbit representations implemented in the DIPCont package, using a10

satellite on a Keplerian orbit with perigee altitude zper = 130km and apogee altitude zapo = 3000km as an example. Compared

are the results of Stoermer-Verlet integration and the local polynomial approximation constructed in the Appendix of the

manuscript. Time and ground horizontal distance are centered at the perigee location. Upper left panel: Altitude z versus time t.

Lower left panel: Ground horizontal distance x versus time t. Upper right panel: Altitude deviation of the local polynomial

approximation relative to the result of the Stoermer-Verlet integration. Lower right panel: Ground horizontal distance deviation15

of the local polynomial approximation relative to the result of the Stoermer-Verlet integration.
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Figure S4a
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Figure S4b
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Abstract. In situ satellite exploration of the lower thermosphere and ionosphere (LTI) as anticipated in the recent Daedalus

mission proposal to ESA will be essential to advance the understanding of the interface between the Earth’s atmosphere and its

space environment. To address physical processes also below perigee, in situ measurements are to be extrapolated using models

of the LTI. Motivated by the need for assessing how cost-critical mission elements such as perigee and apogee distances as well

as the number of spacecraft affect the accuracy of scientific inference in the LTI, the Daedalus Ionospheric Profile Continuation5

(DIPCont) project is concerned with the attainable quality of in situ measurement extrapolation for different mission param-

eters and configurations. The Daedalus Ionospheric Profile Continuation (DIPCont) project is concerned with the question

how in situ measurements in the lower thermosphere and ionosphere (LTI) can be extrapolated using parametric models of

observables and derived variables. To reflect the pronounced change of temperature across the LTI, non-isothermal models for

neutral density and also electron density are constructed from scale height profiles that increase linearly with altitude. This10

report introduces the methodological framework of the DIPCont approach. Once a LTI model is chosen, Eensembles of model

parameters are created by means of Monte Carlo simulations using synthetic measurements based on model predictions and

relative uncertainties as specified in the Daedalus Report for Assessment. The parameter ensembles give rise to ensembles of

model altitude profiles for LTI variables of interest. Extrapolation quality is quantified by statistics derived from the altitude

profile ensembles. The vertical extent of meaningful profile continuation is captured by the concept of extrapolation horizons15

defined as the boundaries of regions where the deviations remain below a prescribed error threshold. The methodology allows

for assessing how cost-critical elements of the Daedalus mission proposal such as perigee and apogee distances as major factors

controlling the necessary amount of propellant and radiation shielding, respectively, affect the accuracy of scientific inference

in the LTI. To demonstrate the methodology, the initial version of the DIPCont package presented in this paper contains a

simplified LTI model with a small number of parameters. As a major source of variability, the pronounced change of tem-20

perature across the LTI is captured by self-consistent non-isothermal neutral density and electron density profiles, constructed

1



from scale height profiles that increase linearly with altitude. The resulting extrapolation horizonsFirst results are presented for

dual-satellite measurements at different inter-spacecraft distances but also for the single-satellite case to compare the two basic

mission scenarios under consideration. DIPCont models and procedures are implemented in a collection of Python modules

and Jupyter notebooks supplementing this report.25

1 Introduction

The lower thermosphere and ionosphere (LTI) at altitudes between about 100 km and 200 km is characterized by transitions of

several atmospheric attributes. It is the lower part of the heterosphere where atmospheric constituents are no longer mixed by

turbulence, and start to follow separate barometric laws (e.g., Picone et al., 2002; Izakov, 2007). As part of the thermosphere,

the temperature profile shows a significant increase with altitude throughout the whole LTI (e.g., Chamberlain and Hunten,30

1987). As part of the ionosphere, it includes the E-layer peak in electron density and the bottom side of the F-layer (e.g.,

Hargreaves, 1992). With strongly altitude-dependent neutral-ion and neutral-electron collision frequencies, the LTI supports

an anisotropic conductivity tensor that gives rise to a complex interplay of electric fields and currents. The conductivity tensor

components affecting the directions perpendicular to the ambient magnetic field, namely, Pedersen and Hall conductivities,

show pronounced maxima in the LTI (e.g., Baumjohann and Treumann, 1996). A key variable quantifying its energetics is the35

Joule heating rate. Particular rich dynamics can be observed in the auroral region at high latitudes where energy and momentum

from the magnetosphere are fed into the ionosphere through currents flowing parallel to the ambient magnetic field lines (e.g.,

Vogt et al., 1999). A comprehensive review of LTI features, measurement techniques, and models is provided by Palmroth et al.

(2021).

Since the early 20th century, the LTI has been studied extensively using ground-based remote sensing facilities such as40

ionosondes and radars, but in all aspects requiring in-situ observations it remains underexplored territory. Rocket flights (e.g.,

Sangalli et al., 2009) can offer only local and temporally confined information. Major technical challenges have so far prevented

a satellite mission to the deep, dense part of the LTI, despite scientific interest, community proposals, and feasibility studies

by major space agencies. A recent initiative along this line is the Daedalus mission proposal (Sarris et al., 2020), submitted to

ESA in response to the Explorer 10 Call under the Earth Observation Program, and selected together with two other proposals45

for a Phase-0 science and technical study. Daedalus aims to perform in situ measurements in the LTI from an elliptical orbit,

with a nominal perigee of 150 km and an apogee on the order of 2000 km. Very low altitudes down to 120 km will be sampled

by use of propulsion, through a series of short excursions in the form of perigee descent maneuvers. These are planned to be

performed at high latitudes (>65 degrees magnetic latitude), where Pedersen conductivity and Joule heating maximize. The

highly elliptical orbit of Daedalus leads to a natural precession of the orbit’s semi major axis, both in magnetic latitude and in50

magnetic local time; this means that Daedalus will perform measurements along its elliptical orbit down to the nominal perigee

of 150 km throughout all magnetic latitudes. The geophysical observables sampled by Daedalus will enable obtaining a series

of derived products, as described in Table 1 of the Daedalus Report for Assessment (ESA, 2020), which, among many others,

2



include the calculation of Pedersen conductivity and Hall conductivity. The Daedalus Report for Assessment (ESA, 2020)

includes a thorough review of key LTI variables, like neutral density and temperature, electron density, and conductivities.55

The range of accessible perigees will be particular critical for any future LTI satellite mission, with severe impact on the

propellant budget and other mission performance parameters (Sarris et al., 2020). With nominal perigees not much less than

150 km, peak conductivities and currents controling E-region electrodynamics lie typically below the orbits. Physically mean-

ingful downward continuation of in situ satellite measurements is desired, ideally using state-of-the-art models of the LTI (e.g.,

Sarris et al., 2023b). Another critical element of LTI mission conception is the number of spacecraft (Sarris et al., 2023a). The60

Daedalus Ionospheric Profile Continuation (DIPCont) project is concerned with vertical profiles of LTI variables and their

reconstruction from dual-spacecraft and single-spacecraft observations. More specifically, the focus of the project is on the

quality of profile continuation towards the lower LTI with its maxima in conductivities and current intensities, as given by

the accuracy, the resolution, and the coverage of the reconstructions obtained from in-situ measurements. Inspired by early

work to extrapolate vertical profiles carried out under the Daedalus Phase-0 Science Study, DIPCont introduces a systematic65

probabilistic approach to the problem.

The DIPCont procedure to assess the quality of in situ measurement downward continuation is detailed in Section 3. In brief,

after choosing a LTI model, Using the parametric models of key LTI observables and derived variables described in Section 2,

representative ensembles of altitude profiles are generated by means of Monte Carlo simulations as explained in Section 3. The

altitude profile ensembles give rise to statistical measures of relative deviation which in turn allow for estimating extrapolation70

horizons, effectively capturing the altitude range where deviations remain within given error thresholds. The basic ideas are

illustrated in Figure 1, displaying theelectron density and Pedersen conductivity extrapolation horizons for a range of relative

error thresholds on top of the model distributions of electon density and Pedersen conductivity used for producing synthetic

measurements along the orbits of a dual-satellite mission. It is important to note that the filled contour representations of

electron density and Pedersen conductivity model distributions mainly serve to provide contextual information, while the75

essential results of the DIPCont modeling procedure are the extrapolation horizons represented as plain contour lines, in

response to the satellite orbit configuration (white lines). The extrapolation horizons of the model run shown in Figure 1 suggest

that for a dual-satellite mission as anticipated in the Daedalus Report for Assessment (ESA, 2020), downward continuation

yields relative errors of a few ten percent at altitudes where electron density and Pedersen conductivity maximizes. Implications

are discussed in more detail further below in Section 4, and contrasted with the single-satellite case.80

The LTI model used to introduce and demonstrate the DIPCont methodology in this paper is presented in Section 2. The

parametric model captures the whole LTI temperature range and thus addresses a main source of variability. To limit the number

of model parameters and thus also instabilities during model inversion in this initial DIPCont study, LTI variables showing less

pronounced changes and ionization source mechanisms are treated in a simplified manner. Furthermore, since the quality of

downward continuation is in the focus of our study, the LTI model is restricted to E-region physics, with the influence of the85

F-region left for future work.

