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Abstract. In situ satellite exploration of the lower thermosphere and ionosphere (LTI) as anticipated in the recent Daedalus

mission proposal to ESA will be essential to advance the understanding of the interface between the Earth’s atmosphere and its

space environment. To address physical processes also below perigee, in situ measurements are to be extrapolated using models

of the LTI. Motivated by the need for assessing how cost-critical mission elements such as perigee and apogee distances as well

as the number of spacecraft affect the accuracy of scientific inference in the LTI, the Daedalus Ionospheric Profile Continuation5

(DIPCont) project is concerned with the attainable quality of in situ measurement extrapolation for different mission parameters

and configurations. This report introduces the methodological framework of the DIPCont approach. Once a LTI model is

chosen, ensembles of model parameters are created by means of Monte Carlo simulations using synthetic measurements based

on model predictions and relative uncertainties as specified in the Daedalus Report for Assessment. The parameter ensembles

give rise to ensembles of model altitude profiles for LTI variables of interest. Extrapolation quality is quantified by statistics10

derived from the altitude profile ensembles. The vertical extent of meaningful profile continuation is captured by the concept

of extrapolation horizons defined as the boundaries of regions where the deviations remain below a prescribed error threshold.

To demonstrate the methodology, the initial version of the DIPCont package presented in this paper contains a simplified LTI

model with a small number of parameters. As a major source of variability, the pronounced change of temperature across the

LTI is captured by self-consistent non-isothermal neutral density and electron density profiles, constructed from scale height15

profiles that increase linearly with altitude. The resulting extrapolation horizons are presented for dual-satellite measurements

at different inter-spacecraft distances but also for the single-satellite case to compare the two basic mission scenarios under

consideration. DIPCont models and procedures are implemented in a collection of Python modules and Jupyter notebooks

supplementing this report.
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1 Introduction20

The lower thermosphere and ionosphere (LTI) at altitudes between about 100 km and 200 km is characterized by transitions of

several atmospheric attributes. It is the lower part of the heterosphere where atmospheric constituents are no longer mixed by

turbulence, and start to follow separate barometric laws (e.g., Picone et al., 2002; Izakov, 2007). As part of the thermosphere,

the temperature profile shows a significant increase with altitude throughout the whole LTI (e.g., Chamberlain and Hunten,

1987). As part of the ionosphere, it includes the E-layer peak in electron density and the bottom side of the F-layer (e.g.,25

Hargreaves, 1992). With strongly altitude-dependent neutral-ion and neutral-electron collision frequencies, the LTI supports

an anisotropic conductivity tensor that gives rise to a complex interplay of electric fields and currents. The conductivity tensor

components affecting the directions perpendicular to the ambient magnetic field, namely, Pedersen and Hall conductivities,

show pronounced maxima in the LTI (e.g., Baumjohann and Treumann, 1996). A key variable quantifying its energetics is the

Joule heating rate. Particular rich dynamics can be observed in the auroral region at high latitudes where energy and momentum30

from the magnetosphere are fed into the ionosphere through currents flowing parallel to the ambient magnetic field lines (e.g.,

Vogt et al., 1999). A comprehensive review of LTI features, measurement techniques, and models is provided by Palmroth et al.

(2021).

Since the early 20th century, the LTI has been studied extensively using ground-based remote sensing facilities such as

ionosondes and radars, but in all aspects requiring in situ observations it remains underexplored territory. Rocket flights (e.g.,35

Sangalli et al., 2009; Pfaff et al., 2022a) can offer only local and temporally confined information. Major technical challenges

have so far prevented a satellite mission to the deep, dense part of the LTI, despite scientific interest, community proposals,

and feasibility studies by major space agencies (e.g., Grebowsky and Gervin, 2001; Pfaff et al., 2022b). An early conception

of the TIMED mission (e.g., Yee et al., 1999) considered dipper options for in situ investigations of the LTI. A recent initiative

along this line is the Daedalus mission proposal (Sarris et al., 2020), submitted to ESA in response to the Explorer 10 Call40

under the Earth Observation Program, and selected together with two other proposals for a Phase-0 science and technical study.

Daedalus aims to perform in situ measurements in the LTI from an elliptical orbit, with a nominal perigee of 150 km and an

apogee on the order of 2000 km. Very low altitudes down to 120 km will be sampled by use of propulsion, through a series of

short excursions in the form of perigee descent maneuvers. These are planned to be performed at high latitudes (>65 degrees

magnetic latitude), where Pedersen conductivity and Joule heating maximize. The highly elliptical orbit of Daedalus leads to a45

natural precession of the orbit’s semi major axis, both in magnetic latitude and in magnetic local time; this means that Daedalus

will perform measurements along its elliptical orbit down to the nominal perigee of 150 km throughout all magnetic latitudes.

The geophysical observables sampled by Daedalus will enable obtaining a series of derived products, as described in Table 1 of

the Daedalus Report for Assessment (ESA, 2020), which, among many others, include the calculation of Pedersen conductivity

and Hall conductivity.50

The range of accessible perigees will be particular critical for any future LTI satellite mission, with severe impact on the

propellant budget and other mission performance parameters (Sarris et al., 2020). With nominal perigees not much less than

150 km, peak conductivities and currents controling E-region electrodynamics lie typically below the orbits. Physically mean-
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ingful downward continuation of in situ satellite measurements is desired, ideally using state-of-the-art models of the LTI (e.g.,

Sarris et al., 2023b). Another critical element of LTI mission conception is the number of spacecraft (Sarris et al., 2023a). The55

Daedalus Ionospheric Profile Continuation (DIPCont) project is concerned with vertical profiles of LTI variables and their

reconstruction from dual-spacecraft and single-spacecraft observations. More specifically, the focus of the project is on the

quality of profile continuation towards the lower LTI with its maxima in conductivities and current intensities, as given by

the accuracy, the resolution, and the coverage of the reconstructions obtained from in situ measurements. Inspired by early

work to extrapolate vertical profiles carried out under the Daedalus Phase-0 Science Study, DIPCont introduces a systematic60

probabilistic approach to the problem.

The DIPCont procedure to assess the quality of in situ measurement downward continuation is detailed in Section 3. In brief,

after choosing a LTI model, representative ensembles of altitude profiles are generated by means of Monte Carlo simulations.

The altitude profile ensembles give rise to statistical measures of relative deviation which in turn allow for estimating extrapo-

lation horizons, effectively capturing the altitude range where deviations remain within given error thresholds. The basic ideas65

are illustrated in Figure 1, displaying electron density and Pedersen conductivity extrapolation horizons for a range of relative

error thresholds along the orbits of a dual-satellite mission. Horizontal distance corresponds to the latitudinal (north-south)

direction, with the origin of the horizontal axis centered at the highest latitude along the satellite orbits. In the LTI model runs

leading to Figure 1, latitudinal inhomogeneity parameters are set to reproduce the two electron density maxima observed by a

polar orbiting satellite when crossing the auroral oval. See Section 4 and Appendix D for details. It is important to note that the70

filled contour representations of electron density and Pedersen conductivity model distributions mainly serve to provide con-

textual information, while the essential results of the DIPCont modeling procedure are the extrapolation horizons represented

as plain contour lines, in response to the satellite orbit configuration (white lines). The extrapolation horizons of the model run

shown in Figure 1 suggest that for a dual-satellite mission as anticipated in the Daedalus Report for Assessment (ESA, 2020),

downward continuation yields relative errors of a few ten percent at altitudes where electron density and Pedersen conductivity75

maximizes. Implications are discussed in more detail further below in Section 4, and contrasted with the single-satellite case.

The LTI model used to introduce and demonstrate the DIPCont methodology in this paper is presented in Section 2. The

parametric model captures the whole LTI temperature range and thus addresses a main source of variability. To limit the number

of model parameters and thus also instabilities during model inversion in this initial DIPCont study, LTI variables showing less

pronounced changes and ionization source mechanisms are treated in a simplified manner. Furthermore, since the quality of80

downward continuation is in the focus of our study, the LTI model is restricted to E-region physics, with the influence of the

F-region left for future work.

