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Abstract 9 

Hyperspectral images contain abundant spectral and spatial information about the earth's surface, labeling data processing and analysis 10 
more difficult, as well as the problem of sample labeling. In this paper, local binary pattern (LBP), sparse representation and mixed logistic 11 
regression model are introduced, and a sample labeling method based on neighborhood information and priority classifier discrimination is 12 
presented. Then, a hyperspectral remote sensing image classification method based on texture features and semi-supervised learning is 13 
implemented. The LBP is employed to extract features of spatial texture information from remote sensing images and enrich the feature 14 
information of samples. Then the multivariate logistic regression model is used to select the unlabeled samples with the largest amount of 15 
information, and the unlabeled samples with neighborhood information and priority classifier tags are selected to obtain the pseudo-labeled 16 
samples after learning. By making full use of the advantages of sparse representation and mixed logistic regression model, a new hyperspectral 17 
remote sensing image classification model based on semi-supervised learning is constructed to effectively achieve accurate classification of 18 
hyperspectral images. The data of Indian Pines, Salinas scene and Pavia University are selected to verify the validity of the proposed method. 19 
The experiment results show that the proposed classification method can obtain higher classification accuracy and show stronger timeliness 20 
and generalization ability.   21 

Keywords: Hyperspectral remote sensing image; Local binary pattern; Sparse representation; Mixed logistic regression; Neighbourhood information 22 

1. Introduction 23 

Hyperspectral Image (HSI) is the simultaneous imaging of target areas in dozens to hundreds of continuous spectral bands. 24 

It effectively integrates the spatial and spectral information in the imaging scene, with strong target detection ability and better 25 

material identification ability (Chang et al., 2021; Chen et al., 2021; Dou et ai., 2020). It is widely used in agriculture and 26 

forestry, geological exploration, marine exploration, Environmental monitoring and other fields. However, HSI is characterized 27 

by high data dimension, large information redundancy and high correlation between bands, which brings great difficulties to 28 

its processing and classification (Dumke et al.,2019; Huang et al., 2020; Jiang et al., 2020; Seifi et al., 2017). Therefore, how 29 

to reduce the redundant information of the data, extract and use the features of the hyperspectral image effectively, and realize 30 

the accurate classification of the hyperspectral image are the hot and difficult issues in the current hyperspectral image 31 

processing and classification research. 32 

Sample labeling of hyperspectral image data often requires expert knowledge and experience, so the cost of sample labeling 33 

is high(Shang et al., 2020). When the labeled samples are limited, semi-supervised learning can explore the useful information 34 

of the unlabeled samples to participate in the model training and reduce the labeling cost(Shi et al., 2019; Ye et al., 2021). In 35 

the field of machine learning, semi-supervised learning acquires knowledge and experience from a small number of labeled 36 

samples. Mining usable information from a large number of unlabeled samples helps the classification model to train and 37 

improve the classification accuracy (Yin et al., 2021; Yu et al., 2021; Chen et al., 2020 ). Therefore, a large number of scholars 38 

have carried out the research of semi-supervised learning in remote sensing images. Camps-Valls et al. (Camps-Valls et al., 39 

2007) proposed a graph-based hyperspectral image classification method, and constructed the graph structure through the graph 40 
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method. The data context information is integrated based on the composite kernel and the Nystrom method is introduced to 1 

speed up classification. Yang et al. (Yang et al., 2012) proposed a semi-supervised band selection technique for hyperspectral 2 

image classification. A metric learning method is used to measure the features of hyperspectral images, and a semi-supervised 3 

learning method is used to select a subset of valid bands from the original bands. The validity of the method and the 4 

improvement of classification accuracy are verified by experiments. Tan et al. (Tan et al., 2014) proposed a hyperspectral image 5 

classification method based on segmentation integration and semi-supervised support vector machine. The spatial information 6 

of the tag samples is extracted using a segmentation algorithm to filter the samples, and then classified based on semi-supervised 7 

learning. Samiappan et al. (Samiappan et al., 2015) combined active learning and co-training to perform semi-supervised 8 

classification of hyperspectral images. The initial classification model is trained according to the labeled samples, and the 9 

heuristic active learning is performed on the unlabeled samples. Combined with the original data, the labeled sample set was 10 

divided into views, and the unlabeled samples with high heuristic values were selected to join the training sample set for co-11 

training. Zhang (Zhang et al., 2016) used a semi-supervised classification method based on hierarchical segmentation and active 12 

learning to extract spatial information from hyperspectral images, then the training set is updated iteratively by using the 13 

information of a large number of unlabeled samples to complete the hyperspectral image classification.  14 

In hyperspectral images, each pixel corresponds to a spectral curve that reflects its inherent physical, chemical and optical 15 

properties. The main basis of hyperspectral image classification is to use the feature information of different pixels to label the 16 

pixels belonging to different landmarks and obtain the corresponding classification maps (Zhang et al., 2022; Zhao et al., 2022). 17 

Therefore, a large number of scholars have carried out the research on hyperspectral image classification. Melgani et al. 18 