Further first results are presented in Section 4, including a brief comparison between the single-spacecraft and the dual-

spacecraft scenario. In Section 5, our findings are discussed in the context of important technical parameters and constraints
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Figure 1. Extrapolation horizons and orbit configuration displayed on top of a tTwo-dimensional section of the modeled LTI. Upper panel:

Electron density Ne. Lower panel: Pedersen conductivity σP. Synthetic measurements are produced along the two satellite orbits (white

dashed lines). The parameters of vertical profiles are estimated using measurements within a window (white solid rectangle) of width 2∆x

around the nodes of a horizontal grid (gray dashed lines). Extrapolation horizons (solid and dotted colored lines) for a set of relative error

levels are displayed as contours of a relative devation measure, here the root-mean-square deviation of the ensemble of extrapolated profiles

from the synthetic model prediction.
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relevant for a low-altitude mission. The body of the paper is concluded in Section 6 with prospects for upcoming work.

Model derivations and technical details are presented in the Appendices, with particular emphasis on the incorporation of a90

non-isothermal temperature profile varying linearly with altitude.

2 Parametric models of LTI variables

Probabilistic measures of extrapolation quality produced by the DIPCont procedure detailed in Section 3 are based on synthetic

in situ observations predicted by a model of the LTI. As emphasized in space physics textbooks and reviews of the LTI (e.g.,

Pfaff, 2012; Richmond, 1995), the full complexity of LTI variability and dynamics calls for a full multi-species description,95

taking into account source and loss processes varying in importance and efficiency as functions of magnetic latitude and

local time and further factors. In the future, DIPCont functionality is planned to be included in the Daedalus MASE (Mission

Assessment through Simulation Exercise) toolset (Sarris et al., 2023b), designed with the purpose to assess and demonstrate

the closure of the mission objectives of the proposed Daedalus mission.

The more complex the LTI model of choice, however, the larger the number of parameters that are to be estimated with a100

downward continuation of in situ satellite measurements, which in turn tend to negatively affect the stability of model inver-

sion. With these implications in mind, the initial version of the DIPCont package contains a simplified LTI description based

on a limited set of parameters. Extrapolation quality of a single but important process, namely, the formation of Pedersen

conductivity σP, is supposed to be studied in a self-consistent manner. To this end, only a single particle species is considered,

and classical photoionization physics is applied to parametrize ionospheric layer formation. Furthermore, as explained in re-105

views of ionospheric physics (e.g., Rishbeth, 1997), contributions from electron-neutral collisions to the Pedersen conductivity

σP peak in the D-region but are unimportant at higher altitudes, see also Figure 4 in Sarris et al. (2023b). We thus arrive at

In this first version of the DIPCont model, the LTI is described by a series of self-consistent parametric models to assess the

quality of conductivity profile reconstruction from in situ measurements. Considering Pedersen conductivity for a quasi-neutral

two-component plasma and disregarding the contribution from electron-neutral collisions, the expression110

σP =
Nee

2

mi

νin
ν2
in + Ω2

i

(1)

(e: elementary charge, mi: ion particle mass, Ωi: ion gyrofrequency)suggests, suggesting that the altitude variabilities of elec-

tron number density Ne and ion-neutral collision frequency νin need to be modeled carefully. Less critical is the dependence

of ion gyrofrequency Ωi on magnetic field strength as it does not vary much over the LTI altitude range, and is captured

with sufficient accuracy by well-established empirical models. Different parametrizations exist for the ion-neutral collision115

frequency νin (e.g., Palmroth et al., 2021; Huba, 2019; Evans et al., 1977). In general the expressions are directly proportional

to the number density Nn of neutral particles. As presented in the Appendices A and B, also the self-consistent construction

of electron density Ne rests prominently on the Nn profile, which in turn is conveniently modeled in terms of the density scale

height HN
n . This aspect is chosen as a starting point below in Subsection 2.1, to further explain and motivate the LTI modeling

approach.120
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Altitude profiles of neutral density Nn and electron density Ne depend on neutral temperature Tn. While isothermal

approximations are still widely used for sufficiently narrow atmospheric layers, pronounced temperature changes over the LTI

altitude range require at least a simplified non-isothermal description. Below we consider a linear temperature profile capturing

a representative range of typical thermospheric values (Picone et al., 2002) that in the LTI can be seen as an approximation of

the classical thermospheric profile suggested by (Bates, 1959) as a solution of the heat conduction equation. Self-consistent125

parametric models of neutral density Nn and electron density Ne are developed for the linear temperature profile.

The LTI model can be summarized in the form m = m(z|p) with a vector m of LTI observables and derived functions, and

a vector p = p(x) of model parameters, separating the primary (strong) dependence on altitude z from the secondary (weak)

dependence on horizontal location x in a numerically efficient manner. Note the model functions are local representations

of altitude profiles in the sense that they refer to a flexible reference altitude, z0, that can be adapted to the locations where130

measurements are taken. In the DIPCont development phase it was observed that parameters of model functions in local

representations typically showed weaker correlations and could be estimated more reliably, in particular as compared to the

regional representations, relying on parameters at some fixed altitude, like the peak electron density height.

As in the Daedalus Report for Assessment (ESA, 2020), the vertical boundaries of the LTI region are assumed to be at

zB = 100km (base or bottomside altitude) and zT = 200km (topside altitude).135

2.1 Scale height parameters

As demonstrated in Appendix A, profiles of (neutral gas) pressure Pn and neutral (number) density Nn are conveniently

constructed using

Pn(z) = Pn0 exp

−
z∫

z0

dz̃

HP
n (z̃)

 , (2)

Nn(z) = Nn0 exp

−
z∫

z0

dz̃

HN
n (z̃)

 , (3)140

where HP
n and HN

n denote the pressure scale height and the density scale height, respectively. Furthermore, it is shown that

HN
n = HP

n

(
1 +

dHP
n

dz

)−1

(4)

if Tthe pressure scale height HP
n is defined as

HP
n =

kTn
mng

=
RgasTn
Mng

(5)

where(k:is the Boltzmann constant, Tn: neutral temperature, g:is gravitational acceleration, Rgas:is the universal gas constant,

mn:is the average particle mass, and Mn:is the average molar mass) changes only with temperature Tn. Eqs. (4) and (5)

further imply that, if temperature Tn varies linearly with altitude z, then also HP
n and HN

n . Disregarding altitude changes of

atmospheric composition and gravity, the height variation of pressure scale height is also linear which in turn means that the
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gradient of pressure scale height
dHP

n

dz
=

Rgas

Mng

dTn
dz

=
Rgas

Mng

Tn0

Ln0

is constant. In Appendix A it is shown that this invariance implies that also the density scale height HN
n varies only linearly,145

and the constant inverse gradients

γ =

(
dHP

n

dz

)−1

(6)

and

η =

(
dHN

n

dz

)−1

(7)

are related through150

η = γ+ 1 . (8)

Variations of gravity g across the LTI are in the range of a few percent and can be neglected in this context. Profiles of Tn,

Mn, and HP
n as predicted by the empirical atmospheric model NRLMSIS 2.0 (Emmert et al., 2021) for different seasons and

latitudes are displayed in Figures S1a–S1d as part of the supplementary material to this paper, indicating that relative variations

of average molar mass are indeed significantly smaller than those of neutral temperature. We thus disregard altitude changes in155

average molar mass Mn as imposed by changes in atmospheric composition, and further assume that temperature Tn, pressure

scale height HP
n , and density HN

n vary linearly with altitude in a self-consistent manner as described by Eqs. (4) and (5).