Further first results are presented in Section 4, including a brief comparison between the single-spacecraft and the dual-

spacecraft scenario. In Section 5, our findings are discussed in the context of important technical parameters and constraints

relevant for a low-altitude mission. The body of the paper is concluded in Section 6 with prospects for upcoming work.85

Model derivations and technical details are presented in the Appendices, with particular emphasis on the incorporation of a

non-isothermal temperature profile varying linearly with altitude.
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Figure 1. Extrapolation horizons and orbit configuration displayed on top of a two-dimensional section of the modeled LTI. Upper panel:

Electron density Ne. Lower panel: Pedersen conductivity σP. Horizontal distance corresponds to the latitudinal (north-south) direction, with

the origin of the horizontal axis centered at the highest latitude along the satellite orbits. In the LTI model runs leading to this figure,

latitudinal inhomogeneity parameters are set to reproduce the two electron density maxima observed by a polar orbiting satellite when

crossing the auroral oval. Synthetic measurements are produced along the two satellite orbits (white dashed lines). The parameters of vertical

profiles are estimated using measurements within a window (white solid rectangle) of width 2∆x around the nodes of a horizontal grid (gray

dashed lines). Extrapolation horizons (solid and dotted colored lines) for a set of relative error levels are displayed as contours of a relative

devation measure, here the root-mean-square deviation of the ensemble of extrapolated profiles from the synthetic model prediction.
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2 Parametric models of LTI variables

Probabilistic measures of extrapolation quality produced by the DIPCont procedure detailed in Section 3 are based on synthetic

in situ observations predicted by a model of the LTI. As emphasized in space physics textbooks and reviews of the LTI (e.g.,90

Pfaff, 2012; Richmond, 1995), the full complexity of LTI variability and dynamics calls for a full multi-species description,

taking into account source and loss processes varying in importance and efficiency as functions of magnetic latitude and

local time and further factors. In the future, DIPCont functionality is planned to be included in the Daedalus MASE (Mission

Assessment through Simulation Exercise) toolset (Sarris et al., 2023b), designed with the purpose to assess and demonstrate

the closure of the mission objectives of the proposed Daedalus mission.95

The more complex the LTI model of choice, however, the larger the number of parameters that are to be estimated with a

downward continuation of in situ satellite measurements, which in turn tend to negatively affect the stability of model inver-

sion. With these implications in mind, the initial version of the DIPCont package contains a simplified LTI description based

on a limited set of parameters. Extrapolation quality of a single but important process, namely, the formation of Pedersen con-

ductivity σP, is supposed to be studied in a self-consistent manner. To this end, only a single particle species is considered, and100

classical photoionization physics is applied to parametrize ionospheric layer formation. Furthermore, as explained in reviews

of ionospheric physics (e.g., Rishbeth, 1997), contributions from electron-neutral collisions to the Pedersen conductivity σP

peak in the D-region but are unimportant at higher altitudes, see also Figure 4 in Sarris et al. (2023b). We thus arrive at the

expression

σP =
Nee

2

mi

νin
ν2
in + Ω2

i

(1)105

(e: elementary charge, mi: ion particle mass, Ωi: ion gyrofrequency), suggesting that the altitude variabilities of electron

number density Ne and ion-neutral collision frequency νin need to be modeled carefully. Less critical is the dependence

of ion gyrofrequency Ωi on magnetic field strength as it does not vary much over the LTI altitude range, and is captured

with sufficient accuracy by well-established empirical models. Different parametrizations exist for the ion-neutral collision

frequency νin (e.g., Palmroth et al., 2021; Huba, 2019; Evans et al., 1977). In general the expressions are directly proportional110

to the number density Nn of neutral particles. As presented in the Appendices A and B, also the self-consistent construction

of electron density Ne rests prominently on the Nn profile, which in turn is conveniently modeled in terms of the density scale

height HN
n . This aspect is chosen as a starting point below in Subsection 2.1, to further explain and motivate the LTI modeling

approach.

The LTI model can be summarized in the form m = m(z|p) with a vector m of LTI observables and derived functions, and115

a vector p = p(x) of model parameters, separating the primary (strong) dependence on altitude z from the secondary (weak)

dependence on horizontal location x in a numerically efficient manner. Note the model functions are local representations

of altitude profiles in the sense that they refer to a flexible reference altitude, z0, that can be adapted to the locations where

measurements are taken. In the DIPCont development phase it was observed that parameters of model functions in local

representations typically showed weaker correlations and could be estimated more reliably, in particular as compared to the120

regional representations, relying on parameters at some fixed altitude, like the peak electron density height.
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As in the Daedalus Report for Assessment (ESA, 2020), the vertical boundaries of the LTI region are assumed to be at

zB = 100km (base or bottomside altitude) and zT = 200km (topside altitude).

2.1 Scale height parameters

As demonstrated in Appendix A, profiles of (neutral gas) pressure Pn and neutral (number) density Nn are conveniently125

constructed using

Pn(z) = Pn0 exp

−
z∫

z0

dz̃

HP
n (z̃)

 , (2)

Nn(z) = Nn0 exp

−
z∫

z0

dz̃

HN
n (z̃)

 , (3)

where HP
n and HN

n denote the pressure scale height and the density scale height, respectively. Furthermore, it is shown that

HN
n = HP

n

(
1 +

dHP
n

dz

)−1

(4)130

if the pressure scale height

HP
n =

kTn
mng

=
RgasTn
Mng

(5)

(k: Boltzmann constant, Tn: neutral temperature, g: gravitational acceleration, Rgas: universal gas constant, mn: average parti-

cle mass, Mn: average molar mass) changes only with temperature Tn. Eqs. (4) and (5) further imply that, if temperature Tn

varies linearly with altitude z, then also HP
n and HN

n .

In Appendix A it is shown that the constant inverse gradients

γ =

(
dHP

n

dz

)−1

(6)

and135

η =

(
dHN

n

dz

)−1

(7)

are related through

η = γ+ 1 . (8)

Variations of gravity g across the LTI are in the range of a few percent and can be neglected in this context. Profiles of Tn,

Mn, and HP
n as predicted by the empirical atmospheric model NRLMSIS 2.0 (Emmert et al., 2021) for different seasons and140

latitudes are displayed in Figures S1a–S1d as part of the supplementary material to this paper, indicating that relative variations
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of average molar mass are indeed significantly smaller than those of neutral temperature. We thus disregard altitude changes in

average molar mass Mn as imposed by changes in atmospheric composition, and further assume that temperature Tn, pressure

scale height HP
n , and density HN

n vary linearly with altitude in a self-consistent manner as described by Eqs. (4) and (5).

According to Eq. (A11), the local density scale height HN
n0 can be obtained using the inverse scale height gradients and the145

local pressure scale height HN
n0 from the expression

HN
n0 =

HP
n0

1 + γ−1
=

γ

γ+ 1
HP
n0 =

η− 1

η
HP
n0

=
η− 1

η

RgasTn0

Mng
, (9)

where the subscript 0 indicates that the respective variable is taken at the reference (measurement) altitude z0.

Since in the construction of neutral and electron density profiles (Appendices A and B) the scale height parameters are150

of central importance, their relative change is reflected in the following reference values: at zB, TnB ∼ 200K and HP
nB ∼

6km. Supplementary Figures S1a–S1d suggest that the pressure scale height varies by a factor ∼ 5 across the LTI, thus

HP
nT ∼ 5 ·HP

nB ∼ 30km and TnT ∼ 1000K at zT = 200km. We obtain dHP
n /dz = 0.24 = γ−1, γ ∼ 4, η = γ+ 1∼ 5, and

HN
nB = η−1

η HP
nB ∼ 5km for the density scale height at the base of the LTI.

2.2 Neutral temperature155

Neutral temperature Tn is assumed to vary linearly with altitude z:

Tn(z|z0,Tn0,Ln0) = Tn0 ·
(

1 +
z− z0

Ln0

)
. (10)

The parameters Tn0 and Ln0 are the neutral temperature and the gradient length scale, respectively, at a reference altitude z0.

