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Abstract. The Daedalus Ionospheric Profile Continuation (DIPCont) project is concerned with the question how in situ mea-

surements in the lower thermosphere and ionosphere (LTI) can be extrapolated using parametric models of observables and

derived variables. To reflect the pronounced change of temperature across the LTI, non-isothermal models for neutral density

and also electron density are constructed from scale height profiles that increase linearly with altitude. Ensembles of model

parameters are created by means of Monte Carlo simulations using synthetic measurements based on model predictions and5

relative uncertainties as specified in the Daedalus Report for Assessment. The parameter ensembles give rise to ensembles of

model altitude profiles for LTI variables of interest. Extrapolation quality is quantified by statistics derived from the altitude

profile ensembles. The vertical extent of meaningful profile continuation is captured by the concept of extrapolation horizons

defined as the boundaries of regions where the deviations remain below a prescribed error threshold. The methodology al-

lows for assessing how cost-critical elements of the Daedalus mission proposal such as perigee and apogee distances as major10

factors controling the necessary amount of propellant and radiation shielding, respectively, affect the accuracy of scientific

inference in the LTI. First results are presented for dual-satellite measurements at different inter-spacecraft distances but also

for the single-satellite case to compare the two basic mission scenarios under consideration. DIPCont models and procedures

are implemented in a collection of Python modules and Jupyter notebooks supplementing this report.

1 Introduction15

The lower thermosphere and ionosphere (LTI) at altitudes between about 100 km and 200 km is characterized by transitions of

several atmospheric attributes. It is the lower part of the heterosphere where atmospheric constituents are no longer mixed by

turbulence, and start to follow separate barometric laws (e.g., Picone et al., 2002; Izakov, 2007). As part of the thermosphere,

the temperature profile shows a significant increase with altitude throughout the whole LTI (e.g., Chamberlain and Hunten,

1987). As part of the ionosphere, it includes the E-layer peak in electron density and the bottom side of the F-layer (e.g.,20

Hargreaves, 1992). With strongly altitude-dependent neutral-ion and neutral-electron collision frequencies, the LTI supports
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an anisotropic conductivity tensor that gives rise to a complex interplay of electric fields and currents. The conductivity tensor

components affecting the directions perpendicular to the ambient magnetic field, namely, Pedersen and Hall conductivities,

show pronounced maxima in the LTI (e.g., Baumjohann and Treumann, 1996). A key variable quantifying its energetics is the

Joule heating rate. Particular rich dynamics can be observed in the auroral region at high latitudes where energy and momentum25

from the magnetosphere are fed into the ionosphere through currents flowing parallel to the ambient magnetic field lines (e.g.,

Vogt et al., 1999). A comprehensive review of LTI features, measurement techniques, and models is provided by Palmroth et al.

(2021).

Since the early 20th century, the LTI has been studied extensively using ground-based remote sensing facilities such as

ionosondes and radars, but in all aspects requiring in-situ observations it remains underexplored territory. Rocket flights (e.g.,30

Sangalli et al., 2009) can offer only local and temporally confined information. Major technical challenges have so far prevented

a satellite mission to the deep, dense part of the LTI, despite scientific interest, community proposals, and feasibility studies

by major space agencies. A recent initiative along this line is the Daedalus mission proposal (Sarris et al., 2020), submitted to

ESA in response to the Explorer 10 Call under the Earth Observation Program, and selected together with two other proposals

for a Phase-0 science and technical study. The Daedalus Report for Assessment (ESA, 2020) includes a thorough review of35

key LTI variables, like neutral density and temperature, electron density, and conductivities.

The Daedalus Ionospheric Profile Continuation (DIPCont) project is concerned with vertical profiles of LTI variables and

their reconstruction from dual-spacecraft and single-spacecraft observations. More specifically, the focus of the project is on

the quality of profile continuation towards the lower LTI with its maxima in conductivities and current intensities, as given

by the accuracy, the resolution, and the coverage of the reconstructions obtained from in-situ measurements. Inspired by early40

work to extrapolate vertical profiles carried out under the Daedalus Phase-0 Science Study, DIPCont introduces a systematic

probabilistic approach to the problem.

Using the parametric models of key LTI observables and derived variables described in Section 2, representative ensembles of

altitude profiles are generated by means of Monte Carlo simulations as explained in Section 3. The altitude profile ensembles

give rise to statistical measures of relative deviation which in turn allow for estimating extrapolation horizons, effectively45

capturing the altitude range where deviations remain within given error thresholds. The basic ideas are illustrated in Figure 1,

displaying the extrapolation horizons for a range of relative error thresholds on top of the model distributions of electon density

and Pedersen conductivity used for producing synthetic measurements along the orbits of a dual-satellite mission. Further first

results are presented in Section 4, including a brief comparison between the single-spacecraft and the dual-spacecraft scenario.

In Section 5, our findings are discussed in the context of important technical parameters and constraints relevant for a low-50

altitude mission. The body of the paper is concluded in Section 6 with prospects for upcoming work. Model derivations and

technical details are presented in the Appendices, with particular emphasis on the incorporation of a non-isothermal temperature

profile varying linearly with altitude.
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Figure 1. Two-dimensional section of the modeled LTI. Upper panel: Electron densityNe. Lower panel: Pedersen conductivity σP. Synthetic

measurements are produced along the two satellite orbits (white dashed lines). The parameters of vertical profiles are estimated using

measurements within a window (white solid rectangle) of width 2∆x around the nodes of a horizontal grid (gray dashed lines). Extrapolation

horizons (solid and dotted colored lines) for a set of relative error levels are displayed as contours of a relative devation measure, here the

root-mean-square deviation of the ensemble of extrapolated profiles from the synthetic model prediction.
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2 Parametric models of LTI variables

In this first version of the DIPCont model, the LTI is described by a series of self-consistent parametric models to assess the55

quality of conductivity profile reconstruction from in situ measurements. Considering Pedersen conductivity for a quasi-neutral

two-component plasma and disregarding the contribution from electron-neutral collisions, the expression

σP =
Nee

2

mi

νin
ν2
in + Ω2

i

(1)

(e: elementary charge, mi: ion particle mass) suggests that the altitude variabilities of electron number density Ne and ion-

neutral collision frequency νin need to be modeled carefully. Less critical is the ion gyrofrequency Ωi as it does not vary60

much over the LTI altitude range, and is captured with sufficient accuracy by well-established empirical models. Different

parametrizations exist for the ion-neutral collision frequency νin (e.g., Palmroth et al., 2021; Huba, 2019; Evans et al., 1977).

In general the expressions are directly proportional to the number density Nn of neutral particles.