According to Eq. (A11), the local density scale height HN
n0 can be obtained from using the inverse scale height gradients and

the local pressure scale height HN
n0 from the expression

HN
n0 =

HP
n0

1 + γ−1
=

γ

γ+ 1
HP
n0 =

η− 1

η
HP
n0160

=
η− 1

η

RgasTn0

Mng
, (9)

where the subscript 0 indicates that the respective variable is taken at the reference (measurement) altitude z0.

Using Eq. (A13), the neutral temperature profile can be expressed by means of the parameters η and HN
n0 as follows:

Tn(z|z0,Tn0,H
N
n0,η) = Tn0 ·

(
1 +

z− z0

ηHN
n0

)
.

In the LTI, the temperature varies significantly with altitude, latitude, and season (Picone et al., 2002). Since in the construc-

tion of neutral and electron density profiles (Appendices A and B) the scale height parameters are of central importance, their

relative change is reflected in the following As reference values: we adopt TnB ∼ 200K at zB = 100km, and TnT ∼ 1000K at165

zT = 200km, hence dT/dz ∼ 8K/km, andLnB ∼ 25km. A at zB, TnB ∼ 200K , the pressure scale height isandHP
nB ∼ 6km.

, thus HP
nB/LnB ∼ 0.24. Supplementary Figures S1a–S1d suggest that the pressure scale height varies by a factor ∼ 5 across

the LTI, thusHP
nT ∼ 5·HP

nB ∼ 30km and TnT ∼ 1000K at zT = 200km. We obtain dHP
n /dz = 0.24 = γ−1, This gives γ ∼ 4,

η= γ+ 1∼ 5, and HN
nB= η−1

η HP
nB ∼ 5km for the density scale height at the base of the LTI.
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2.2 Neutral temperature170

Neutral temperature Tn is assumed to vary linearly with altitude z:

Tn(z|z0,Tn0,Ln0) = Tn0 ·
(

1 +
z− z0

Ln0

)
. (10)

The parameters Tn0 and Ln0 are the neutral temperature and the gradient length scale, respectively, at a reference altitude z0.

The constant temperature gradient is given by

dTn
dz

=
Tn0

Ln0
. (11)175

Using Eq. (A13), the neutral temperature profile can be expressed by means of the parameters η and HN
n0 as follows:

Tn(z|z0,Tn0,H
N
n0,η) = Tn0 ·

(
1 +

z− z0

ηHN
n0

)
. (12)

2.3 Neutral density

The altitude dependence of neutral density Nn for linear scale height profiles is derived in Appendix A, resulting in the180

following local representation

Nn(z|z0,Nn0,H
N
n0,η)

= Nn0 · exp
{
−η ln

(
1 + z−z0

ηHN
n0

)}
= Nn0 ·

(
1 + z−z0

ηHN
n0

)−η
,

(13)

see also Eq. (A15). The parameter Nn0 =Nn(z0) is the local neutral density, i.e., its value at the reference altitude z0.

2.4 Electron density

The altitude dependence of electron density Ne for linear scale height profiles is derived in Appendix B, resulting in the185

following local representation

Ne(z|z0,Ne0,Lr0 cosχ,HN
n0,η)

= Ne0 exp
{

1
2

η
η−1

[
−θ0 +

HN
n0

Lr0 cosχ

(
1− e−θ0

)]} (14)

with θ0 = θ0(z) = (η− 1) ln
(

1 + z−z0
ηHN

n0

)
, see Eq. (B16). The parameter Ne0 =Ne(z0) gives electron density at the chosen

reference altitude z0. Note thatLr0 and χ, the angle of incident radiation with the atmospheric layer normal direction, cannot be

estimated separately but only combined as Lr0 cosχ. The parametersHN
n0 and η can be inherited from estimations using neutral190

temperature and/or neutral density data, effectively reducing the number of electron density parameters and thus stabilizing the

estimation procedure.
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Figure 2. Altitude dependence of the non-isothermal electron density model for different values of the inverse neutral density scale height

gradient η. Common electron density peak parameters are z∗ = 110km, Ne∗ = 1011 m−3, HN
n∗ = 7km. The case η→∞ (in the legend,

η = inf) corresponds to the isothermal limit.

The non-isothermal electron density model can also be expressed in terms of the ionization peak parameters, namely, the

altitude z∗ and the electron density value Ne∗ =Ne(z∗):

Ne(z|z∗,Ne∗,HN
n∗,η)

= Ne∗ exp
{

1
2

η
η−1

[
−θ∗+ 1− e−θ∗

]}
,

(15)195

with θ∗ = θ∗(z) = (η− 1) ln
(

1 + z−z∗
ηHN

n∗

)
, and HN

n∗ denoting the density scale height at z = z∗. See Appendix B2 for details.

Electron density profiles for identical peak parameters but different values of η are displayed in Figure 2.

The electron density model is designed to describe the ionospheric E-layer, assuming that contributions from the F-layer

are modeled separately and subtracted from the measurements. To account for residuals that may remain after subtraction, the

DIPCont package contains a parameter NeF .200

2.5 Ion temperature

Temperature profiles obtained by the International Reference Ionosphere (IRI) 2.0 model (Bilitza et al., 2022) indicate that ion

and neutral temperatures are very similar throughout the LTI, see Figures S2a–S2d in the supplementary material to this report.

In analogy with the neutral temperature case, ion temperature Ti is assumed to vary linearly with altitude z:

Ti(z|z0,Ti0,Li0) = Ti0 ·
(

1 +
z− z0

Li0

)
. (16)205

The parameters Ti0 and Li0 are the ion temperature and the gradient length scale, respectively, at the chosen reference altitude

z0.
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2.6 Ion-neutral collision frequency

In quantitative terms, collision processes in the partially ionized LTI medium remain inadequately described, and are major

sources of uncertainties in empirical models (e.g., Palmroth et al., 2021; Heelis and Maute, 2020; Sarris, 2019). At this stage,210

the DIPCont project is less concerned with optimizing the quantitative description of the LTI, but rather with the quality of

parameter estimation extrapolation. While the choice of the best LTI model is certainly important for recovering the real values

of targeted observables, further work will be needed, by parametric studies, comparison with previous work, and data analysis

when a low-perigee mission such as Daedalus (Sarris et al., 2020) provides in situ measurements in the LTI. For our goal

here, the chosen variant among the models for ion-neutral collision frequency νin should not matter too much as long as the215

underlying variability associated with erroneous measurements is captured. To this end, we follow the description of Huba

(2019) and write

νin = σinNn

√
kTi
mi

(17)

with the collision cross section σin ∼ 5·10−15 cm2. An even simpler expression could neglect the variation with ion temperature

Ti so that νin becomes directly proportional to the neutral density Nn.220

2.7 Pedersen conductivity

Using the approximations explained at the beginning of Section 2, Pedersen conductivity is given by

σP =
Nee

2

mi

νin
ν2
in + Ω2

i

(18)

for a quasi-neutral two-component plasma when the contribution from electron-neutral collisions is neglected, see also Eq. (1),

reproduced here for convenience. Compared to other variables and parameters of the LTI models presented here, the depen-225

dence of ion gyrofrequency Ωi = qiB/mi (qi: ion charge, mi: ion mass) on magnetic field strength B can be determined from

measurements or models of the magnetic field with very good accuracy, hence the associated variability should not much affect

our results. Furthermore, in the logic of the LTI model constructed for the initial version of the DIPCont package, changes

in atmospheric composition and thus average ion mass are disregarded. Inspection of Figures S2a–S2d in the supplementary

material to this report indicate that in the lower part of the LTI (altitudes below about 150 km) being the focus of downward230

continuation quality in the current study, variations of average ion mass with altitude are relatively small. For simplicity, the ion

gyrofrequency is set to a constant. Hence, altitude variations of ion gyrofrequency are neglected. In the same way as for other

LTI model variables, namely, through the dependence of the parameters in the vector p = p(x) (see Subsection 2.8 below) on

the coordinate x, horizontal variations of magnetic field strength B and thus ion gyrofrequency Ωi can be modeled.