The constant temperature gradient is given by

dTn
dz

=
Tn0

Ln0
. (11)160

Using Eq. (A13), the neutral temperature profile can be expressed by means of the parameters η and HN
n0 as follows:

Tn(z|z0,Tn0,H
N
n0,η) = Tn0 ·

(
1 +

z− z0

ηHN
n0

)
. (12)

2.3 Neutral density

The altitude dependence of neutral density Nn for linear scale height profiles is derived in Appendix A, resulting in the

following local representation165

Nn(z|z0,Nn0,H
N
n0,η)

= Nn0 · exp
{
−η ln

(
1 + z−z0

ηHN
n0

)}
= Nn0 ·

(
1 + z−z0

ηHN
n0

)−η
,

(13)
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see also Eq. (A15). The parameter Nn0 =Nn(z0) is the local neutral density, i.e., its value at the reference altitude z0.

2.4 Electron density

The altitude dependence of electron density Ne for linear scale height profiles is derived in Appendix B, resulting in the

following local representation170

Ne(z|z0,Ne0,Lr0 cosχ,HN
n0,η)

= Ne0 exp
{

1
2

η
η−1

[
−θ0 +

HN
n0

Lr0 cosχ

(
1− e−θ0

)]} (14)

with θ0 = θ0(z) = (η− 1) ln
(

1 + z−z0
ηHN

n0

)
, see Eq. (B16). The parameter Ne0 =Ne(z0) gives electron density at the chosen

reference altitude z0. Note thatLr0 and χ, the angle of incident radiation with the atmospheric layer normal direction, cannot be

estimated separately but only combined as Lr0 cosχ. The parametersHN
n0 and η can be inherited from estimations using neutral

temperature and/or neutral density data, effectively reducing the number of electron density parameters and thus stabilizing the175

estimation procedure.

The non-isothermal electron density model can also be expressed in terms of the ionization peak parameters, namely, the

altitude z∗ and the electron density value Ne∗ =Ne(z∗):

Ne(z|z∗,Ne∗,HN
n∗,η)

= Ne∗ exp
{

1
2

η
η−1

[
−θ∗+ 1− e−θ∗

]}
,

(15)

with θ∗ = θ∗(z) = (η− 1) ln
(

1 + z−z∗
ηHN

n∗

)
, and HN

n∗ denoting the density scale height at z = z∗. See Appendix B2 for details.180

Electron density profiles for identical peak parameters but different values of η are displayed in Figure 2.

The electron density model is designed to describe the ionospheric E-layer, assuming that contributions from the F-layer

are modeled separately and subtracted from the measurements. To account for residuals that may remain after subtraction, the

DIPCont package contains a parameter NeF .

2.5 Ion temperature185

Temperature profiles obtained by the International Reference Ionosphere (IRI) 2.0 model (Bilitza et al., 2022) indicate that ion

and neutral temperatures are very similar throughout the LTI, see Figures S2a–S2d in the supplementary material to this report.

In analogy with the neutral temperature case, ion temperature Ti is assumed to vary linearly with altitude z:

Ti(z|z0,Ti0,Li0) = Ti0 ·
(

1 +
z− z0

Li0

)
. (16)

The parameters Ti0 and Li0 are the ion temperature and the gradient length scale, respectively, at the chosen reference altitude190

z0.

2.6 Ion-neutral collision frequency

In quantitative terms, collision processes in the partially ionized LTI medium remain inadequately described, and are major

sources of uncertainties in empirical models (e.g., Palmroth et al., 2021; Heelis and Maute, 2020; Sarris, 2019). At this stage,
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the DIPCont project is less concerned with optimizing the quantitative description of the LTI, but rather with the quality of195

parameter estimation extrapolation. While the choice of the best LTI model is certainly important for recovering the real values

of targeted observables, further work will be needed, by parametric studies, comparison with previous work, and data analysis

when a low-perigee mission such as Daedalus (Sarris et al., 2020) provides in situ measurements in the LTI. For our goal

here, the chosen variant among the models for ion-neutral collision frequency νin should not matter too much as long as the

underlying variability associated with erroneous measurements is captured. To this end, we follow the description of Huba200

(2019) and write

νin = σinNn

√
kTi
mi

(17)

with the collision cross section σin ∼ 5·10−15 cm2. An even simpler expression could neglect the variation with ion temperature

Ti so that νin becomes directly proportional to the neutral density Nn.

2.7 Pedersen conductivity205

Using the approximations explained at the beginning of Section 2, Pedersen conductivity is given by

σP =
Nee

2

mi

νin
ν2
in + Ω2

i

(18)

for a quasi-neutral two-component plasma when the contribution from electron-neutral collisions is neglected, see also Eq. (1),

reproduced here for convenience. Compared to other variables and parameters of the LTI models presented here, the depen-

dence of ion gyrofrequency Ωi = qiB/mi (qi: ion charge, mi: ion mass) on magnetic field strength B can be determined from210
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Symbol Description

z0 Local reference altitude

Tn0 Neutral temperature at z0

Ln0 Neutral temperature gradient length at z0

Nn0 Neutral density at z0

HN
n0 Neutral density scale height at z0

η = ηn Inverse gradient of neutral density scale height

Ne0 Electron density at z0

Lr0 Radiation absorption length at z0

χ Inclination angle of incident radiation

NeF F-layer contribution to electron density

Ti0 Ion temperature at z0

Li0 Ion temperature gradient length at z0

Table 1. Parameters of model functions in local representation. The list is partially redundant, e.g., Ln0 = ηHN
n0. The parameters Lr0 and χ

cannot be estimated independently but only in combination Lr0 cosχ. Boundary data (neutral and ion temperatures at the base of the LTI)

are used to constrain the parameters Ln0, η, HN
n0, and Li0, see Section 3.3.

measurements or models of the magnetic field with very good accuracy, hence the associated variability should not much affect

our results. Furthermore, in the logic of the LTI model constructed for the initial version of the DIPCont package, changes

in atmospheric composition and thus average ion mass are disregarded. Inspection of Figures S2a–S2d in the supplementary

material to this report indicate that in the lower part of the LTI (altitudes below about 150 km) being the focus of downward

continuation quality in the current study, variations of average ion mass with altitude are relatively small. Hence, altitude vari-215

ations of ion gyrofrequency are neglected. In the same way as for other LTI model variables, namely, through the dependence

of the parameters in the vector p = p(x) (see Subsection 2.8 below) on the coordinate x, horizontal variations of magnetic

field strength B and thus ion gyrofrequency Ωi can be modeled. , and are planned to be considered in future work.

2.8 LTI model in compact form

Parameters of model functions in local representation are listed in Table 1.220

The description of the DIPCont modeling procedure in Section 3 benefits from summarizing the LTI model in compact form

as m = m(z|p), with parameters Tn0,H
N
n0,η, . . . , entering the vector p. The parametric functions Tn(z),Nn(z),Ne(z), Ti(z),

νin(z) = νin(Nn(z),Ti(z)), and σP(z) = σP(Ne(z),νin(z)) constitute the components of the vectorial function m.
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3 DIPCont modeling procedure

The DIPCont modeling procedure is as follows.225

– Synthetic noise-free measurements mj = m(zj |p) are created along anticipated Daedalus satellite orbit sections around

perigee at altitudes zj = z(tj) and horizontal distances xj = x(tj). The chosen model parameters are defined by vectors

p = p(x#) on a grid of horizontal distances x#. The integration and approximation methods employed for constructing

the satellite orbits are described in Section 3.1 and in Appendix C.

– Using the multiplicative noise model presented in Section 3.2, synthetic measurements are contaminated by random230

errors in accordance with relative uncertainties specified in the Daedalus Report for Assessment (ESA, 2020), yielding

ensembles {m̃k
j } of noisy synthetic data sets.