Altitude profiles of neutral density Nn and electron density Ne depend on neutral temperature Tn. While isothermal ap-

proximations are still widely used for sufficiently narrow atmospheric layers, pronounced temperature changes over the LTI65

altitude range require at least a simplified non-isothermal description. Below we consider a linear temperature profile capturing

a representative range of typical thermospheric values (Picone et al., 2002) that in the LTI can be seen as an approximation

of the classical thermospheric profile suggested by Bates (1959) as a solution of the heat conduction equation. Self-consistent

parametric models of neutral density Nn and electron density Ne are developed for the linear temperature profile.

Note the model functions are local representations of altitude profiles in the sense that they refer to a flexible reference alti-70

tude, z0, that can be adapted to the locations where measurements are taken. In the DIPCont development phase it was observed

that parameters of model functions in local representations typically showed weaker correlations and could be estimated more

reliably, in particular as compared to the regional representations, relying on parameters at some fixed altitude, like the peak

electron density height.

As in the Daedalus Report for Assessment (ESA, 2020), the vertical boundaries of the LTI region are assumed to be at75

zB = 100km (base or bottomside altitude) and zT = 200km (topside altitude).

2.1 Neutral temperature

Neutral temperature Tn is assumed to vary linearly with altitude z:

Tn(z|z0,Tn0,Ln0) = Tn0 ·
(

1 +
z− z0
Ln0

)
. (2)

The parameters Tn0 and Ln0 are the neutral temperature and the gradient length scale, respectively, at a reference altitude z0.80

The constant temperature gradient is given by

dT
dz

=
Tn0

Ln0
. (3)
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2.2 Scale height parameters

The pressure scale height HP
n is defined as

HP
n =

kTn
mng

=
RgasTn
Mng

(4)85

where k is the Boltzmann constant, g is gravitational acceleration, Rgas is the universal gas constant, mn is the average particle

mass, and Mn is the average molar mass. Disregarding altitude changes of atmospheric composition and gravity, the height

variation of pressure scale height is also linear which in turn means that the gradient of pressure scale height

dHP
n

dz
=

Rgas

Mng

dTn
dz

=
Rgas

Mng

Tn0

Ln0
(5)

is constant. In Appendix A it is shown that this invariance implies that also the density scale height HN
n varies only linearly,90

and the constant inverse gradients

γ =
(

dHP
n

dz

)−1

(6)

and

η =
(

dHN
n

dz

)−1

(7)

are related through95

η = γ+ 1 . (8)

According to Eq. (A11), the local density scale height HN
n0 can be obtained from

HN
n0 =

HP
n0

1 + γ−1
=

γ

γ+ 1
HP
n0 =

η− 1
η

HP
n0

=
η− 1
η

RgasTn0

Mng
. (9)

Using Eq. (A13), the neutral temperature profile can be expressed by means of the parameters η and HN
n0 as follows:100

Tn(z|z0,Tn0,H
N
n0,η) = Tn0 ·

(
1 +

z− z0
ηHN

n0

)
. (10)

In the LTI, the temperature varies significantly with altitude, latitude, and season (Picone et al., 2002). As reference values

we adopt TnB ∼ 200K at zB = 100km, and TnT ∼ 1000K at zT = 200km, hence dT/dz ∼ 8K/km, and LnB ∼ 25km. At

zB, the pressure scale height is HP
nB ∼ 6km, thus HP

nB/LnB ∼ 0.24. This gives γ ∼ 4, η ∼ 5, and HN
nB ∼ 5km for the density

scale height at the base of the LTI.105
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2.3 Neutral density

The altitude dependence of neutral density Nn for linear scale height profiles is derived in Appendix A, resulting in the

following local representation

Nn(z|z0,Nn0,H
N
n0,η)

= Nn0 · exp
{
−η ln

(
1 + z−z0

ηHN
n0

)}

= Nn0 ·
(

1 + z−z0
ηHN

n0

)−η
,

(11)

see also Eq. (A15). The parameter Nn0 =Nn(z0) is the local neutral density, i.e., its value at the reference altitude z0.110

2.4 Electron density

The altitude dependence of electron density Ne for linear scale height profiles is derived in Appendix B, resulting in the

following local representation

Ne(z|z0,Ne0,Lr0 cosχ,HN
n0,η)

= Ne0 exp
{

1
2

η
η−1

[
−θ0 + HN

n0
Lr0 cosχ

(
1− e−θ0

)]} (12)

with θ0 = θ0(z) = (η− 1) ln
(

1 + z−z0
ηHN

n0

)
, see Eq. (B16). The parameter Ne0 =Ne(z0) gives electron density at the chosen115

reference altitude z0. Note thatLr0 and χ, the angle of incident radiation with the atmospheric layer normal direction, cannot be

estimated separately but only combined as Lr0 cosχ. The parametersHN
n0 and η can be inherited from estimations using neutral

temperature and/or neutral density data, effectively reducing the number of electron density parameters and thus stabilizing the

estimation procedure.

The non-isothermal electron density model can also be expressed in terms of the ionization peak parameters, namely, the120

altitude z∗ and the electron density value Ne∗ =Ne(z∗):

Ne(z|z∗,Ne∗,HN
n∗,η)

= Ne∗ exp
{

1
2

η
η−1

[
−θ∗+ 1− e−θ∗

]}
,

(13)

with θ∗ = θ∗(z) = (η− 1) ln
(

1 + z−z∗
ηHN

n∗

)
, and HN

n∗ denoting the density scale height at z = z∗. See Appendix B2 for details.

Electron density profiles for identical peak parameters but different values of η are displayed in Figure 2.

The electron density model is designed to describe the ionospheric E-layer, assuming that contributions from the F-layer125

are modeled separately and subtracted from the measurements. To account for residuals that may remain after subtraction, the

DIPCont package contains a parameter NeF .

2.5 Ion temperature

In analogy with the neutral temperature case, ion temperature Ti is assumed to vary linearly with altitude z:

Ti(z|z0,Ti0,Li0) = Ti0 ·
(

1 +
z− z0
Li0

)
. (14)130
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Figure 2. Altitude dependence of the non-isothermal electron density model for different values of the inverse neutral density scale height

gradient η. Common electron density peak parameters are z∗ = 110km, Ne∗ = 1011 m−3, HN
n∗ = 7km. The case η→∞ (in the legend,

η = inf) corresponds to the isothermal limit.

The parameters Ti0 and Li0 are the ion temperature and the gradient length scale, respectively, at the chosen reference altitude

z0.