2.8 LTI model in compact form235

Parameters of model functions in local representation are listed in Table 1.
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Symbol Description

z0 Local reference altitude

Tn0 Neutral temperature at z0

Ln0 Neutral temperature gradient length at z0

Nn0 Neutral density at z0

HN
n0 Neutral density scale height at z0

η = ηn Inverse gradient of neutral density scale height

Ne0 Electron density at z0

Lr0 Radiation absorption length at z0

χ Inclination angle of incident radiation

NeF F-layer contribution to electron density

Ti0 Ion temperature at z0

Li0 Ion temperature gradient length at z0

Table 1. Parameters of model functions in local representation. The list is partially redundant, e.g., Ln0 = ηHN
n0. The parameters Lr0 and χ

cannot be estimated independently but only in combination Lr0 cosχ. Boundary data (neutral and ion temperatures at the base of the LTI)

are used to constrain the parameters Ln0, η, HN
n0, and Li0, see Section 3.3.

The description of the DIPCont modeling procedure in Section 3 benefits from summarizing the LTI model in compact form

as m = m(z|p), with parameters Tn0,H
N
n0,η, . . . , entering the vector p. The parametric functions Tn(z),Nn(z),Ne(z), Ti(z),

νin(z) = νin(Nn(z),Ti(z)), and σP(z) = σP(Ne(z),νin(z)) constitute the components of the vectorial function m.

3 DIPCont modeling procedure240

The DIPCont modeling procedure is as follows.

– Synthetic noise-free measurements mj = m(zj |p) are created along anticipated Daedalus satellite orbit sections around

perigee at altitudes zj = z(tj) and horizontal distances xj = x(tj). The chosen model parameters are defined by vectors

p = p(x#) on a grid of horizontal distances x#. The integration and approximation methods employed for constructing

the satellite orbits are described in Section 3.1 and in Appendix C.245

– Using the multiplicative noise model presented in Section 3.2, synthetic measurements are contaminated by random

errors in accordance with relative uncertainties specified in the Daedalus Report for Assessment (ESA, 2020), yielding

ensembles {m̃k
j } of noisy synthetic data sets.

– For a point x# on the horizontal grid, synthetic data with horizontal distances xj in [x#−∆x,x# +∆x] are considered

to produce a least-squares estimate p̂k(x#) of the parameter vector p(x#). Repeating the estimation procedure for250
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Figure 3. Observation time Tobs in the LTI versus apogee altitude zapo for three different values of perigee altitude zper. The topside of the

LTI is assumed to be at zT = 200km.

all members k of the ensemble {m̃k
j } of synthetic data sets yields ensembles of model parameters {p̂k(x#)} for all

horizontal grid points x#. Specifics of the estimation procedure are discussed in Section 3.3.

– With parameter vectors p ∈ {p̂k(x#)}, the parametric model function m = m(z|p) can be evaluated to obtain ensem-

bles {m̂k(z,x#)}= {m(z|p̂k(x#))}, representing altitude profiles of LTI observables and derived variables such as νin

and σP over the entire range of LTI altitudes, and for all horizontal grid points x#. The resulting altitude profiles form255

a representative ensemble in the sense that their statistics are compatible with the model functions and the set of given

relative errors. Relative deviation measures of observables and derived variables as functions of altitude are constructed.

Finally, the concept of extrapolation horizons, introduced in Section 3.4, captures the altitude range where errors are

tolerable according to predefined thresholds.

3.1 Satellite orbits around perigee260

The DIPCont model offers two options for computing altitudes and horizontal distances along the orbits of satellites around

perigee, namely, numerical integration by means of the Störmer-Verlet method (e.g., Hairer et al., 2003), and the polynomial

approximation

z(t) = zper +
aper

2
t2 , (19)

x(t) =
REVpert

Rper

(
1− aper

3Rper
t2
)
, (20)265

with the acceleration aper at perigee given by

aper =
GME

R2
per

Rapo−Rper

Rapo +Rper
= gper ε , (21)
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see Appendix C. Here RE is the Earth’s radius, ME is the Earth’s mass, G is the gravitational constant, zper,Rper, and Vper are

the altitude, geocentric distance, satellite velocity at perigee, gper = GME

R2
per

is the Earth’s gravitational acceleration at geocentric

distance Rper, Rapo is the geocentric distance at apogee, and ε=
Rapo−Rper

Rapo+Rper
is the orbital eccentricity. For the parameter range270

considered in this study, the deviation of the polynomial approximation from the more precise orbit integration is ofn the order

of a few hundred meters, see Figure S4b in the supplementary material to this report.

The observation time Tobs spent by Daedalus in the LTI during a perigee pass controls the amount of data that can be

gathered for statistical investigations. Using the quadratic orbital approximation around perigee, Tobs is twice the time needed

to move from z = zper to the upper boundary at z = zT, thus zT− zper =
aper

2 (Tobs/2)2, T 2
obs =

8(zT−zper)
aper

, and275

T 2
obs =

8(zT− zper)R
2
per

GME

Rapo +Rper

Rapo−Rper
=

8(zT− zper)

gper ε
. (22)

The variations of Tobs with apogee altitude in the range 1500km≤ zapo ≤ 3000km for the three perigee altitudes zper =

115,130,150km are displayed in Figure 3. Raising the perigee from 115 km to 130 km yields a small reduction of observation

time by about 10%. Within the range of orbital parameters considered here, the overall amount of data gathered during a perigee

pass turns out to depend only moderately on apogee altitude zapo, with a relative difference of not more than about 20% for280

changes in zapo between 2000 km and 3000 km.

When dual-satellite missions to the LTI are considered, the question arises how synchronous the measurements are with

respect to ground horizontal distance x, assuming the two spacecraft share the same orbital plane, have identical semi-major

axes and thus orbital periods, and pass through their perigees at the same time. Figure S4a in the supplementary material to this

report illustrates how visit times of ground horizontal distances are expected to differ for two satellites with perigee altitudes285

130 km and 150 km. Differences of satellite visit times turn out to be on the order of seconds.

3.2 Synthetic measurements and positivity constraints

Synthetic measurements {µ̃1, µ̃2, µ̃3, . . .} of an observable at altitudes {z1,z2,z3, . . .} are constructed from a parametric model

function µ= µ(z|p) producing predictions that are contaminated by random errors {σ1,σ2,σ3, . . .} from a suitable probability

distribution. The model parameter vector p is estimated through minimization of a cost function. Following the standard least290

squares approach, the cost function is chosen to be the error-scaled square deviation

χ2(p) =
∑
j

(
µ̃j −µ(zj |p)

σj

)2

. (23)

The observables of interest Tn, Nn, Ne, Ti are all positive, hence a straightforward additive noise model would not be

appropriate as it may produce negative synthetic data. Furthermore, instrumental uncertainties as provided in the Daedalus

Report for Assessment (ESA, 2020) are typically specified as relative (multiplicative) errors. Both issues are addressed by295

considering as model predictions µj = µ(zj |p) and data µ̃j not the positive observables as such but their (natural) logarithms,

and relative uncertainties for the random errors {σ1,σ2,σ3, . . .}. In the case of a (neutral or electron) density N , one obtains

lnÑj = lnN(zj) +σjrj (24)
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Observable Relative error

Neutral temperature Tn 0.2

Neutral density Nn 0.2

Electron density Ne 0.1

Ion temperature Ti 0.1

Table 2. Relative error levels used in this study, according to Table 2 of the Daedalus Report for Assessment (ESA, 2020).

where the rj ∼N (0,1) represent Gaussian noise (normally distributed random numbers with zero mean and unit variance),

and N =N(z) refers to the (positive) density model. Then300

Ñj = eσjrj ·N(zj) (25)

so that positivity is guaranteed. Furthermore,

eσjrj ≈ 1 +σjrj , (26)

showing that the parameters σj correspond to relative error levels. Table 2 summarizes the values used in this report.

In general, the parameters enter the logarithms of model functions nonlinearly, and an iterative estimation procedure is305

required.

3.3 Parameter estimation strategies

The model parameters listed in Table 1 are estimated from observations of neutral temperature Tn, neutral densityNn, electron

density Ne, and ion temperature Ti as follows.

– For a given horizontal grid location x#, data within the interval [x#−∆x,x# + ∆x] are considered. The effective310

window width is 2∆x, see the white solid rectangles in Figures 1 and 4.