– For a point x# on the horizontal grid, synthetic data with horizontal distances xj in [x#−∆x,x# +∆x] are considered

to produce a least-squares estimate p̂k(x#) of the parameter vector p(x#). Repeating the estimation procedure for

all members k of the ensemble {m̃k
j } of synthetic data sets yields ensembles of model parameters {p̂k(x#)} for all235

horizontal grid points x#. Specifics of the estimation procedure are discussed in Section 3.3.

– With parameter vectors p ∈ {p̂k(x#)}, the parametric model function m = m(z|p) can be evaluated to obtain ensem-

bles {m̂k(z,x#)}= {m(z|p̂k(x#))}, representing altitude profiles of LTI observables and derived variables such as νin

and σP over the entire range of LTI altitudes, and for all horizontal grid points x#. The resulting altitude profiles form

a representative ensemble in the sense that their statistics are compatible with the model functions and the set of given240

relative errors. Relative deviation measures of observables and derived variables as functions of altitude are constructed.

Finally, the concept of extrapolation horizons, introduced in Section 3.4, captures the altitude range where errors are

tolerable according to predefined thresholds.

3.1 Satellite orbits around perigee

The DIPCont model offers two options for computing altitudes and horizontal distances along the orbits of satellites around245

perigee, namely, numerical integration by means of the Störmer-Verlet method (e.g., Hairer et al., 2003), and the polynomial

approximation

z(t) = zper +
aper

2
t2 , (19)

x(t) =
REVpert

Rper

(
1− aper

3Rper
t2
)
, (20)

with the acceleration aper at perigee given by250

aper =
GME

R2
per

Rapo−Rper

Rapo +Rper
= gper ε , (21)
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Figure 3. Observation time Tobs in the LTI versus apogee altitude zapo for three different values of perigee altitude zper. The topside of the

LTI is assumed to be at zT = 200km.

see Appendix C. Here RE is the Earth’s radius, ME is the Earth’s mass, G is the gravitational constant, zper,Rper, and Vper are

the altitude, geocentric distance, satellite velocity at perigee, gper = GME

R2
per

is the Earth’s gravitational acceleration at geocentric

distance Rper, Rapo is the geocentric distance at apogee, and ε=
Rapo−Rper

Rapo+Rper
is the orbital eccentricity. For the parameter range

considered in this study, the deviation of the polynomial approximation from the more precise orbit integration is on the order255

of a few hundred meters, see Figure S4b in the supplementary material to this report.

The observation time Tobs spent by Daedalus in the LTI during a perigee pass controls the amount of data that can be

gathered for statistical investigations. Using the quadratic orbital approximation around perigee, Tobs is twice the time needed

to move from z = zper to the upper boundary at z = zT, thus zT− zper =
aper

2 (Tobs/2)2, T 2
obs =

8(zT−zper)
aper

, and

T 2
obs =

8(zT− zper)R
2
per

GME

Rapo +Rper

Rapo−Rper
=

8(zT− zper)

gper ε
. (22)260

The variations of Tobs with apogee altitude in the range 1500km≤ zapo ≤ 3000km for the three perigee altitudes zper =

115,130,150km are displayed in Figure 3. Raising the perigee from 115 km to 130 km yields a small reduction of observation

time by about 10%. Within the range of orbital parameters considered here, the overall amount of data gathered during a perigee

pass turns out to depend only moderately on apogee altitude zapo, with a relative difference of not more than about 20% for

changes in zapo between 2000 km and 3000 km.265

When dual-satellite missions to the LTI are considered, the question arises how synchronous the measurements are with

respect to ground horizontal distance x, assuming the two spacecraft share the same orbital plane, have identical semi-major

axes and thus orbital periods, and pass through their perigees at the same time. Figure S4a in the supplementary material to this

report illustrates how visit times of ground horizontal distances are expected to differ for two satellites with perigee altitudes

130 km and 150 km. Differences of satellite visit times turn out to be on the order of seconds.270
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Observable Relative error

Neutral temperature Tn 0.2

Neutral density Nn 0.2

Electron density Ne 0.1

Ion temperature Ti 0.1

Table 2. Relative error levels used in this study, according to Table 2 of the Daedalus Report for Assessment (ESA, 2020).

3.2 Synthetic measurements and positivity constraints

Synthetic measurements {µ̃1, µ̃2, µ̃3, . . .} of an observable at altitudes {z1,z2,z3, . . .} are constructed from a parametric model

function µ= µ(z|p) producing predictions that are contaminated by random errors {σ1,σ2,σ3, . . .} from a suitable probability

distribution. The model parameter vector p is estimated through minimization of a cost function. Following the standard least

squares approach, the cost function is chosen to be the error-scaled square deviation275

χ2(p) =
∑
j

(
µ̃j −µ(zj |p)

σj

)2

. (23)

The observables of interest Tn, Nn, Ne, Ti are all positive, hence a straightforward additive noise model would not be

appropriate as it may produce negative synthetic data. Furthermore, instrumental uncertainties as provided in the Daedalus

Report for Assessment (ESA, 2020) are typically specified as relative (multiplicative) errors. Both issues are addressed by

considering as model predictions µj = µ(zj |p) and data µ̃j not the positive observables as such but their (natural) logarithms,280

and relative uncertainties for the random errors {σ1,σ2,σ3, . . .}. In the case of a (neutral or electron) density N , one obtains

lnÑj = lnN(zj) +σjrj (24)

where the rj ∼N (0,1) represent Gaussian noise (normally distributed random numbers with zero mean and unit variance),

and N =N(z) refers to the (positive) density model. Then

Ñj = eσjrj ·N(zj) (25)285

so that positivity is guaranteed. Furthermore,

eσjrj ≈ 1 +σjrj , (26)

showing that the parameters σj correspond to relative error levels. Table 2 summarizes the values used in this report.

In general, the parameters enter the logarithms of model functions nonlinearly, and an iterative estimation procedure is

required.290
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3.3 Parameter estimation strategies

The model parameters listed in Table 1 are estimated from observations of neutral temperature Tn, neutral densityNn, electron

density Ne, and ion temperature Ti as follows.

– For a given horizontal grid location x#, data within the interval [x#−∆x,x# + ∆x] are considered. The effective

window width is 2∆x, see the white solid rectangles in Figures 1 and 4.295

– From Tn data and constraining the neutral temperature profile at the LTI lower boundary zB as explained below, infer

Tn0, HN
n0 and η. See Eq. (10) and Section 2.1.

– Using HN
n0 and η, estimate Nn0 from Nn data. See Eq. (13).

– Using HN
n0 and η, estimate Ne0 and Lr0 cosχ from Ne data. See Eq. (14).

– From Ti data and a suitable constraint at the LTI lower boundary zB in analogy to the neutral temperature case, infer Ti0300

and Li0. See Eq. (16).

Altitude profiles of these observables allow for constructing the height dependence of derived variables such as ion-neutral

collision frequency νin and the Pedersen conductivity σP, see Eqs. (17) and (18), respectively.

Lower LTI boundary constraints

As explained in Appendix A, Eqs. (A10) and (A13), the linear density scale height profile can be parametrized using HN
n0 and305

η in the form

HN
n (z|z0,H

N
n0,η) = HN

n0 ·
(

1 +
z− z0

ηHN
n0

)
. (27)

It is important to note that the HN
n profile takes center stage in the LTI models of the observables Tn, Nn, and Ne. While the

local temperature amplitude Tn0 is essentially an average of local temperature data around an altitude z0, and the same applies

to the local pressure scale height HP
n0 obtained from Tn0 by simple multiplication, the inverse density scale height gradient η310

and thus also the local density scale height parameter HN
n0 = η−1

η HP
n0 are very challenging to estimate from purely local data

with little variance in altitude, as suggested already by the standard error of the slope in linear regression analysis. Fortunately,

neutral temperature at the base of the LTI is known with reasonable tolerances from atmospheric models (e.g., Picone et al.,

2002; Emmert et al., 2021). This remote data point constitutes a valuable constraint for estimating the density scale height

profile. To incorporate model uncertainties and expected deviations from actual values, boundary data at the base of the LTI315

are contaminated by random errors according to the approach described in Section 3.2.