2.6 Ion-neutral collision frequency

In quantitative terms, collision processes in the partially ionized LTI medium remain inadequately described, and are major

sources of uncertainties in empirical models (e.g., Palmroth et al., 2021; Heelis and Maute, 2020; Sarris, 2019). At this stage,135

the DIPCont project is less concerned with optimizing the quantitative description of the LTI, but rather with the quality of

parameter estimation extrapolation. While the choice of the best LTI model is certainly important for recovering the real values

of targeted observables, further work will be needed, by parametric studies, comparison with previous work, and data analysis

when a low-perigee mission such as Daedalus (Sarris et al., 2020) provides in situ measurements in the LTI. For our goal

here, the chosen variant among the models for ion-neutral collision frequency νin should not matter too much as long as the140

underlying variability associated with erroneous measurements is captured. To this end, we follow the description of Huba

(2019) and write

νin = σinNn

√
kTi
mi

(15)

with the collision cross section σin ∼ 5·10−15 cm2. An even simpler expression could neglect the variation with ion temperature

Ti so that νin becomes directly proportional to the neutral density Nn.145
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Symbol Description

z0 Local reference altitude

Tn0 Neutral temperature at z0

Ln0 Neutral temperature gradient length at z0

Nn0 Neutral density at z0

HN
n0 Neutral density scale height at z0

η = ηn Inverse gradient of neutral density scale height

Ne0 Electron density at z0

Lr0 Radiation absorption length at z0

χ Inclination angle of incident radiation

NeF F-layer contribution to electron density

Ti0 Ion temperature at z0

Li0 Ion temperature gradient length at z0

Table 1. Parameters of model functions in local representation. The list is partially redundant, e.g., Ln0 = ηHN
n0. The parameters Lr0 and χ

cannot be estimated independently but only in combination Lr0 cosχ. Boundary data (neutral and ion temperatures at the base of the LTI)

are used to constrain the parameters Ln0, η, HN
n0, and Li0, see Section 3.3.

2.7 Pedersen conductivity

Pedersen conductivity is given by

σP =
Nee

2

mi

νin
ν2
in + Ω2

i

(16)

for a quasi-neutral two-component plasma when the contribution from electron-neutral collisions is neglected, see also Eq. (1),

reproduced here for convenience. Compared to other variables and parameters of the LTI models presented here, the ion150

gyrofrequency Ωi can be determined from measurements or models of the magnetic field with very good accuracy, hence the

associated variability should not much affect our results. For simplicity, the ion gyrofrequency is set to a constant.

2.8 LTI model in compact form

Parameters of model functions in local representation are listed in Table 1.

The description of the DIPCont modeling procedure in Section 3 benefits from summarizing the LTI model in compact form155

as m = m(z|p), with parameters Tn0,H
N
n0,η, . . . , entering the vector p. The parametric functions Tn(z),Nn(z),Ne(z), Ti(z),

νin(z) = νin(Nn(z),Ti(z)), and σP(z) = σP(Ne(z),νin(z)) constitute the components of the vectorial function m.
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3 DIPCont modeling procedure

The DIPCont modeling procedure is as follows.

– Synthetic noise-free measurements mj = m(zj |p) are created along anticipated Daedalus satellite orbit sections around160

perigee at altitudes zj = z(tj) and horizontal distances xj = x(tj). The chosen model parameters are defined by vectors

p = p(x#) on a grid of horizontal distances x#. The integration and approximation methods employed for constructing

the satellite orbits are described in Section 3.1 and in Appendix C.

– Using the multiplicative noise model presented in Section 3.2, synthetic measurements are contaminated by random

errors in accordance with relative uncertainties specified in the Daedalus Report for Assessment (ESA, 2020), yielding165

ensembles {m̃k
j } of noisy synthetic data sets.

– For a point x# on the horizontal grid, synthetic data with horizontal distances xj in [x#−∆x,x# +∆x] are considered

to produce a least-squares estimate p̂k(x#) of the parameter vector p(x#). Repeating the estimation procedure for

all members k of the ensemble {m̃k
j } of synthetic data sets yields ensembles of model parameters {p̂k(x#)} for all

horizontal grid points x#. Specifics of the estimation procedure are discussed in Section 3.3.170

– With parameter vectors p ∈ {p̂k(x#)}, the parametric model function m = m(z|p) can be evaluated to obtain ensem-

bles {m̂k(z,x#)}= {m(z|p̂k(x#))}, representing altitude profiles of LTI observables and derived variables such as νin

and σP over the entire range of LTI altitudes, and for all horizontal grid points x#. The resulting altitude profiles form

a representative ensemble in the sense that their statistics are compatible with the model functions and the set of given

relative errors. Relative deviation measures of observables and derived variables as functions of altitude are constructed.175

Finally, the concept of extrapolation horizons, introduced in Section 3.4, captures the altitude range where errors are

tolerable according to predefined thresholds.

3.1 Satellite orbits around perigee

The DIPCont model offers two options for computing altitudes and horizontal distances along the orbits of satellites around

perigee, namely, numerical integration by means of the Störmer-Verlet method (e.g., Hairer et al., 2003), and the polynomial180

approximation

z(t) = zper +
aper

2
t2 , (17)

x(t) =
REVpert

Rper

(
1− aper

3Rper
t2
)
, (18)

with the acceleration aper at perigee given by

aper =
GME

R2
per

Rapo−Rper

Rapo +Rper
= gper ε , (19)185
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Figure 3. Observation time Tobs in the LTI versus apogee altitude zapo for three different values of perigee altitude zper. The topside of the

LTI is assumed to be at zT = 200km.

see Appendix C. Here RE is the Earth’s radius, ME is the Earth’s mass, G is the gravitational constant, zper,Rper, and Vper are

the altitude, geocentric distance, satellite velocity at perigee, gper = GME
R2

per
is the Earth’s gravitational acceleration at geocentric

distance Rper, Rapo is the geocentric distance at apogee, and ε= Rapo−Rper
Rapo+Rper

is the orbital eccentricity. For the parameter range

considered in this study, the deviation of the polynomial approximation from the more precise orbit integration is of the order

of a few hundred meters.190

The observation time Tobs spent by Daedalus in the LTI during a perigee pass controls the amount of data that can be

gathered for statistical investigations. Using the quadratic orbital approximation around perigee, Tobs is twice the time needed

to move from z = zper to the upper boundary at z = zT, thus zT− zper = aper
2 (Tobs/2)2, T 2

obs = 8(zT−zper)
aper

, and

T 2
obs =

8(zT− zper)R2
per

GME

Rapo +Rper

Rapo−Rper
=

8(zT− zper)
gper ε

. (20)

The variations of Tobs with apogee altitude in the range 1500km≤ zapo ≤ 3000km for the three perigee altitudes zper =195

115,130,150km are displayed in Figure 3. Raising the perigee from 115 km to 130 km yields a small reduction of observation

time by about 10%. Within the range of orbital parameters considered here, the overall amount of data gathered during a perigee

pass turns out to depend only moderately on apogee altitude zapo, with a relative difference of not more than about 20% for

changes in zapo between 2000 km and 3000 km.