– From Tn data and constraining the neutral temperature profile at the LTI lower boundary zB as explained below, infer

Tn0, HN
n0 and η. See Eq. (10) and Section 2.1.

– Using HN
n0 and η, estimate Nn0 from Nn data. See Eq. (13).

– Using HN
n0 and η, estimate Ne0 and Lr0 cosχ from Ne data. See Eq. (14).315

– From Ti data and a suitable constraint at the LTI lower boundary zB in analogy to the neutral temperature case, infer Ti0

and Li0. See Eq. (16).

Altitude profiles of these observables allow for constructing the height dependence of derived variables such as ion-neutral

collision frequency νin and the Pedersen conductivity σP, see Eqs. (17) and (18), respectively.
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Lower LTI boundary constraints320

As explained in Appendix A, Eqs. (A10) and (A13), the linear density scale height profile can be parametrized using HN
n0 and

η in the form

HN
n (z|z0,H

N
n0,η) = HN

n0 ·
(

1 +
z− z0

ηHN
n0

)
. (27)

It is important to note that the HN
n profile takes center stage in the LTI models of the observables Tn, Nn, and Ne. While the

local temperature amplitude Tn0 is essentially an average of local temperature data around an altitude z0, and the same applies325

to the local pressure scale height HP
n0 obtained from Tn0 by simple multiplication, the inverse density scale height gradient η

and thus also the local density scale height parameter HN
n0 = η−1

η HP
n0 are very challenging to estimate from purely local data

with little variance in altitude, as suggested already by the standard error of the slope in linear regression analysis. Fortunately,

neutral temperature at the base of the LTI is known with reasonable tolerances from atmospheric models (e.g., Picone et al.,

2002; Emmert et al., 2021). This remote data point constitutes a valuable constraint for estimating the density scale height330

profile. To incorporate model uncertainties and expected deviations from actual values, boundary data at the base of the LTI

are contaminated by random errors according to the approach described in Section 3.2.

To be specific, the pressure scale height gradient as given in Eq. (2.1), constant under the assumptions discussed in Sec-

tion 2.1 and Appendix A, can be obtained from its values HP
n0 and HP

nB at z0 and the LTI base altitude zB, respectively, as

follows:335

dHP
n

dz
=

HP
n0−HP

nB

z0− zB
. (28)

The inverse gradients γ and η of pressure scale height and density scale height, respectively, are related by Eq. (8) through

η = γ+ 1, thus the parameter η is given by

η =
z0− zB

HP
n0−HP

nB
+ 1 =

Mng

Rgas

z0− zB

Tn0−TnB
+ 1 , (29)

where TnB denotes the neutral temperature at zB. The local density scale height HN
n0 can now be obtained from Eq. (9) as340

HN
n0 =

HP
n0

1 + γ−1
=

η− 1

η

RgasTn0

Mng
. (30)

Linear estimation of electron density parameters

The logarithm of the electron density model considered here,

lnNe(z) = lnNe0 +
1

2

η

η− 1

[
−θ0 +

HN
n0

Lr0 cosχ

(
1− e−θ0

)]
, (31)

can be combined with the logarithm of the neutral density model,345

lnNn(z) = lnNn0 −
η

η− 1
θ0 , (32)
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Figure 4. Model distributions of electron density Ne (left panel) and Pedersen conducitivity σP (right panel) in the LTI. Synthetic measure-

ments are produced along the two satellite orbits (white dashed lines). The parameters of vertical profiles are estimated using measurements

within a window (white solid rectangle) around two locations in horizontal direction (blue and green dashed lines).

to find

lnNe(z)− 1
2 lnNn(z)

= lnNe0− 1
2 lnNn0 + 1

2
η
η−1

HN
n0

Lr0 cosχ

(
1− e−θ0

)
= a + b

(
1− e−θ0

)
,

(33)

showing that a= lnNe0− 1
2 lnNn0 and b= 1

2
η
η−1

HN
n0

Lr0 cosχ can be obtained from linear regression of lnNe− 1
2 lnNn versus 1−

e−θ0 with θ0 = θ0(z) = (η−1) ln
(

1 + z−z0
ηHN

n0

)
. Since the parameters η and HN

n0 are available as estimates from Tn modeling,350

and Nn0 is known from Nn modeling, Ne0 and Lr0 cosχ can be computed from the linear coefficients a and b, hence this

special case does not necessitate an iterative parameter estimation approach.

3.4 Error profiles and extrapolation horizons

With {m̃k
j }k=1
j∈[#] being a single set (k = 1) of synthetic measurements, and j ∈ [#] indicating that horizontal distances are

selected to be within ±∆x around a predefined grid point x#, the estimation procedure yields a specific estimate p̂k of355

the parameter vector p(x#). In a Monte Carlo setup, different instances of random errors are applied to the model predic-

tions to produce data sets {m̃1
j ,m̃

2
j ,m̃

3
j , . . .}j∈[#]. The ensemble of data sets gives rise to an ensemble of parameter vec-

tors {p̂k}= {p̂1, p̂2, p̂3, . . .}, which in turn, when entered in m = m(z|p), yields an ensemble of profiles {m̂k(z,x#)}=

{m̂1(z,x#),m̂2(z,x#),m̂3(z,x#), . . .} for the entire range of altitudes z, and at each point x# of the horizontal coordinate

grid.360

The procedure is illustrated in Figures 4 and 5. Figure 4 shows the model functions and the satellite orbits used for computing

the predictions that enter the Monte Carlo simulation. The ensemble of altitude profiles generated from the Monte Carlo

distributions of model parameters is visualized in Figure 5 by means of selected quantiles evaluated at the vertical grid of LTI

altitudes.
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Figure 5. Visualization of the ensemble of altitude profiles generated from the Monte Carlo distributions of model parameters. Shown are

selected quantiles evaluated at the vertical grid of LTI altitudes. Left panels: electron density Ne. Right panels: Pedersen conducitivity σP.

Upper panels: center position (blue dashed line) in Figure 4. Lower panels: right position (green dashed line) in Figure 4.

The ensemble of altitude profiles forms the basis for quantifying extrapolation quality through measures of relative deviation365

from a model prediction. Suppressing altitude and horizontal grid dependencies, and considering only a single model variable

µ with ensemble members µ̂1, µ̂2, µ̂3, . . . , µ̂K , the root-mean-square deviation is given by

δµ =
√
〈(µ̂−µ)2〉 =

√√√√ 1

K

K∑
k=1

(µ̂k −µ)2 . (34)

Figure 6 shows the altitude profiles of relative root-mean-square deviation δµ/µ=
√
〈(µ̂−µ)2〉/µ for the variables and hori-

zontal locations as in Figures 4 and 5.370

Figure S3 in the supplementary material to this report provides additional information on this DIPCont model run, visualizing

model distributions, ensembles of altitude profiles, and extrapolation horizons also for neutral temperature Tn, neutral density

Nn, ion temperature Ti, and ion-neutral collision frequency νin.

Alternative relative deviation measures considered in the DIPCont package are based on the empirical distribution of absolute

deviations |µ̂−µ|, e.g., the average absolute deviation from the model prediction µ:375

(δµ)abs = 〈|µ̂−µ|〉 =
1

K

K∑
k=1

|µ̂k −µ| , (35)

or selected quantiles of the distribution.
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Figure 6. Solid lines (blue and green) give the relative root-mean-square deviations of Monte Carlo altitude profiles from the respective input

model profiles at two horizontal locations. Vertical dotted and solid lines represent a set of chosen error levels, ranging from 0.5 % and 1

% (yellow) to 32% and 64% (magenta). The corresponding horizontal lines show the extrapolation horizons indicating at which altitude the

relative deviation equals the respective error level. Left panels: electron density Ne. Right panels: Pedersen conducitivity σP. Upper panels:

center position (blue dashed line) in Figure 4. Lower panels: right position (green dashed line) in Figure 4.

3.5 Implementation

The DIPCont model is implemented as a bundle of Python instuctions and functions collected in three modules.

In the module DIPContBas.py, the basic setup of the DIPCont framework is defined, e.g., LTI region boundaries and380

boundary values, satellite orbit parameters, horizontal grid locations, and auxiliary plot parameters. Furthermore, it also pro-

vides configurational variables that are exchanged between DIPCont functions and modules, e.g., parameters shared by differ-

ent parametric models.