To be specific, the pressure scale height gradient as given in Eq. (2.1), constant under the assumptions discussed in Sec-

tion 2.1 and Appendix A, can be obtained from its values HP
n0 and HP

nB at z0 and the LTI base altitude zB, respectively, as

follows:

dHP
n

dz
=

HP
n0−HP

nB

z0− zB
. (28)320
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Figure 4. Model distributions of electron density Ne (left panel) and Pedersen conducitivity σP (right panel) in the LTI. Synthetic measure-

ments are produced along the two satellite orbits (white dashed lines). The parameters of vertical profiles are estimated using measurements

within a window (white solid rectangle) around two locations in horizontal direction (blue and green dashed lines).

The inverse gradients γ and η of pressure scale height and density scale height, respectively, are related by Eq. (8) through

η = γ+ 1, thus the parameter η is given by

η =
z0− zB

HP
n0−HP

nB
+ 1 =

Mng

Rgas

z0− zB

Tn0−TnB
+ 1 , (29)

where TnB denotes the neutral temperature at zB. The local density scale height HN
n0 can now be obtained from Eq. (9) as

HN
n0 =

HP
n0

1 + γ−1
=

η− 1

η

RgasTn0

Mng
. (30)325

Linear estimation of electron density parameters

The logarithm of the electron density model considered here,

lnNe(z) = lnNe0 +
1

2

η

η− 1

[
−θ0 +

HN
n0

Lr0 cosχ

(
1− e−θ0

)]
, (31)

can be combined with the logarithm of the neutral density model,

lnNn(z) = lnNn0 −
η

η− 1
θ0 , (32)330

to find

lnNe(z)− 1
2 lnNn(z)

= lnNe0− 1
2 lnNn0 + 1

2
η
η−1

HN
n0

Lr0 cosχ

(
1− e−θ0

)
= a + b

(
1− e−θ0

)
,

(33)

showing that a= lnNe0− 1
2 lnNn0 and b= 1

2
η
η−1

HN
n0

Lr0 cosχ can be obtained from linear regression of lnNe− 1
2 lnNn versus 1−

e−θ0 with θ0 = θ0(z) = (η−1) ln
(

1 + z−z0
ηHN

n0

)
. Since the parameters η and HN

n0 are available as estimates from Tn modeling,
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Figure 5. Visualization of the ensemble of altitude profiles generated from the Monte Carlo distributions of model parameters. Shown are

selected quantiles evaluated at the vertical grid of LTI altitudes. Left panels: electron density Ne. Right panels: Pedersen conducitivity σP.

Upper panels: center position (blue dashed line) in Figure 4. Lower panels: right position (green dashed line) in Figure 4.

and Nn0 is known from Nn modeling, Ne0 and Lr0 cosχ can be computed from the linear coefficients a and b, hence this335

special case does not necessitate an iterative parameter estimation approach.

3.4 Error profiles and extrapolation horizons

With {m̃k
j }k=1
j∈[#] being a single set (k = 1) of synthetic measurements, and j ∈ [#] indicating that horizontal distances are

selected to be within ±∆x around a predefined grid point x#, the estimation procedure yields a specific estimate p̂k of

the parameter vector p(x#). In a Monte Carlo setup, different instances of random errors are applied to the model predic-340

tions to produce data sets {m̃1
j ,m̃

2
j ,m̃

3
j , . . .}j∈[#]. The ensemble of data sets gives rise to an ensemble of parameter vec-

tors {p̂k}= {p̂1, p̂2, p̂3, . . .}, which in turn, when entered in m = m(z|p), yields an ensemble of profiles {m̂k(z,x#)}=

{m̂1(z,x#),m̂2(z,x#),m̂3(z,x#), . . .} for the entire range of altitudes z, and at each point x# of the horizontal coordinate

grid.

The procedure is illustrated in Figures 4 and 5. Figure 4 shows the model functions and the satellite orbits used for computing345

the predictions that enter the Monte Carlo simulation. The ensemble of altitude profiles generated from the Monte Carlo

distributions of model parameters is visualized in Figure 5 by means of selected quantiles evaluated at the vertical grid of LTI

altitudes.
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Figure 6. Solid lines (blue and green) give the relative root-mean-square deviations of Monte Carlo altitude profiles from the respective input

model profiles at two horizontal locations. Vertical dotted and solid lines represent a set of chosen error levels, ranging from 0.5 % and 1

% (yellow) to 32% and 64% (magenta). The corresponding horizontal lines show the extrapolation horizons indicating at which altitude the

relative deviation equals the respective error level. Left panels: electron density Ne. Right panels: Pedersen conducitivity σP. Upper panels:

center position (blue dashed line) in Figure 4. Lower panels: right position (green dashed line) in Figure 4.

The ensemble of altitude profiles forms the basis for quantifying extrapolation quality through measures of relative deviation

from a model prediction. Suppressing altitude and horizontal grid dependencies, and considering only a single model variable350

µ with ensemble members µ̂1, µ̂2, µ̂3, . . . , µ̂K , the root-mean-square deviation is given by

δµ =
√
〈(µ̂−µ)2〉 =

√√√√ 1

K

K∑
k=1

(µ̂k −µ)2 . (34)

Figure 6 shows the altitude profiles of relative root-mean-square deviation δµ/µ=
√
〈(µ̂−µ)2〉/µ for the variables and hori-

zontal locations as in Figures 4 and 5.

Figure S3 in the supplementary material to this report provides additional information on this DIPCont model run, visualizing355

model distributions, ensembles of altitude profiles, and extrapolation horizons also for neutral temperature Tn, neutral density

Nn, ion temperature Ti, and ion-neutral collision frequency νin.
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Alternative relative deviation measures considered in the DIPCont package are based on the empirical distribution of absolute

deviations |µ̂−µ|, e.g., the average absolute deviation from the model prediction µ:

(δµ)abs = 〈|µ̂−µ|〉 =
1

K

K∑
k=1

|µ̂k −µ| , (35)360

or selected quantiles of the distribution.

3.5 Implementation

The DIPCont model is implemented as a bundle of Python instuctions and functions collected in three modules.

In the module DIPContBas.py, the basic setup of the DIPCont framework is defined, e.g., LTI region boundaries and

boundary values, satellite orbit parameters, horizontal grid locations, and auxiliary plot parameters. Furthermore, it also pro-365

vides configurational variables that are exchanged between DIPCont functions and modules, e.g., parameters shared by differ-

ent parametric models.

The module DIPContMod.py provides parametric model functions of LTI variables and plot routines.

The module DIPContEst.py is concerned with Monte Carlo parameter estimation and profile continuation. Estimation

of parameters that enter the model functions nonlinearly is accomplished by the function curve_fit() from the module370

scipy.optimize whereas linear parameter estimation is performed using the function linregress from the module

scipy.stats. Monte Carlo ensembles of parameters and altitude profiles are stored in pandas dataframes.

The three DIPCont modules are provided as supplementary files to this report, together with Jupyter notebooks to explain

and illustrate their usage.