3.2 Synthetic measurements and positivity constraints200

Synthetic measurements {µ̃1, µ̃2, µ̃3, . . .} of an observable at altitudes {z1,z2,z3, . . .} are constructed from a parametric model

function µ= µ(z|p) producing predictions that are contaminated by random errors {σ1,σ2,σ3, . . .} from a suitable probability

distribution. The model parameter vector p is estimated through minimization of a cost function. Following the standard least

10
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Observable Relative error

Neutral temperature Tn 0.2

Neutral density Nn 0.2

Electron density Ne 0.1

Ion temperature Ti 0.1

Table 2. Relative error levels used in this study, according to Table 2 of the Daedalus Report for Assessment (ESA, 2020).

squares approach, the cost function is chosen to be the error-scaled square deviation

χ2(p) =
∑

j

(
µ̃j −µ(zj |p)

σj

)2

. (21)205

The observables of interest Tn, Nn, Ne, Ti are all positive, hence a straightforward additive noise model would not be

appropriate as it may produce negative synthetic data. Furthermore, instrumental uncertainties as provided in the Daedalus

Report for Assessment (ESA, 2020) are typically specified as relative (multiplicative) errors. Both issues are addressed by

considering as model predictions µj = µ(zj |p) and data µ̃j not the positive observables as such but their (natural) logarithms,

and relative uncertainties for the random errors {σ1,σ2,σ3, . . .}. In the case of a (neutral or electron) density N , one obtains210

lnÑj = lnN(zj) +σjrj (22)

where the rj ∼N (0,1) represent Gaussian noise (normally distributed random numbers with zero mean and unit variance),

and N =N(z) refers to the (positive) density model. Then

Ñj = eσjrj ·N(zj) (23)

so that positivity is guaranteed. Furthermore,215

eσjrj ≈ 1 +σjrj , (24)

showing that the parameters σj correspond to relative error levels. Table 2 summarizes the values used in this report.

In general, the parameters enter the logarithms of model functions nonlinearly, and an iterative estimation procedure is

required.

3.3 Parameter estimation strategies220

The model parameters listed in Table 1 are estimated from observations of neutral temperature Tn, neutral densityNn, electron

density Ne, and ion temperature Ti as follows.

– For a given horizontal grid location x#, data within the interval [x#−∆x,x# + ∆x] are considered. The effective

window width is 2∆x, see the white solid rectangles in Figures 1 and 4.
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– From Tn data and constraining the neutral temperature profile at the LTI lower boundary zB as explained below, infer225

Tn0, HN
n0 and η. See Eq. (2) and Section 2.2.

– Using HN
n0 and η, estimate Nn0 from Nn data. See Eq. (11).

– Using HN
n0 and η, estimate Ne0 and Lr0 cosχ from Ne data. See Eq. (12).

– From Ti data and a suitable constraint at the LTI lower boundary zB in analogy to the neutral temperature case, infer Ti0

and Li0. See Eq. (14).230

Altitude profiles of these observables allow for constructing the height dependence of derived variables such as ion-neutral

collision frequency νin and the Pedersen conductivity σP, see Eqs. (15) and (16), respectively.

Lower LTI boundary constraints

As explained in Appendix A, Eqs. (A10) and (A13), the linear density scale height profile can be parametrized using HN
n0 and

η in the form235

HN
n (z|z0,HN

n0,η) = HN
n0 ·
(

1 +
z− z0
ηHN

n0

)
. (25)

It is important to note that the HN
n profile takes center stage in the LTI models of the observables Tn, Nn, and Ne. While the

local temperature amplitude Tn0 is essentially an average of local temperature data around an altitude z0, and the same applies

to the local pressure scale height HP
n0 obtained from Tn0 by simple multiplication, the inverse density scale height gradient η

and thus also the local density scale height parameter HN
n0 = η−1

η HP
n0 are very challenging to estimate from purely local data240

with little variance in altitude, as suggested already by the standard error of the slope in linear regression analysis. Fortunately,

neutral temperature at the base of the LTI is known with reasonable tolerances from atmospheric models (e.g., Picone et al.,

2002). This remote data point constitutes a valuable constraint for estimating the density scale height profile. To incorporate

model uncertainties and expected deviations from actual values, boundary data at the base of the LTI are contaminated by

random errors according to the approach described in Section 3.2.245

To be specific, the pressure scale height gradient as given in Eq. (5), constant under the assumptions discussed in Section 2.2

and Appendix A, can be obtained from its values HP
n0 and HP

nB at z0 and the LTI base altitude zB, respectively, as follows:

dHP
n

dz
=

HP
n0−HP

nB

z0− zB
. (26)

The inverse gradients γ and η of pressure scale height and density scale height, respectively, are related by Eq. (8) through

η = γ+ 1, thus the parameter η is given by250

η =
z0− zB

HP
n0−HP

nB
+ 1 =

Mng

Rgas

z0− zB

Tn0−TnB
+ 1 , (27)

where TnB denotes the neutral temperature at zB. The local density scale height HN
n0 can now be obtained from Eq. (9) as

HN
n0 =

HP
n0

1 + γ−1
=

η− 1
η

RgasTn0

Mng
. (28)
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Figure 4. Model distributions of electron density Ne (left panel) and Pedersen conducitivity σP (right panel) in the LTI. Synthetic measure-

ments are produced along the two satellite orbits (white dashed lines). The parameters of vertical profiles are estimated using measurements

within a window (white solid rectangle) around two locations in horizontal direction (blue and green dashed lines).

Linear estimation of electron density parameters

The logarithm of the electron density model considered here,255

lnNe(z) = lnNe0 +
1
2

η

η− 1

[
−θ0 +

HN
n0

Lr0 cosχ
(
1− e−θ0

)]
, (29)

can be combined with the logarithm of the neutral density model,

lnNn(z) = lnNn0 −
η

η− 1
θ0 , (30)

to find

lnNe(z)− 1
2 lnNn(z)

= lnNe0− 1
2 lnNn0 + 1

2
η
η−1

HN
n0

Lr0 cosχ

(
1− e−θ0

)

= a + b
(
1− e−θ0

)
,

(31)260

showing that a= lnNe0− 1
2 lnNn0 and b= 1

2
η
η−1

HN
n0

Lr0 cosχ can be obtained from linear regression of lnNe− 1
2 lnNn versus 1−

e−θ0 with θ0 = θ0(z) = (η−1) ln
(

1 + z−z0
ηHN

n0

)
. Since the parameters η and HN

n0 are available as estimates from Tn modeling,

and Nn0 is known from Nn modeling, Ne0 and Lr0 cosχ can be computed from the linear coefficients a and b, hence this

special case does not necessitate an iterative parameter estimation approach.