The module DIPContMod.py provides parametric model functions of LTI variables and plot routines.

The module DIPContEst.py is concerned with Monte Carlo parameter estimation and profile continuation. Estimation385

of parameters that enter the model functions nonlinearly is accomplished by the function curve_fit() from the module

scipy.optimize whereas linear parameter estimation is performed using the function linregress from the module

scipy.stats. Monte Carlo ensembles of parameters and altitude profiles are stored in pandas dataframes.

The three DIPCont modules are provided as supplementary files to this report, together with Jupyter notebooks to explain

and illustrate their usage.390
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4 First results

The major ingredients of the DIPCont processing chain, namely, generation of synthetic in-situ measurements along satellite

orbits, Monte Carlo simulations of vertical profiles, and construction of extrapolation horizons, are summarized in Figures 4–

6 displaying electron density Ne and Pedersen conductivity σP as two variables of key importance for the structure and the

dynamics of the LTI. As indicated by Eq. (1) and the respective profiles in Figure 5, electron density makes the main contribu-395

tion to the peaked height variation of Pedersen conductivity, with secondary contributions of neutral density and possibly ion

temperature through the parametric form chosen for the ion-neutral collision frequency, see Section 2.6, and also Figure S3

in the supplementary material to this report. Furthermore, Pedersen conductivity controls the height variation of Joule heat-

ing, whose characterization is one of the main scientific targets of the proposed Daedalus mission (ESA, 2020). In the neutral

wind reference frame, Joule heating is j⊥ ·E⊥ = σP |E⊥|2 where the subscript ⊥ indicates a vectorial component perpendic-400

ular to the ambient magnetic field direction B̂. Height variations of E⊥ are negligible according to the following rationale,

see, e.g., Rishbeth (1997). Due to high parallel conductivity, the electric field component E‖ = Es parallel to B̂ vanishes, i.e.,

0 = Es =−∂Φ
∂s , where s is the magnetic field line coordinate, and Φ denotes the electric potential. The electric field component

Eq in a direction perpendicular to B̂ captured by a coordinate q then satisfies ∂Eq

∂s =− ∂
∂s

∂Φ
∂q =− ∂

∂q
∂Φ
∂s = ∂Es

∂q = 0.

When instead of two selected horizontal locations as in Figure 6 an equidistant grid of horizontal coordinates is defined for405

DIPCont simulations and the construction of extropolations horizons, the results can be displayed together with the underlying

model distributions and satellite orbits as in Figure 1. In the following examples, such displays are used to visualize DIPCont

results for different spacecraft configurations. Section 4.1 offers a first qualititative assessment of extrapolation quality in terms

of varying inter-spacecraft distance. Section 4.2 contrasts the performance of the dual-spacecraft configuration considered so

far with the results of the single-spacecraft case.410

Note that the horizontal axis corresponds to the latitudinal (north-south) direction. In the simulations that led to Figures 4–6,

horizontal variations were disregarded for better comparability. In Figure 1 and in the following, latitudinal inhomogeneity

of electron density is meant to reproduce the two maxima observed by a polar orbiting satellite when crossing the auroral

oval. The highest latitude corresponds to the origin of the horizontal axis. Since the physics of energetic particle precipitation

is not incorporated in this initial version of the DIPCont package, the horizontal variation of electron density expected for415

an auroral oval crossing is prescribed through ad hoc choices of horizontal electron density peak parameters profiles, see the

option LTIModelType=’NeAuroralZoneCrossing’ in the DIPCont code as part of the supplementary material to this

report.

4.1 Varying inter-spacecraft distance

Extrapolation of two-point measurements is expected to perform best if the spatial separation matches the relevant physical420

length scale. In the LTI this should be the (local) density scale height, in the range of 10–20 km for altitudes above 130 km, as in

our example of a dual-spacecraft setup with perigee altitudes of 130 km and 150 km, see Figure 1. The inter-spacecraft distance

remains close to 20 km throughout the whole orbit section and thus also to the density scale height as the relevant physical
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Figure 7. Same as Figure 1 but for an inter-spacecraft separation of 5 km at perigee.

scale. Note that in all dual-satellite DIPCont model runs presented in this paper, apogee distances of the second satellite have

been adjusted such that the sum of perigee and apogee distances are identical for both satellites, and thus also the semi-major425

axes and the orbital periods.

Figure 7 displays extrapolation horizons for the same simulation setup except that the perigee altitude of the second satellite

is reduced to 135 km, producing an inter-spacecraft distance at perigee of only 5 km. The separation is now smaller than the

local density scale height with values of about 15 km at altitudes around 150 km. Compared to Figure 1, the errors are increased

and the extrapolation horizons reduced. The changes are not dramatic but enough to show that inter-spacecraft distance is a430

parameter to be considered when extrapolation quality is supposed to be optimized.

4.2 Single-satellite case

To check how much a second satellite improves extrapolation quality, the Monte Carlo simulations summarized in Figure 1

are repeated for the single-spacecraft case, with all other parameters left unchanged. The resulting extrapolation horizons are

shown in Figure 8. Compared to ionospheric profile continuation from dual-spacecraft observations, the single-spacecraft case435
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Figure 8. Same as Figure 1 but for the single-satellite case.

yields significantly worse results, with extrapolation horizons collapsing into the orbit near the perigee due to lacking variability

in altitudes. Away from the perigee, the orbital motion of the satellite during the time corresponding to the horizontal window

width 2∆x yields some height range that allows for profile reconstruction but with significant errors. The peaks in electron

density and Pedersen conductivity are clearly outside the largest considered error level of 64%, while Figure 1 shows that in

the dual-spacecraft case the peaks are between the 16% and 32% error levels.440

5 Discussion

Our first results suggest that altitude profiles of key LTI variables can be reconstructed with sufficient accuracy from in-situ

measurements if the effective altitude range covers relevant physical scales such as the local density scale height HN
n0. This

is the case for a dual-spacecraft configuration with an inter-spacecraft separation of 20 km at perigee, see Figures 1 and 4–6.

By two-point sampling, one can retrieve the vertical profiles of electron density and Pedersen conductivity essentially down445

to the bottom of the LTI region, a few scale heights under the lower satellite and including the peak altitudes. For Pedersen
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conductivity, errors are expected in the range of several 10%, with the peak altitude and most of the conductivity within the

32% extrapolation horizon in the chosen example, consistent with rocket observations (Sangalli et al., 2009).

Given the current knowledge of key LTI variables, error levels of a few ten percent may well improve the situation. An

important motivation behind the Daedalus proposal was the large error margin in Joule heating estimates, with a major con-450

tribution by errors in conductance (height-integrated conductivity). Thus, Sarris et al. (2020) pointed out that for a substorm

event investigated by Palmroth et al. (2005), there were differences of up to 500% between three proxies of the Joule heating

rates integrated over the Northern hemisphere. Even if this setup cannot be directly compared to our virtual environment, the

order of magnitude difference between the two error margins looks encouraging for follow-up work on ionospheric profile

continuation.455

The DIPCont framework allows for addressing economical and technical questions regarding the impact of different LTI

mission cost factors. On the one hand, a dual-spacecraft mission seems to automatically imply higher costs because a second

satellite needs to be built. On the other hand, a major cost driver of any deep LTI mission is the necessary amount of propellant

that is required in order to maintain a spacecraft in orbit, due to enhanced atmospheric drag at very low perigee altitudes. Since

in a dual spacecraft setup the role of the lower perigee satellite can be shared, each of the two probes would have to carry half460

of the total amount of propellant required to maintain the same total observation time required by a single-satellite mission.

Moreover, the necessary amount of thermal shielding depends as well on perigee altitude and each of the two probes would

have to withstand the maximum thermal stress at perigee less often. Our findings show that the two-point setup allows for a

more effective extrapolation to lower altitudes, which in turn means that a higher perigee may well be a meaningful option.