4 First results375

The major ingredients of the DIPCont processing chain, namely, generation of synthetic insitu measurements along satellite

orbits, Monte Carlo simulations of vertical profiles, and construction of extrapolation horizons, are summarized in Figures 4–

6 displaying electron density Ne and Pedersen conductivity σP as two variables of key importance for the structure and the

dynamics of the LTI. As indicated by Eq. (1) and the respective profiles in Figure 5, electron density makes the main contribu-

tion to the peaked height variation of Pedersen conductivity, with secondary contributions of neutral density and possibly ion380

temperature through the parametric form chosen for the ion-neutral collision frequency, see Section 2.6, and also Figure S3

in the supplementary material to this report. Furthermore, Pedersen conductivity controls the height variation of Joule heat-

ing, whose characterization is one of the main scientific targets of the proposed Daedalus mission (ESA, 2020). In the neutral

wind reference frame, Joule heating is j⊥ ·E⊥ = σP |E⊥|2 where the subscript ⊥ indicates a vectorial component perpendic-

ular to the ambient magnetic field direction B̂. Height variations of E⊥ are negligible according to the following rationale,385

see, e.g., Rishbeth (1997). Due to high parallel conductivity, the electric field component E‖ = Es parallel to B̂ vanishes, i.e.,

0 = Es =−∂Φ
∂s , where s is the magnetic field line coordinate, and Φ denotes the electric potential. The electric field component

Eq in a direction perpendicular to B̂ captured by a coordinate q then satisfies ∂Eq

∂s =− ∂
∂s

∂Φ
∂q =− ∂

∂q
∂Φ
∂s = ∂Es

∂q = 0.
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When instead of two selected horizontal locations as in Figure 6 an equidistant grid of horizontal coordinates is defined for

DIPCont simulations and the construction of extropolations horizons, the results can be displayed together with the underlying390

model distributions and satellite orbits as in Figure 1. In the following examples, such displays are used to visualize DIPCont

results for different spacecraft configurations. Section 4.1 offers a first qualititative assessment of extrapolation quality in terms

of varying inter-spacecraft distance. Section 4.2 contrasts the performance of the dual-spacecraft configuration considered so

far with the results of the single-spacecraft case.

Note that the horizontal axis corresponds to the latitudinal (north-south) direction. In the simulations that led to Figures 4–6,395

horizontal variations were disregarded for better comparability. In Figure 1 and in the following, latitudinal inhomogeneity

of electron density is meant to reproduce the two maxima observed by a polar orbiting satellite when crossing the auroral

oval. The highest latitude corresponds to the origin of the horizontal axis. Since the physics of energetic particle precipitation

is not incorporated in this initial version of the DIPCont package, the horizontal variation of electron density expected for

an auroral oval crossing is prescribed through ad hoc choices of horizontal electron density peak parameters profiles, see the400

option LTIModelType=’NeAuroralZoneCrossing’ in the DIPCont code as part of the supplementary material to this

report. The functional forms of horizontal electron density peak parameters are given in Appendix D.

4.1 Varying inter-spacecraft distance

Extrapolation of two-point measurements is expected to perform best if the spatial separation matches the relevant physical

length scale. In the LTI this should be the (local) density scale height, in the range of 10–20 km for altitudes above 130 km, as in405

our example of a dual-spacecraft setup with perigee altitudes of 130 km and 150 km, see Figure 1. The inter-spacecraft distance

remains close to 20 km throughout the whole orbit section and thus also to the density scale height as the relevant physical

scale. Note that in all dual-satellite DIPCont model runs presented in this paper, apogee distances of the second satellite have

been adjusted such that the sum of perigee and apogee distances are identical for both satellites, and thus also the semi-major

axes and the orbital periods.410

Figure 7 displays extrapolation horizons for the same simulation setup except that the perigee altitude of the second satellite

is reduced to 135 km, producing an inter-spacecraft distance at perigee of only 5 km. The separation is now smaller than the

local density scale height with values of about 15 km at altitudes around 150 km. Compared to Figure 1, the errors are increased

and the extrapolation horizons reduced. The changes are not dramatic but enough to show that inter-spacecraft distance is a

parameter to be considered when extrapolation quality is supposed to be optimized.415

4.2 Single-satellite case

To check how much a second satellite improves extrapolation quality, the Monte Carlo simulations summarized in Figure 1

are repeated for the single-spacecraft case, with all other parameters left unchanged. The resulting extrapolation horizons are

shown in Figure 8. Compared to ionospheric profile continuation from dual-spacecraft observations, the single-spacecraft case

yields significantly worse results, with extrapolation horizons collapsing into the orbit near the perigee due to lacking variability420

in altitudes. Away from the perigee, the orbital motion of the satellite during the time corresponding to the horizontal window
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Figure 7. Same as Figure 1 but for an inter-spacecraft separation of 5 km at perigee.

width 2∆x yields some height range that allows for profile reconstruction but with significant errors. The peaks in electron

density and Pedersen conductivity are clearly outside the largest considered error level of 64%, while Figure 1 shows that in

the dual-spacecraft case the peaks are between the 16% and 32% error levels.

5 Discussion425

Our first results suggest that altitude profiles of key LTI variables can be reconstructed with sufficient accuracy from in situ

measurements if the effective altitude range covers relevant physical scales such as the local density scale height HN
n0. This

is the case for a dual-spacecraft configuration with an inter-spacecraft separation of 20 km at perigee, see Figures 1 and 4–6.

By two-point sampling, one can retrieve the vertical profiles of electron density and Pedersen conductivity essentially down

to the bottom of the LTI region, a few scale heights under the lower satellite and including the peak altitudes. For Pedersen430

conductivity, errors are expected in the range of several 10%, with the peak altitude and most of the conductivity within the

32% extrapolation horizon in the chosen example, consistent with rocket observations (Sangalli et al., 2009).
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Figure 8. Same as Figure 1 but for the single-satellite case.

Given the current knowledge of key LTI variables, error levels of a few ten percent may well improve the situation. An

important motivation behind the Daedalus proposal was the large error margin in Joule heating estimates, with a major con-

tribution by errors in conductance (height-integrated conductivity). Thus, Sarris et al. (2020) pointed out that for a substorm435

event investigated by Palmroth et al. (2005), there were differences of up to 500% between three proxies of the Joule heating

rates integrated over the Northern hemisphere. Even if this setup cannot be directly compared to our virtual environment, the

order of magnitude difference between the two error margins looks encouraging for follow-up work on ionospheric profile

continuation.

The DIPCont framework allows for addressing economical and technical questions regarding the impact of different LTI440

mission cost factors. On the one hand, a dual-spacecraft mission seems to automatically imply higher costs because a second

satellite needs to be built. On the other hand, a major cost driver of any deep LTI mission is the necessary amount of propellant

that is required in order to maintain a spacecraft in orbit, due to enhanced atmospheric drag at very low perigee altitudes. Since

in a dual spacecraft setup the role of the lower perigee satellite can be shared, each of the two probes would have to carry half

of the total amount of propellant required to maintain the same total observation time required by a single-satellite mission.445
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Moreover, the necessary amount of thermal shielding depends as well on perigee altitude and each of the two probes would

have to withstand the maximum thermal stress at perigee less often. Our findings show that the two-point setup allows for a

more effective extrapolation to lower altitudes, which in turn means that a higher perigee may well be a meaningful option.

Data processing would also benefit from raising the perigee. As shown by simulations carried out for the technical assess-

ment of Daedalus (ESA, 2020), a hydrodynamic shock develops in front of the spacecraft at altitudes under ∼120–130 km,450

complicating the retrieval of unperturbed data from the observed ones. Another LTI mission parameter considered in this paper

is the apogee altitude controling the proximity to the Van Allen belts and thus the necessary amount of radiation shielding, but

affecting also the available LTI observation time near perigee. The analysis presented in Section 3.1 shows that the amount of

data gathered for statistical studies depends only moderately on apogee altitude.

The current version of the DIPCont framework concentrates on the E-layer, assuming that contributions from the F-layer455

can be disregarded or subtracted before processing, e.g., using the NeQuick approach to model topside ionospheric sounding

data (Pignalberi et al., 2020). The DIPCont package contains a parameter NeF to study the effect of F-layer residuals on

extrapolation quality in future work.

The first results presented here are planned to be validated and extended in more extensive studies. Besides varying orbital

parameters such as perigee altitude and inter-spacecraft distance, the impact of numerical parameters such as the horizontal460

selection window, 2∆x, needs further investigation. As already commented in Section 2.6, alternative functional forms for

modeling ion-neutral collision frequencies or other variables may also be considered.

6 Conclusions and Outlook

The DIPCont methodology introduced in this paper is designed to assess the quality of downward continuation of LTI variables

using in situ satellite measurements and parametric models. While first results have been obtained with a simplified LTI465

description based on a single particle species, the Monte Carlo simulation machinery in DIPCont is not constrained to a

particular model setup. By quantifying the quality of extrapolated in situ measurements, DIPCont can help to assess the

science return of specific configurations and thus to optimize the parameters of upcoming LTI missions.