3.4 Error profiles and extrapolation horizons265

With {m̃k
j }k=1
j∈[#] being a single set (k = 1) of synthetic measurements, and j ∈ [#] indicating that horizontal distances are

selected to be within ±∆x around a predefined grid point x#, the estimation procedure yields a specific estimate p̂k of
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Figure 5. Visualization of the ensemble of altitude profiles generated from the Monte Carlo distributions of model parameters. Shown are

selected quantiles evaluated at the vertical grid of LTI altitudes. Left panels: electron density Ne. Right panels: Pedersen conducitivity σP.

Upper panels: center position (blue dashed line) in Figure 4. Lower panels: right position (green dashed line) in Figure 4.

the parameter vector p(x#). In a Monte Carlo setup, different instances of random errors are applied to the model predic-

tions to produce data sets {m̃1
j ,m̃

2
j ,m̃

3
j , . . .}j∈[#]. The ensemble of data sets gives rise to an ensemble of parameter vec-

tors {p̂k}= {p̂1, p̂2, p̂3, . . .}, which in turn, when entered in m = m(z|p), yields an ensemble of profiles {m̂k(z,x#)}=270

{m̂1(z,x#),m̂2(z,x#),m̂3(z,x#), . . .} for the entire range of altitudes z, and at each point x# of the horizontal coordinate

grid.

The procedure is illustrated in Figures 4 and 5. Figure 4 shows the model functions and the satellite orbits used for computing

the predictions that enter the Monte Carlo simulation. The ensemble of altitude profiles generated from the Monte Carlo

distributions of model parameters is visualized in Figure 5 by means of selected quantiles evaluated at the vertical grid of LTI275

altitudes.

The ensemble of altitude profiles forms the basis for quantifying extrapolation quality through measures of relative deviation

from a model prediction. Suppressing altitude and horizontal grid dependencies, and considering only a single model variable

µ with ensemble members µ̂1, µ̂2, µ̂3, . . . , µ̂K , the root-mean-square deviation is given by

δµ =
√
〈(µ̂−µ)2〉 =

√√√√ 1
K

K∑

k=1

(µ̂k −µ)2 . (32)280
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Figure 6. Solid lines (blue and green) give the relative root-mean-square deviations of Monte Carlo altitude profiles from the respective input

model profiles at two horizontal locations. Vertical dotted and solid lines represent a set of chosen error levels, ranging from 0.5 % and 1

% (yellow) to 32% and 64% (magenta). The corresponding horizontal lines show the extrapolation horizons indicating at which altitude the

relative deviation equals the respective error level. Left panels: electron density Ne. Right panels: Pedersen conducitivity σP. Upper panels:

center position (blue dashed line) in Figure 4. Lower panels: right position (green dashed line) in Figure 4.

Figure 6 shows the altitude profiles of relative root-mean-square deviation δµ/µ=
√
〈(µ̂−µ)2〉/µ for the variables and hori-

zontal locations as in Figures 4 and 5.

Alternative relative deviation measures considered in the DIPCont package are based on the empirical distribution of absolute

deviations |µ̂−µ|, e.g., the average absolute deviation from the model prediction µ:

(δµ)abs = 〈|µ̂−µ|〉 =
1
K

K∑

k=1

|µ̂k −µ| , (33)285

or selected quantiles of the distribution.

3.5 Implementation

The DIPCont model is implemented as a bundle of Python instuctions and functions collected in three modules.

In the module DIPContBas.py, the basic setup of the DIPCont framework is defined, e.g., LTI region boundaries and

boundary values, satellite orbit parameters, horizontal grid locations, and auxiliary plot parameters. Furthermore, it also pro-290
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vides configurational variables that are exchanged between DIPCont functions and modules, e.g., parameters shared by differ-

ent parametric models.

The module DIPContMod.py provides parametric model functions of LTI variables and plot routines.

The module DIPContEst.py is concerned with Monte Carlo parameter estimation and profile continuation. Estimation

of parameters that enter the model functions nonlinearly is accomplished by the function curve_fit() from the module295

scipy.optimize whereas linear parameter estimation is performed using the function linregress from the module

scipy.stats. Monte Carlo ensembles of parameters and altitude profiles are stored in pandas dataframes.

The three DIPCont modules are provided as supplementary files to this report, together with Jupyter notebooks to explain

and illustrate their usage.

4 First results300

The major ingredients of the DIPCont processing chain, namely, generation of synthetic in-situ measurements along satellite

orbits, Monte Carlo simulations of vertical profiles, and construction of extrapolation horizons, are summarized in Figures 4–6

displaying electron density Ne and Pedersen conductivity σP as two variables of key importance for the structure and the dy-

namics of the LTI. As indicated by Eq. (1) and the respective profiles in Figure 5, electron density makes the main contribution

to the peaked height variation of Pedersen conductivity, with secondary contributions of neutral density and possibly ion tem-305

perature through the parametric form chosen for the ion-neutral collision frequency, see Section 2.6. Furthermore, Pedersen

conductivity controls the height variation of Joule heating, whose characterization is one of the main scientific targets of the

proposed Daedalus mission (ESA, 2020).

When instead of two selected horizontal locations as in Figure 6 an equidistant grid of horizontal coordinates is defined for

DIPCont simulations and the construction of extropolations horizons, the results can be displayed together with the underlying310

model distributions and satellite orbits as in Figure 1. In the following examples, such displays are used to visualize DIPCont

results for different spacecraft configurations. Section 4.1 offers a first qualititative assessment of extrapolation quality in terms

of varying inter-spacecraft distance. Section 4.2 contrasts the performance of the dual-spacecraft configuration considered so

far with the results of the single-spacecraft case.

Note that the horizontal axis corresponds to the latitudinal (north-south) direction. In the simulations that led to Figures 4–6,315

horizontal variations were disregarded for better comparability. In Figure 1 and in the following, latitudinal inhomogeneity of

electron density is meant to reproduce the two maxima observed by a polar orbiting satellite when crossing the auroral oval.

The highest latitude corresponds to the origin of the horizontal axis.