Data processing would also benefit from raising the perigee. As shown by simulations carried out for the technical assess-465

ment of Daedalus (ESA, 2020), a hydrodynamic shock develops in front of the spacecraft at altitudes under ∼120–130 km,

complicating the retrieval of unperturbed data from the observed ones. Another LTI mission parameter considered in this paper

is the apogee altitude controling the proximity to the Van Allen belts and thus the necessary amount of radiation shielding, but

affecting also the the available LTI observation time near perigee. The analysis presented in Section 3.1 shows that the amount

of data gathered for statistical studies depends only moderately on apogee altitude.470

The current version of the DIPCont framework concentrates on the E-layer, assuming that contributions from the F-layer

can be disregarded or subtracted before processing, e.g., using the NeQuick approach to model topside ionospheric sounding

data (Pignalberi et al., 2020). The DIPCont package contains a parameter NeF to study the effect of F-layer residuals on

extrapolation quality in future work.

The first results presented here are planned to be validated and extended in more extensive studies. Besides varying orbital475

parameters such as perigee altitude and inter-spacecraft distance, the impact of numerical parameters such as the horizontal

selection window, 2∆x, needs further investigation. As already commented in Section 2.6, alternative functional forms for

modeling ion-neutral collision frequencies or other variables may also be considered.
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6 Conclusions and Outlook

The DIPCont framework enables a systematic approach to reconstructing ionospheric vertical profiles and quantitatively480

assessing extrapolation quality. The DIPCont methodology introduced in this paper is designed to assess the quality of down-

ward continuation of LTI variables using in situ satellite measurements and parametric models. While first results have been

obtained with a simplified LTI description based on a single particle species, the Monte Carlo simulation machinery in DIPCont

is not constrained to a particular model setup. DIPCont allows for linear temperature variation with altitude, which extends the

often used isothermal model and provides a solid foundation to future applications, based on more complex models and on real485

world data. By quantifying the quality of extrapolated in-situ measurements, DIPCont can help to assess the science return of

specific configurations and thus to optimize the parameters of upcoming LTI missions.

First DIPCont tests, performed on electron density and Pedersen conductivity, show promising results, to be consolidated

by further parametric studies. Application of DIPCont to a modeled event, like the geomagnetic storm event of March 2015

addressed in the Daedalus Report for Assessment (ESA, 2020) is an upcoming target. This could be performed using the490

capabilities of the Daedalus MASE toolset (Sarris et al., 2023b). Future studies are planned to include Joule heating which was

a major driver of the Daedalus mission proposal.To investigate auroral processes and the electrodynamics of magnetosphere-

ionosphere coupling, ionization through energetic particle precipitation needs to be incorporated. The Hall current nature

of auroral electrojets calls for including electron-neutral collisional interaction as a major contributor to Hall conductivity

formation.495

Coordination between an LTI mission, like Daedalus, and a topside mission, e.g., like Swarm or DMSP, would enhance the

return of both missions. As an example, reconstruction of vertical profiles of ionospheric conductivity based on LTI observa-

tions could help to calibrate topside estimates of the conductance, while topside electron density could provide upper continu-

ation and constrain the height-integrated total electron content (TEC) inferred from LTI data. Combination with ground-based

observatory data such as ionosondes would offer further valuable constraints to DIPCont, and thus enable more comprehensive500

modeling of the LTI.

Code availability. The DIPCont framework is implemented in three Python modules DIPContBas.py, DIPContMod.py, and DIPContEst.py.

The modules are provided as supplementary files to this report, together with Jupyter notebooks to explain and illustrate their usage. The

DIPCont code is planned to be migrated to a public repository.

Appendix A: Neutral density profile for linear variations of scale height505

Consider an atmospheric layer dominated by possibly several neutral constituents with an average or representative particle

mass mn, total pressure Pn, mass density %n, effective neutral number density Nn = %n/mn and temperature Tn. Under

hydrostatic conditions, dPn = −%n gdz, where z is altitude and g is gravity (gravitational acceleration) assumed to vary so

little within the layer that it can be safely considered constant. Using the ideal gas law Pn = NnkTn where k denotes the
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Boltzmann constant, one obtains dPn = −Pn mng
kTn

dz = −Pn dz
HP

n
with the pressure scale height510

HP
n =

kTn
mng

, (A1)

Rearranging − dz
HP

n
= dPn

Pn
= dlnPn and integrating leads to

Pn(z) = Pn0 exp

−
z∫

z0

dz̃

HP
n (z̃)

 (A2)

where the altitude dependence of HP
n directly reflects the change of temperature Tn with z.

Analogous differential and integral expressions for the neutral density, namely, dlnNn = − dz
HN

n
and515

Nn(z) = Nn0 exp

−
z∫

z0

dz̃

HN
n (z̃)

 , (A3)

are derived as follows. Combining the differential of the ideal gas law dPn = NnkdTn + kTndNn with the hydrostatic condi-

tion yields−Nnmngdz = NnkdTn + kTndNn and thus−mng
kTn

dz− 1
Tn

dTn = 1
Nn

dNn = dlnNn. Since dTn

Tn
= dlnTn =

dlnHP =
dHP

n

HP
n

, one obtains

dlnNn
dz

= − 1

HP
n

(
1 +

dHP
n

dz

)
. (A4)520

Therefore, Introducing the density scale height HN
n in the expression dlnNn = − dz

HN
n

is given by

HN
n = HP

n

(
1 +

dHP
n

dz

)−1

. (A5)

the resulting differential equation dlnNn = − dz
HN

n
is integrated to yield

Nn(z) = Nn0 exp

−
z∫

z0

dz̃

HN
n (z̃)

 .

To be more specific, we suppose the neutral temperature Tn varies linearly with altitude z,525

Tn(z) = Tn0 ·
(

1 +
z− z0

Ln0

)
. (A6)

where Tn0 is the temperature at a reference altitude z0, and Ln0 = Tn0

dTn/dz
denotes the local gradient length. Then

HP
n (z) = HP

n0 ·
(

1 +
z− z0

Ln0

)
. (A7)

with

HP
n0 =

kTn0

mg
, (A8)530
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so that the pressure scale height gradient dHP
n

dz =
HP

n0

Ln0
is constant, and thus also the gradient of density scale height:

dHN
n

dz
=

dHP
n

dz
·
(

1 +
dHP

n

dz

)−1

. (A9)

The linear profile of density scale height is given by

HN
n (z) = HN

n0 ·
(

1 +
z− z0

Ln0

)
, (A10)

with535

HN
n0 =

HP
n0

1 +HP
n0/Ln0

=
HP
n0

1 + γ−1
. (A11)

Here

γ =

(
dHP

n

dz

)−1

(A12)

denotes the inverse gradient of pressure scale height. The inverse gradient of density scale height

η =

(
dHN

n

dz

)−1

=
Ln0

HN
n0

(A13)540

is related to γ through η = γ+ 1.

In the non-isothermal case Ln0 <∞, integrating 1/HN
n gives the expression

ζ0 =

z∫
z0

dz̃

HN
n (z̃)

= η ln

(
1 +

z− z0

Ln0

)

= − ln

(
1 +

z− z0

ηHN
n0

)−η
, (A14)

Hence, the altitude profile of number density (A3) is given by545

Nn(z) = Nn0 · e−ζ0 = Nn0 ·
(

1 +
z− z0

ηHN
n0

)−η
. (A15)

In the isothermal limit, η→∞, ln
(

1 + z−z0
ηHN

n0

)
→ z−z0

ηHN
n0

, thus ζ0→ z−z0
HN

n0
, and HN

n0→HP
n0 through Eq. (A11).

Appendix B: Electron density profile for linear variations of scale height

Following the approach first presented by Chapman (1931), the ionization rate per unit volume q is expressed in terms of the

intensity I of ionizing radiation, the ionization efficiency κ, the angle χ of incident radiation with the atmospheric layer normal550

vector, the radiation absorption cross-section σr, and the neutral density Nn as q = κ cosχ dI
dz . Here z is altitude, and the z

axis is pointing upwards as before. The function q = q(z) is also called production function. Although originally proposed

for photoionization, the Chapman approach may be applied also to ionization by precipitation of energetic particles as in the

auroral region, if model variables and coefficients are properly interpreted.
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The intensity I satisfies the differential equation555

dI = σrNn I
dz

cosχ
(B1)

with the solution

I(z) = I∞ exp

 σr
cosχ

z∫
z∞

N(z̃)dz̃

 (B2)

where z∞ and I∞ refer to an upper boundary sufficiently remote from the atmospheric layer.