First DIPCont tests, performed on electron density and Pedersen conductivity, show promising results, to be consolidated

by further parametric studies. Application of DIPCont to a modeled event, like the geomagnetic storm event of March 2015470

addressed in the Daedalus Report for Assessment (ESA, 2020) is an upcoming target. This could be performed using the

capabilities of the Daedalus MASE toolset (Sarris et al., 2023b). Future studies are planned to include Joule heating which was

a major driver of the Daedalus mission proposal.To investigate auroral processes and the electrodynamics of magnetosphere-

ionosphere coupling, ionization through energetic particle precipitation needs to be incorporated. The Hall current nature

of auroral electrojets calls for including electron-neutral collisional interaction as a major contributor to Hall conductivity475

formation.

Coordination between an LTI mission, like Daedalus, and a topside mission, e.g., like Swarm or DMSP, would enhance the

return of both missions. As an example, reconstruction of vertical profiles of ionospheric conductivity based on LTI observa-
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tions could help to calibrate topside estimates of the conductance, while topside electron density could provide upper continu-

ation and constrain the height-integrated total electron content (TEC) inferred from LTI data. Combination with ground-based480

observatory data such as ionosondes would offer further valuable constraints to DIPCont, and thus enable more comprehensive

modeling of the LTI.

Code availability. The DIPCont framework is implemented in three Python modules DIPContBas.py, DIPContMod.py, and DIPContEst.py.

The modules are provided as supplementary files to this report, together with Jupyter notebooks to explain and illustrate their usage. The

DIPCont code is planned to be migrated to a public repository.485

Appendix A: Neutral density profile for linear variations of scale height

Consider an atmospheric layer dominated by possibly several neutral constituents with an average or representative particle

mass mn, total pressure Pn, mass density %n, effective neutral number density Nn = %n/mn and temperature Tn. Under

hydrostatic conditions, dPn = −%n gdz, where z is altitude and g is gravity (gravitational acceleration) assumed to vary so

little within the layer that it can be safely considered constant. Using the ideal gas law Pn = NnkTn where k denotes the490

Boltzmann constant, one obtains dPn = −Pn mng
kTn

dz = −Pn dz
HP

n
with the pressure scale height

HP
n =

kTn
mng

, (A1)

Rearranging − dz
HP

n
= dPn

Pn
= dlnPn and integrating leads to

Pn(z) = Pn0 exp

−
z∫

z0

dz̃

HP
n (z̃)

 (A2)

where the altitude dependence of HP
n directly reflects the change of temperature Tn with z.495

Analogous differential and integral expressions for the neutral density, namely, dlnNn = − dz
HN

n
and

Nn(z) = Nn0 exp

−
z∫

z0

dz̃

HN
n (z̃)

 , (A3)

are derived as follows. Combining the differential of the ideal gas law dPn = NnkdTn + kTndNn with the hydrostatic condi-

tion yields−Nnmngdz = NnkdTn + kTndNn and thus−mng
kTn

dz− 1
Tn

dTn = 1
Nn

dNn = dlnNn. Since dTn

Tn
= dlnTn =

dlnHP =
dHP

n

HP
n

, one obtains500

dlnNn
dz

= − 1

HP
n

(
1 +

dHP
n

dz

)
. (A4)

Therefore, the density scale height HN
n in the expression dlnNn = − dz

HN
n

is given by

HN
n = HP

n

(
1 +

dHP
n

dz

)−1

. (A5)
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To be more specific, we suppose the neutral temperature Tn varies linearly with altitude z,505

Tn(z) = Tn0 ·
(

1 +
z− z0

Ln0

)
. (A6)

where Tn0 is the temperature at a reference altitude z0, and Ln0 = Tn0

dTn/dz
denotes the local gradient length. Then

HP
n (z) = HP

n0 ·
(

1 +
z− z0

Ln0

)
. (A7)

with

HP
n0 =

kTn0

mg
, (A8)510

so that the pressure scale height gradient dHP
n

dz =
HP

n0

Ln0
is constant, and thus also the gradient of density scale height:

dHN
n

dz
=

dHP
n

dz
·
(

1 +
dHP

n

dz

)−1

. (A9)

The linear profile of density scale height is given by

HN
n (z) = HN

n0 ·
(

1 +
z− z0

Ln0

)
, (A10)

with515

HN
n0 =

HP
n0

1 +HP
n0/Ln0

=
HP
n0

1 + γ−1
. (A11)

Here

γ =

(
dHP

n

dz

)−1

(A12)

denotes the inverse gradient of pressure scale height. The inverse gradient of density scale height

η =

(
dHN

n

dz

)−1

=
Ln0

HN
n0

(A13)520

is related to γ through η = γ+ 1.

In the non-isothermal case Ln0 <∞, integrating 1/HN
n gives the expression

ζ0 =

z∫
z0

dz̃

HN
n (z̃)

= η ln

(
1 +

z− z0

Ln0

)

= − ln

(
1 +

z− z0

ηHN
n0

)−η
, (A14)

Hence, the altitude profile of number density (A3) is given by525

Nn(z) = Nn0 · e−ζ0 = Nn0 ·
(

1 +
z− z0

ηHN
n0

)−η
. (A15)

In the isothermal limit, η→∞, ln
(

1 + z−z0
ηHN

n0

)
→ z−z0

ηHN
n0

, thus ζ0→ z−z0
HN

n0
, and HN

n0→HP
n0 through Eq. (A11).
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Appendix B: Electron density profile for linear variations of scale height

Following the approach first presented by Chapman (1931), the ionization rate per unit volume q is expressed in terms of the

intensity I of ionizing radiation, the ionization efficiency κ, the angle χ of incident radiation with the atmospheric layer normal530

vector, the radiation absorption cross-section σr, and the neutral density Nn as q = κ cosχ dI
dz . Here z is altitude, and the z

axis is pointing upwards as before. The function q = q(z) is also called production function. Although originally proposed

for photoionization, the Chapman approach may be applied also to ionization by precipitation of energetic particles as in the

auroral region, if model variables and coefficients are properly interpreted.

The intensity I satisfies the differential equation535

dI = σrNn I
dz

cosχ
(B1)

with the solution

I(z) = I∞ exp

 σr
cosχ

z∫
z∞

N(z̃)dz̃

 (B2)

where z∞ and I∞ refer to an upper boundary sufficiently remote from the atmospheric layer.

Using dI = σrNnI
dz

cosχ , the production function q can be rewritten as q = κσrNnI and thus540

q(z) = κσrNn(z)I∞ exp

 σr
cosχ

z∫
z∞

N(z̃)dz̃

 . (B3)

The ionization peak altitude z∗ is obtained from the condition

0 =
dlnq

dz

∣∣∣∣
z=z∗

=
N ′n(z∗)

Nn(z∗)
+
σrNn(z∗)

cosχ
(B4)

where the prime denotes differentiation with respect to altitude z. Considering Eqs. (A3) and (A14) gives rise to Nn(z) =

Nn0e
−ζ0 , ζ ′0 = 1/HN

n , and defining the radiation absorption length Lr = Lr(z) by545

Lr =
1

σrNn
, (B5)

the general ionization peak condition is conveniently expressed as

HN
n (z∗) = Lr(z∗)cosχ . (B6)

B1 Local representation of electron density

Assuming the neutral temperature Tn varies linearly with altitude z, the altitude dependence of electron density was modeled550

by Gledhill and Szendrei (1950). Since their formulation does not fit well with the DIPCont nomenclature used in the current
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report, an independent and extended derivation is presented now. Using Tn(z) = Tn0 ·
(

1 + z−z0
Ln0

)
= Tn0 ·

(
1 + z−z0

ηHN
n0

)
, and

η <∞, the altitude profile of neutral number density can be written in the form

Nn(z) = Nn0

(
1 +

z− z0

ηHN
n0

)−η
, (B7)

see Appendix A and Eq. (A15). Integration gives555

z∫
z∞

Nn(z̃)dz̃ = −Nn0
ηHN

n0

η− 1

[(
1 +

z̃− z0

ηHN
n0

)−(η−1)
]z̃=z
z̃=z∞

. (B8)