4.1 Varying inter-spacecraft distance

Extrapolation of two-point measurements is expected to perform best if the spatial separation matches the relevant physical320

length scale. In the LTI this should be the (local) density scale height, in the range of 10–20 km for altitudes above 130 km,

as in our example of a dual-spacecraft setup with perigee altitudes of 130 km and 150 km, see Figure 1. The inter-spacecraft
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Figure 7. Same as Figure 1 but for an inter-spacecraft separation of 5 km at perigee.

distance remains close to 20 km throughout the whole orbit section and thus also to the density scale height as the relevant

physical scale.

Figure 7 displays extrapolation horizons for the same simulation setup except that the perigee altitude of the second satellite325

is reduced to 135 km, producing an inter-spacecraft distance at perigee of only 5 km. The separation is now smaller than the

local density scale height with values of about 15 km at altitudes around 150 km. Compared to Figure 1, the errors are increased

and the extrapolation horizons reduced. The changes are not dramatic but enough to show that inter-spacecraft distance is a

parameter to be considered when extrapolation quality is supposed to be optimized.

4.2 Single-satellite case330

To check how much a second satellite improves extrapolation quality, the Monte Carlo simulations summarized in Figure 1

are repeated for the single-spacecraft case, with all other parameters left unchanged. The resulting extrapolation horizons are

shown in Figure 8. Compared to ionospheric profile continuation from dual-spacecraft observations, the single-spacecraft case

yields significantly worse results, with extrapolation horizons collapsing into the orbit near the perigee due to lacking variability
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Figure 8. Same as Figure 1 but for the single-satellite case.

in altitudes. Away from the perigee, the orbital motion of the satellite during the time corresponding to the horizontal window335

width 2∆x yields some height range that allows for profile reconstruction but with significant errors. The peaks in electron

density and Pedersen conductivity are clearly outside the largest considered error level of 64%, while Figure 1 shows that in

the dual-spacecraft case the peaks are between the 16% and 32% error levels.

5 Discussion

Our first results suggest that altitude profiles of key LTI variables can be reconstructed with sufficient accuracy from in-situ340

measurements if the effective altitude range covers relevant physical scales such as the local density scale height HN
n0. This

is the case for a dual-spacecraft configuration with an inter-spacecraft separation of 20 km at perigee, see Figures 1 and 4–6.

By two-point sampling, one can retrieve the vertical profiles of electron density and Pedersen conductivity essentially down

to the bottom of the LTI region, a few scale heights under the lower satellite and including the peak altitudes. For Pedersen
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conductivity, errors are expected in the range of several 10%, with the peak altitude and most of the conductivity within the345

32% extrapolation horizon in the chosen example, consistent with rocket observations (Sangalli et al., 2009).

Given the current knowledge of key LTI variables, error levels of a few ten percent may well improve the situation. An

important motivation behind the Daedalus proposal was the large error margin in Joule heating estimates, with a major con-

tribution by errors in conductance (height-integrated conductivity). Thus, Sarris et al. (2020) pointed out that for a substorm

event investigated by Palmroth et al. (2005), there were differences of up to 500% between three proxies of the Joule heating350

rates integrated over the Northern hemisphere. Even if this setup cannot be directly compared to our virtual environment, the

order of magnitude difference between the two error margins looks encouraging for follow-up work on ionospheric profile

continuation.

The DIPCont framework allows for addressing economical and technical questions regarding the impact of different LTI

mission cost factors. On the one hand, a dual-spacecraft mission seems to automatically imply higher costs because a second355

satellite needs to be built. On the other hand, a major cost driver of any deep LTI mission is the necessary amount of propellant

that is required in order to maintain a spacecraft in orbit, due to enhanced atmospheric drag at very low perigee altitudes. Since

in a dual spacecraft setup the role of the lower perigee satellite can be shared, each of the two probes would have to carry half

of the total amount of propellant required to maintain the same total observation time required by a single-satellite mission.

Moreover, the necessary amount of thermal shielding depends as well on perigee altitude and each of the two probes would360

have to withstand the maximum thermal stress at perigee less often. Our findings show that the two-point setup allows for a

more effective extrapolation to lower altitudes, which in turn means that a higher perigee may well be a meaningful option.

Data processing would also benefit from raising the perigee. As shown by simulations carried out for the technical assess-

ment of Daedalus (ESA, 2020), a hydrodynamic shock develops in front of the spacecraft at altitudes under ∼120–130 km,

complicating the retrieval of unperturbed data from the observed ones. Another LTI mission parameter considered in this paper365

is the apogee altitude controling the proximity to the Van Allen belts and thus the necessary amount of radiation shielding, but

affecting also the the available LTI observation time near perigee. The analysis presented in Section 3.1 shows that the amount

of data gathered for statistical studies depends only moderately on apogee altitude.

The current version of the DIPCont framework concentrates on the E-layer, assuming that contributions from the F-layer

can be disregarded or subtracted before processing, e.g., using the NeQuick approach to model topside ionospheric sounding370

data (Pignalberi et al., 2020). The DIPCont package contains a parameter NeF to study the effect of F-layer residuals on

extrapolation quality in future work.

The first results presented here are planned to be validated and extended in more extensive studies. Besides varying orbital

parameters such as perigee altitude and inter-spacecraft distance, the impact of numerical parameters such as the horizontal

selection window, 2∆x, needs further investigation. As already commented in Section 2.6, alternative functional forms for375

modeling ion-neutral collision frequencies or other variables may also be considered.
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6 Conclusions and Outlook

The DIPCont framework enables a systematic approach to reconstructing ionospheric vertical profiles and quantitatively as-

sessing extrapolation quality. DIPCont allows for linear temperature variation with altitude, which extends the often used

isothermal model and provides a solid foundation to future applications, based on more complex models and on real world380

data. By quantifying the quality of extrapolated in-situ measurements, DIPCont can help to assess the science return of specific

configurations and thus to optimize the parameters of upcoming LTI missions.

First DIPCont tests, performed on electron density and Pedersen conductivity, show promising results, to be consolidated

by further parametric studies. Application of DIPCont to a modeled event, like the geomagnetic storm event of March 2015

addressed in the Daedalus Report for Assessment (ESA, 2020) is an upcoming target. Future studies are planned to include385

Joule heating which was a major driver of the Daedalus mission proposal.

Coordination between an LTI mission, like Daedalus, and a topside mission, e.g., like Swarm or DMSP, would enhance the

return of both missions. As an example, reconstruction of vertical profiles of ionospheric conductivity based on LTI observa-

tions could help to calibrate topside estimates of the conductance, while topside electron density could provide upper continu-

ation and constrain the height-integrated total electron content (TEC) inferred from LTI data. Combination with ground-based390

observatory data such as ionosondes would offer further valuable constraints to DIPCont, and thus enable more comprehensive

modeling of the LTI.