Using dI = σrNnI
dz

cosχ , the production function q can be rewritten as q = κσrNnI and thus560

q(z) = κσrNn(z)I∞ exp

 σr
cosχ

z∫
z∞

N(z̃)dz̃

 . (B3)

The ionization peak altitude z∗ is obtained from the condition

0 =
dlnq

dz

∣∣∣∣
z=z∗

=
N ′n(z∗)

Nn(z∗)
+
σrNn(z∗)

cosχ
(B4)

where the prime denotes differentiation with respect to altitude z. Considering Eqs. (A3) and (A14) gives rise to Nn(z) =

Nn0e
−ζ0 , ζ ′0 = 1/HN

n , and defining the radiation absorption length Lr = Lr(z) by565

Lr =
1

σrNn
, (B5)

the general ionization peak condition is conveniently expressed as

HN
n (z∗) = Lr(z∗)cosχ . (B6)

B1 Local representation of electron density

Assuming the neutral temperature Tn varies linearly with altitude z, the altitude dependence of electron density was modeled570

by Gledhill and Szendrei (1950). Since their formulation does not fit well with the DIPCont nomenclature used in the current

report, an independent and extended derivation is presented now. Using Tn(z) = Tn0 ·
(

1 + z−z0
Ln0

)
= Tn0 ·

(
1 + z−z0

ηHN
n0

)
, and

η <∞, the altitude profile of neutral number density can be written in the form

Nn(z) = Nn0

(
1 +

z− z0

ηHN
n0

)−η
, (B7)

see Appendix A and Eq. (A15). Integration gives575

z∫
z∞

Nn(z̃)dz̃ = −Nn0
ηHN

n0

η− 1

[(
1 +

z̃− z0

ηHN
n0

)−(η−1)
]z̃=z
z̃=z∞

. (B8)
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In this LTI modeling context it is safe to assume that the regional temperature increase with altitude is moderate enough to

ensure HN
n0 < Ln0, then η > 1. Furthermore, the altitude z∞ is chosen to be large enough for the contribution from the value

at z̃ = z∞ to be negligible. We obtain

z∫
z∞

Nn(z̃)dz̃ = −Nn0
ηHN

n0

η− 1

(
1 +

z− z0

ηHN
n0

)−(η−1)

(B9)580

by using Eq. (A14). Defining

θ0 =
η− 1

η
ζ0 = (η− 1) ln

(
1 +

z− z0

ηHN
n0

)
, (B10)

the radiation intensity profile assumes the form

I(z) = I∞ exp

{
−σrNn0

cosχ

ηHN
n0

η− 1
e−θ0

}
(B11)

= I∞ exp

{
− η

η− 1

HN
n0

Lr0 cosχ
e−θ0

}
(B12)585

where Lr0 = Lr(z0). The neutral density (A15) is rewritten as

Nn(z) = Nn0 exp

{
− η

η− 1
θ0

}
, (B13)

so that the production function (B3) assumes the form

q(z) =
κI∞
Lr0

exp

{
η

η− 1

[
−θ0−

HN
n0

Lr0 cosχ
e−θ0

]}
. (B14)

In the isothermal limit, η→∞, η
η−1 → 1, θ0→ z−z0

HN
n0

, and the isothermal Chapman production function (Chapman, 1931)590

is recovered.

In static equilibrium of photoionization and quadratic recombination, q = αN2
e with the recombination coefficient α, thus

Ne =
√
q/α. Using

Ne0 = Ne(z0) =

√
κI∞
αLr0

exp

{
−1

2

η

η− 1

HN
n0

Lr0 cosχ

}
, (B15)

we obtain595

Ne(z) = Ne0 exp

{
1

2

η

η− 1

[
−θ0 +

HN
n0

Lr0 cosχ

(
1− e−θ0

)]}
. (B16)

B2 Representation of electron density in terms of ionization peak parameters

A meaningful regional representation of the electron density can be constructed by means of the ionization peak parameters.

For a given incident radiation angle χ, the altitude z∗ of the electron density maximum can be expressed in local parameters as

follows:600

z∗ = z0 + ηHN
n0

[
Γ1/(η−1)− 1

]
. (B17)
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where

Γ =
HN
n0

Lr0 cosχ
. (B18)

The electron density peak value Ne∗ =Ne(z = z∗) is

Ne∗ = Ne0 exp

{
1

2

η

η− 1
[− lnΓ + Γ− 1]

}
. (B19)605

With z∗ as the reference altitude, z0 = z∗, we can take advantage of the condition (B6) HN
n0 =HN

n∗ = Lr∗ cosχ= Lr0 cosχ,

thus

Ne(z) = Ne∗ exp

{
1

2

η

η− 1

[
−θ∗+ 1− e−θ∗

]}
, (B20)

where θ∗ = θ∗(z) = (η−1) ln
(

1 + z−z∗
ηHN

n∗

)
, and HN

n∗ denotes the density scale height at z = z∗. This representation shows that

χ is only an implicit parameter of the electron density model, and cannot be inferred from knowledge of the peak parameters.610

Appendix C: Orbit approximation around perigee

Consider a Kepler orbit with radial distance r = r(t) and azimuth φ= φ(t) where t denotes time. Distance and velocity at

perigee are Rper and Vper, respectively. The corresponding variables at apogee are Rapo and Vapo, the gravitational constant is

G, and the planetary mass is M . Combining the conservation laws for angular momentum

r2φ̇ = RapoVapo = RperVper (C1)615

and total energy E (here normalized by the test mass m)

E

m
=

1

2

(
ṙ2 + r2φ̇2

)
− GM

r
(C2)

=
1

2
V 2

per−
GM

Rper
=

1

2
V 2

apo−
GM

Rapo
(C3)

yields the following expression for the perigee velocity in terms of perigee and aopgeeapogee distances

V 2
per =

2GMRapo

Rper(Rapo +Rper)
=

2gperRperRapo

(Rapo +Rper)
(C4)620

where gper = GM
R2

per
is the value of Earth’s gravitational acceleration at geocentric distance Rper. The radial velocity ṙ satisfies

ṙ2 =
2E

m
+

2GM

r
− (r2φ̇)2

r2
(C5)

=
2E

m
+

2GM

r
−
R2

perV
2
per

r2
. (C6)

Differentiating this expression and dividing by 2ṙ yields

r̈ = −GM
r2

+
R2

perV
2
per

r3
. (C7)625
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Evaluation at perigee r =Rper gives

r̈|r=Rper
= −GM

R2
per

+
R2

perV
2
per

R3
per

= −GM
R2

per

+
V 2

per

Rper
. (C8)

Inserting the expression for V 2
per yields

r̈|r=Rper
=

GM

R2
per

Rapo−Rper

Rapo +Rper
= gper ε (C9)

where ε=
Rapo−Rper

Rapo+Rper
is the orbital eccentricity. The altitude z is related to radial distance r and the Earth’s planetary radius630

RE through z = r−RE. At perigee, t= 0 and z = zper. The parameter aper = z̈(t= 0) coincides with the radial acceleration

at perigee r̈|r=Rper
. Hence, orbital altitudes around perigee are approximately given by the quadratic function

z(t) ' zper +
aper

2
t2 . (C10)

To the same approximation order, the angular momentum conservation condition r2φ̇ = RperVper can be integrated to yield

approximate azimuths φ= φ(t). In φ̇ = RperVper/r
2 insert r = r(t) =Rper +

aper

2 t2, then expand635 (
Rper +

aper

2
t2
)−2

' R−2
per

(
1− aper

Rper
t2
)

(C11)

and integrate dφ=RperVperr
−2dt to obtain

φ(t) ' Vper

Rper

t∫
0

(
1− aper

Rper
t̃
2
)

dt̃ (C12)

=
Vper

Rper
·
(
t− aper

3Rper
t3
)
. (C13)

The corresponding horizontal distances at the Earth’s surface are then given by x= x(t) =REφ(t). By using Eq. (C9), this640

can be further processed to yield

x(t) ' REVpert

Rper
·
(

1− ε

3

gpert
2

Rper

)
. (C14)

The leading term is ground distance for a circular orbit. The correction produced by the second term is proportional to eccen-

tricity.
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