In this LTI modeling context it is safe to assume that the regional temperature increase with altitude is moderate enough to

ensure HN
n0 < Ln0, then η > 1. Furthermore, the altitude z∞ is chosen to be large enough for the contribution from the value

at z̃ = z∞ to be negligible. We obtain
z∫

z∞

Nn(z̃)dz̃ = −Nn0
ηHN

n0

η− 1

(
1 +

z− z0

ηHN
n0

)−(η−1)

(B9)560

by using Eq. (A14). Defining

θ0 =
η− 1

η
ζ0 = (η− 1) ln

(
1 +

z− z0

ηHN
n0

)
, (B10)

the radiation intensity profile assumes the form

I(z) = I∞ exp

{
−σrNn0

cosχ

ηHN
n0

η− 1
e−θ0

}
(B11)

= I∞ exp

{
− η

η− 1

HN
n0

Lr0 cosχ
e−θ0

}
(B12)565

where Lr0 = Lr(z0). The neutral density (A15) is rewritten as

Nn(z) = Nn0 exp

{
− η

η− 1
θ0

}
, (B13)

so that the production function (B3) assumes the form

q(z) =
κI∞
Lr0

exp

{
η

η− 1

[
−θ0−

HN
n0

Lr0 cosχ
e−θ0

]}
. (B14)

In the isothermal limit, η→∞, η
η−1 → 1, θ0→ z−z0

HN
n0

, and the isothermal Chapman production function (Chapman, 1931)570

is recovered.

In static equilibrium of photoionization and quadratic recombination, q = αN2
e with the recombination coefficient α, thus

Ne =
√
q/α. Using

Ne0 = Ne(z0) =

√
κI∞
αLr0

exp

{
−1

2

η

η− 1

HN
n0

Lr0 cosχ

}
, (B15)

we obtain575

Ne(z) = Ne0 exp

{
1

2

η

η− 1

[
−θ0 +

HN
n0

Lr0 cosχ

(
1− e−θ0

)]}
. (B16)
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B2 Representation of electron density in terms of ionization peak parameters

A meaningful regional representation of the electron density can be constructed by means of the ionization peak parameters.

For a given incident radiation angle χ, the altitude z∗ of the electron density maximum can be expressed in local parameters as

follows:580

z∗ = z0 + ηHN
n0

[
Γ1/(η−1)− 1

]
. (B17)

where

Γ =
HN
n0

Lr0 cosχ
. (B18)

The electron density peak value Ne∗ =Ne(z = z∗) is

Ne∗ = Ne0 exp

{
1

2

η

η− 1
[− lnΓ + Γ− 1]

}
. (B19)585

With z∗ as the reference altitude, z0 = z∗, we can take advantage of the condition (B6) HN
n0 =HN

n∗ = Lr∗ cosχ= Lr0 cosχ,

thus

Ne(z) = Ne∗ exp

{
1

2

η

η− 1

[
−θ∗+ 1− e−θ∗

]}
, (B20)

where θ∗ = θ∗(z) = (η−1) ln
(

1 + z−z∗
ηHN

n∗

)
, and HN

n∗ denotes the density scale height at z = z∗. This representation shows that

χ is only an implicit parameter of the electron density model, and cannot be inferred from knowledge of the peak parameters.590

Appendix C: Orbit approximation around perigee

Consider a Kepler orbit with radial distance r = r(t) and azimuth φ= φ(t) where t denotes time. Distance and velocity at

perigee are Rper and Vper, respectively. The corresponding variables at apogee are Rapo and Vapo, the gravitational constant is

G, and the planetary mass is M . Combining the conservation laws for angular momentum

r2φ̇ = RapoVapo = RperVper (C1)595

and total energy E (here normalized by the test mass m)

E

m
=

1

2

(
ṙ2 + r2φ̇2

)
− GM

r
(C2)

=
1

2
V 2

per−
GM

Rper
=

1

2
V 2

apo−
GM

Rapo
(C3)

yields the following expression for the perigee velocity in terms of perigee and apogee distances

V 2
per =

2GMRapo

Rper(Rapo +Rper)
=

2gperRperRapo

(Rapo +Rper)
(C4)600
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where gper = GM
R2

per
is the value of Earth’s gravitational acceleration at geocentric distance Rper. The radial velocity ṙ satisfies

ṙ2 =
2E

m
+

2GM

r
− (r2φ̇)2

r2
(C5)

=
2E

m
+

2GM

r
−
R2

perV
2
per

r2
. (C6)

Differentiating this expression and dividing by 2ṙ yields

r̈ = −GM
r2

+
R2

perV
2
per

r3
. (C7)605

Evaluation at perigee r =Rper gives

r̈|r=Rper
= −GM

R2
per

+
R2

perV
2
per

R3
per

= −GM
R2

per

+
V 2

per

Rper
. (C8)

Inserting the expression for V 2
per yields

r̈|r=Rper
=

GM

R2
per

Rapo−Rper

Rapo +Rper
= gper ε (C9)

where ε=
Rapo−Rper

Rapo+Rper
is the orbital eccentricity. The altitude z is related to radial distance r and the Earth’s planetary radius610

RE through z = r−RE. At perigee, t= 0 and z = zper. The parameter aper = z̈(t= 0) coincides with the radial acceleration

at perigee r̈|r=Rper
. Hence, orbital altitudes around perigee are approximately given by the quadratic function

z(t) ' zper +
aper

2
t2 . (C10)

To the same approximation order, the angular momentum conservation condition r2φ̇ = RperVper can be integrated to yield

approximate azimuths φ= φ(t). In φ̇ = RperVper/r
2 insert r = r(t) =Rper +

aper

2 t2, then expand615 (
Rper +

aper

2
t2
)−2

' R−2
per

(
1− aper

Rper
t2
)

(C11)

and integrate dφ=RperVperr
−2dt to obtain

φ(t) ' Vper

Rper

t∫
0

(
1− aper

Rper
t̃
2
)

dt̃ (C12)

=
Vper

Rper
·
(
t− aper

3Rper
t3
)
. (C13)

The corresponding horizontal distances at the Earth’s surface are then given by x= x(t) =REφ(t). By using Eq. (C9), this620

can be further processed to yield

x(t) ' REVpert

Rper
·
(

1− ε

3

gpert
2

Rper

)
. (C14)

The leading term is ground distance for a circular orbit. The correction produced by the second term is proportional to eccen-

tricity.
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Appendix D: Parametrization of horizontal electron density variations625

In the initial version of the DIPCont package, the horizontal variability of electron density profiles is controlled by the key-

word argument LTIModelType. Setting LTIModelType=’NeAuroralZoneCrossing’ produces two electron den-

sity maxima along the horizontal (latitudinal) axis as observed by a polar orbiting satellite when crossing the auroral oval,

see Figures 1, 7, and 8. More specifically, the horizontal (x) variations of peak altitude z∗ = z∗(x) and peak electron density

Ne∗ =Ne∗(x) in Eq. (15) are prescribed by the ad hoc parametrizations630

z∗(x) = z∗,min + ∆z∗ · f(x) , (D1)

Ne∗(x) = Ne∗,max − ∆Ne∗ · f(x) , (D2)

with

f(x) =
1

2

{
1 + cos

(
4πx

xR−xL

)}
(D3)

so that f = f(x) varies between zero and one. The parameters xL and xR are the horizontal boundaries of the modeling635

domain, here chosen to be xL =−2000km and xR = 2000km. The values of the electron density peak parameters used in

the model runs leading to Figures 1, 7, 8 are as follows: z∗,min = 110km, ∆z∗ = 10km, Ne∗,max = 1.5 · 1011 m−3, ∆Ne∗ =

0.5 · 1011 m−3.

All LTI model parameters for the simulation runs of the current report, including the horizontal electron density profile

parameters, are provided in the configuration file DIPContBas.py as part of the supplementary material.640
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