Code availability. The DIPCont framework is implemented in three Python modules DIPContBas.py, DIPContMod.py, and DIPContEst.py.

The modules are provided as supplementary files to this report, together with Jupyter notebooks to explain and illustrate their usage. The

DIPCont code is planned to be migrated to a public repository.395

Appendix A: Neutral density profile for linear variations of scale height

Consider an atmospheric layer dominated by possibly several neutral constituents with an average or representative particle

mass mn, total pressure Pn, mass density %n, effective neutral number density Nn = %n/mn and temperature Tn. Under

hydrostatic conditions, dPn = −%n gdz, where z is altitude and g is gravity (gravitational acceleration) assumed to vary so

little within the layer that it can be safely considered constant. Using the ideal gas law Pn = NnkTn where k denotes the400

Boltzmann constant, one obtains dPn = −Pn mng
kTn

dz = −Pn dz
HP

n
with the pressure scale height

HP
n =

kTn
mng

, (A1)

Rearranging − dz
HP

n
= dPn

Pn
= dlnPn and integrating leads to

Pn(z) = Pn0 exp



−

z∫

z0

dz̃
HP
n (z̃)



 (A2)
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where the altitude dependence of HP
n directly reflects the change of temperature Tn with z.405

Combining the differential of the ideal gas law dPn = NnkdTn+kTndNn with the hydrostatic condition yields−Nnmngdz =

NnkdTn + kTndNn and thus −mng
kTn

dz − 1
Tn

dTn = 1
Nn

dNn = dlnNn. Since dTn

Tn
= dlnTn = dlnHP = dHP

n

HP
n

, one ob-

tains

dlnNn
dz

= − 1
HP
n

(
1 +

dHP
n

dz

)
. (A3)

Introducing the density scale height410

HN
n = HP

n

(
1 +

dHP
n

dz

)−1

, (A4)

the resulting differential equation dlnNn = − dz
HN

n
is integrated to yield

Nn(z) = Nn0 exp



−

z∫

z0

dz̃
HN
n (z̃)



 . (A5)

To be more specific, we suppose the neutral temperature Tn varies linearly with altitude z,

Tn(z) = Tn0 ·
(

1 +
z− z0
Ln0

)
. (A6)415

where Tn0 is the temperature at a reference altitude z0, and Ln0 = Tn0
dTn/dz

denotes the local gradient length. Then

HP
n (z) = HP

n0 ·
(

1 +
z− z0
Ln0

)
. (A7)

with

HP
n0 =

kTn0

mg
, (A8)

so that the pressure scale height gradient dHP
n

dz = HP
n0

Ln0
is constant, and thus also the gradient of density scale height:420

dHN
n

dz
=

dHP
n

dz
·
(

1 +
dHP

n

dz

)−1

. (A9)

The linear profile of density scale height is given by

HN
n (z) = HN

n0 ·
(

1 +
z− z0
Ln0

)
, (A10)

with

HN
n0 =

HP
n0

1 +HP
n0/Ln0

=
HP
n0

1 + γ−1
. (A11)425

Here

γ =
(

dHP
n

dz

)−1

(A12)
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denotes the inverse gradient of pressure scale height. The inverse gradient of density scale height

η =
(

dHN
n

dz

)−1

=
Ln0

HN
n0

(A13)

is related to γ through η = γ+ 1.430

In the non-isothermal case Ln0 <∞, integrating 1/HN
n gives the expression

ζ0 =

z∫

z0

dz̃
HN
n (z̃)

= η ln
(

1 +
z− z0
Ln0

)

= − ln
(

1 +
z− z0
ηHN

n0

)−η
, (A14)

Hence, the altitude profile of number density (A5) is given by

Nn(z) = Nn0 · e−ζ0 = Nn0 ·
(

1 +
z− z0
ηHN

n0

)−η
. (A15)435

In the isothermal limit, η→∞, ln
(

1 + z−z0
ηHN

n0

)
→ z−z0

ηHN
n0

, thus ζ0→ z−z0
HN

n0
, and HN

n0→HP
n0 through Eq. (A11).

Appendix B: Electron density profile for linear variations of scale height

Following the approach first presented by Chapman (1931), the ionization rate per unit volume q is expressed in terms of

the intensity I of ionizing radiation, the ionization efficiency κ, the angle χ of incident radiation with the atmospheric layer

normal vector, the radiation absorption cross-section σr, and the neutral density Nn as q = κ cosχ dI
dz . The function q = q(z)440

is also called production function. Although originally proposed for photoionization, the Chapman approach may be applied

also to ionization by precipitaion of energetic particles as in the auroral region, if model variables and coefficients are properly

interpreted.

The intensity I satisfies the differential equation

dI = σrNn I
dz

cosχ
(B1)445

with the solution

I(z) = I∞ exp





σr
cosχ

z∫

z∞

N(z̃)dz̃



 (B2)

where z∞ and I∞ refer to an upper boundary sufficiently remote from the atmospheric layer.

Using dI = σrNnI
dz

cosχ , the production function q can be rewritten as q = κσrNnI and thus

q(z) = κσrNn(z)I∞ exp





σr
cosχ

z∫

z∞

N(z̃)dz̃



 . (B3)450
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The ionization peak altitude z∗ is obtained from the condition

0 =
dlnq
dz

∣∣∣∣
z=z∗

=
N ′n(z∗)
Nn(z∗)

+
σrNn(z∗)

cosχ
(B4)

where the prime denotes differentiation with respect to altitude z. Considering Eqs. (A5) and (A14) gives rise to Nn(z) =

Nn0e
−ζ0 , ζ ′0 = 1/HN

n , and defining the radiation absorption length Lr = Lr(z) by

Lr =
1

σrNn
, (B5)455

the general ionization peak condition is conveniently expressed as

HN
n (z∗) = Lr(z∗)cosχ . (B6)

B1 Local representation of electron density

Assuming the neutral temperature Tn varies linearly with altitude z, the altitude dependence of electron density was modeled

by Gledhill and Szendrei (1950). Since their formulation does not fit well with the DIPCont nomenclature used in the current460

report, an independent and extended derivation is presented now. Using Tn(z) = Tn0 ·
(

1 + z−z0
Ln0

)
= Tn0 ·

(
1 + z−z0

ηHN
n0

)
, and

η <∞, the altitude profile of neutral number density can be written in the form

Nn(z) = Nn0

(
1 +

z− z0
ηHN

n0

)−η
, (B7)

see Appendix A and Eq. (A15). Integration gives

z∫

z∞

Nn(z̃)dz̃ = −Nn0
ηHN

n0

η− 1

[(
1 +

z̃− z0
ηHN

n0

)−(η−1)
]z̃=z

z̃=z∞

. (B8)465

In this LTI modeling context it is safe to assume that the regional temperature increase with altitude is moderate enough to

ensure HN
n0 < Ln0, then η > 1. Furthermore, the altitude z∞ is chosen to be large enough for the contribution from the value

at z̃ = z∞ to be negligible. We obtain

z∫

z∞

Nn(z̃)dz̃ = −Nn0
ηHN

n0

η− 1

(
1 +

z− z0
ηHN

n0

)−(η−1)

(B9)

by using Eq. (A14). Defining470

θ0 =
η− 1
η

ζ0 = (η− 1) ln
(

1 +
z− z0
ηHN

n0

)
, (B10)

the radiation intensity profile assumes the form

I(z) = I∞ exp
{
−σrNn0

cosχ
ηHN

n0

η− 1
e−θ0

}
(B11)

= I∞ exp
{
− η

η− 1
HN
n0

Lr0 cosχ
e−θ0

}
(B12)
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where Lr0 = Lr(z0). The neutral density (A15) is rewritten as475

Nn(z) = Nn0 exp
{
− η

η− 1
θ0

}
, (B13)

so that the production function (B3) assumes the form

q(z) =
κI∞
Lr0

exp
{

η

η− 1

[
−θ0−

HN
n0

Lr0 cosχ
e−θ0

]}
. (B14)

In the isothermal limit, η→∞, η
η−1 → 1, θ0→ z−z0

HN
n0

, and the isothermal Chapman production function (Chapman, 1931)

is recovered.480

In static equilibrium of photoionization and quadratic recombination, q = αN2
e with the recombination coefficient α, thus

Ne =
√
q/α. Using

Ne0 = Ne(z0) =
√
κI∞
αLr0

exp
{
−1

2
η

η− 1
HN
n0

Lr0 cosχ

}
, (B15)

we obtain

Ne(z) = Ne0 exp
{

1
2

η

η− 1

[
−θ0 +

HN
n0

Lr0 cosχ
(
1− e−θ0

)]}
. (B16)485

B2 Representation of electron density in terms of ionization peak parameters

A meaningful regional representation of the electron density can be constructed by means of the ionization peak parameters.

For a given incident radiation angle χ, the altitude z∗ of the electron density maximum can be expressed in local parameters as

follows:

z∗ = z0 + ηHN
n0

[
Γ1/(η−1)− 1

]
. (B17)490

where

Γ =
HN
n0

Lr0 cosχ
. (B18)

The electron density peak value Ne∗ =Ne(z = z∗) is

Ne∗ = Ne0 exp
{

1
2

η

η− 1
[− lnΓ + Γ− 1]

}
. (B19)

With z∗ as the reference altitude, z0 = z∗, we can take advantage of the condition (B6) HN
n0 =HN

n∗ = Lr∗ cosχ= Lr0 cosχ,495

thus

Ne(z) = Ne∗ exp
{

1
2

η

η− 1
[
−θ∗+ 1− e−θ∗

]}
, (B20)

where θ∗ = θ∗(z) = (η−1) ln
(

1 + z−z∗
ηHN

n∗

)
, and HN

n∗ denotes the density scale height at z = z∗. This representation shows that

χ is only an implicit parameter of the electron density model, and cannot be inferred from knowledge of the peak parameters.
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Appendix C: Orbit approximation around perigee500

Consider a Kepler orbit with radial distance r = r(t) and azimuth φ= φ(t) where t denotes time. Distance and velocity at

perigee are Rper and Vper, respectively. The corresponding variables at apogee are Rapo and Vapo, the gravitational constant is

G, and the planetary mass is M . Combining the conservation laws for angular momentum

r2φ̇ = RapoVapo = RperVper (C1)

and total energy E (here normalized by the test mass m)505

E

m
=

1
2

(
ṙ2 + r2φ̇2

)
− GM

r
(C2)

=
1
2
V 2

per−
GM

Rper
=

1
2
V 2

apo−
GM

Rapo
(C3)

yields the following expression for the perigee velocity in terms of perigee and aopgee distances

V 2
per =

2GMRapo

Rper(Rapo +Rper)
=

2gperRperRapo

(Rapo +Rper)
(C4)

where gper = GM
R2

per
is the value of Earth’s gravitational acceleration at geocentric distance Rper. The radial velocity ṙ satisfies510

ṙ2 =
2E
m

+
2GM
r
− (r2φ̇)2

r2
(C5)

=
2E
m

+
2GM
r
− R2

perV
2
per

r2
. (C6)

Differentiating this expression and dividing by 2ṙ yields

r̈ = −GM
r2

+
R2

perV
2
per

r3
. (C7)

Evaluation at perigee r =Rper gives515

r̈|r=Rper
= −GM

R2
per

+
R2

perV
2
per

R3
per

= −GM
R2

per

+
V 2

per

Rper
. (C8)

Inserting the expression for V 2
per yields

r̈|r=Rper
=

GM

R2
per

Rapo−Rper

Rapo +Rper
= gper ε (C9)

where ε= Rapo−Rper
Rapo+Rper

is the orbital eccentricity. The altitude z is related to radial distance r and the Earth’s planetary radius

RE through z = r−RE. At perigee, t= 0 and z = zper. The parameter aper = z̈(t= 0) coincides with the radial acceleration520

at perigee r̈|r=Rper
. Hence, orbital altitudes around perigee are approximately given by the quadratic function

z(t) ' zper +
aper

2
t2 . (C10)
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To the same approximation order, the angular momentum conservation condition r2φ̇ = RperVper can be integrated to yield

approximate azimuths φ= φ(t). In φ̇ = RperVper/r
2 insert r = r(t) =Rper + aper

2 t2, then expand

(
Rper +

aper

2
t2
)−2

' R−2
per

(
1− aper

Rper
t2
)

(C11)525

and integrate dφ=RperVperr
−2dt to obtain

φ(t) ' Vper

Rper

t∫

0

(
1− aper

Rper
t̃
2
)

dt̃ (C12)

=
Vper

Rper
·
(
t− aper

3Rper
t3
)
. (C13)

The corresponding horizontal distances at the Earth’s surface are then given by x= x(t) =REφ(t). By using Eq. (C9), this

can be further processed to yield530

x(t) ' REVpert

Rper
·
(

1− ε

3
gpert

2

Rper

)
. (C14)

The leading term is ground distance for a circular orbit. The correction produced by the second term is proportional to eccen-

tricity.
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