(Melgani et al., 2004) proposed a hyperspectral image classification method based on Support Vector Machines (SVM). The 19 

kernel function is introduced to solve the nonlinear separable problem and avoid the curse of dimensionality. Ratle et al. (Ratle 20 

et al., 2006) introduced neural networks into hyperspectral image classification. In the training phase, the loss function is 21 

optimized to avoid problems such as local optimization. Chen et al. (Chen et al., 2011) constructed a hyperspectral image 22 

classification model based on sparse representation, and compared the classification results of common machine learning 23 

methods. In order to improve the shortcomings of sparse representation in dealing with nonlinear problems, Chen et al. (Chen 24 

et al., 2013) introduced kernel method to propose a kernel sparse representation technique. In addition, Cui et al. (Cui et al., 25 

2013) proposed a multiscale sparse representation algorithm for robust hyperspectral image classification. Automatic and 26 

adaptive weight allocation schemes based on spectral angle ratio are incorporated into the multi-classifier framework to fuse 27 

sparse representation information at all scales. Tang et al. (Tang et al., 2016) proposed two sparse representation algorithms 28 

based on manifolds to solve the instability problem of l1-based sparse algorithms. Using regularization and local invariance 29 

techniques, two manifold-based regularization items are merged into the𝑙ଵ-based objective function. Wang et al. (Wang et al., 30 

2016) applied the neighborhood-cutting technique to sparse representation, and combined the joint spatial and spectral sparse 31 

representation classification algorithm. Wang and Celik (Wang et al., 2018) improved the classification accuracy of 32 

hyperspectral images by combining context information in the sparse coefficient domain. Hu et al. (Hu et al., 2019) proposed 33 

two weighted kernel joint sparse representation methods, which determine the calculation weight by calculating the kernel 34 

similarity between adjacent pixels. The nearest neighbor regularization strategy is used to optimize both the weight of the 35 

projected adjacent pixels and the joint sparse representation factor. Xue et al. (Xue et al., 2017) presented two novel sparse 36 

graph regularization methods, SGR and SGR with total variation. Yang et al. (Yang et al., 2018) studied the effect of the p-37 

norm distance metric on the minimum distance technique and proposes a supervised-learning p-norm distance metric to 38 

optimize the value of p. Zhang et al. (Zang et al., 2019) proposed a multi-scale dense network for HSI classification that made 39 

full use of different scale information in the network structure and combined scale information throughout the network. Liu et 40 

al. (Liu et al., 2021) proposed a class-wise adversarial adaptation in conjunction with the class-wise probability MMD as the 41 

class-wise distribution adaptation (CDA) network. Wang et al. (Wang et al., 2022) proposed graph-based semi-supervised 42 

learning with weighted features for HSI classification. 43 

To sum up, hyperspectral images contain rich spectral and spatial information of earth surface features, which increases the 44 

difficulty of data processing and analysis. In addition, the training samples of actual hyperspectral images are small and there 45 

is a problem of sample labeling. The local binary pattern, sparse representation and mixed logistic regression model are used 46 

https://doi.org/10.5194/gi-2022-24
Preprint. Discussion started: 24 January 2023
c© Author(s) 2023. CC BY 4.0 License.



3 
 

in this paper. A new hyperspectral image feature extraction method based on local binary pattern is proposed to obtain texture 1 

features of hyperspectral image samples and enrich hyperspectral image sample information. A sample selection strategy based 2 

on active learning is designed to determine the unlabeled samples. Based on this, a new sample labeling method based on 3 

neighbourhood information and priority classifier discrimination is deeply studied to expand the training samples. The 4 

hyperspectral remote sensing image classification method based on texture features and semi-supervised learning is studied to 5 

improve the classification accuracy of remote sensing images. 6 

The main contributions of this paper are described as follows. 7 

1) A novel a hyperspectral remote sensing image classification method based on texture features and semi-supervised 8 

learning is proposed, which introduces local binary pattern, sparse representation, hybrid logistic regression model and so on. 9 

2) The local binary pattern is used to effectively extract the features of spatial texture information of remote sensing images 10 

and enrich the feature information of samples. 11 

3) A multiple logistic regression model was used to optimally select unlabeled samples, which are labeled by using 12 

neighbourhood information and priority classifier discrimination to achieve pseudo-labeling of unlabeled samples. 13 

4) A hyperspectral remote sensing image classification model based on semi-supervised learning is constructed to effectively 14 

achieve accurate classification of hyperspectral images by making full use of the advantages of sparse representation and mixed 15 

logistic regression model. 16 

2. Basic methods 17 

2.1. Local binary pattern (LBP) 18 

LBP is a feature extraction method that extracts spatial texture information of images. Texture, which is widely used 19 

in image processing and image analysis, represents the slow change or periodic change of the surface structure of the 20 

object(Ojala et al. 1996). LBP is also widely used in feature extraction of hyperspectral images due to the simple structure 21 

and easy calculation. Give the center pixel 𝑔௖ሺ𝑥௖, 𝑦௖ሻ  and the neighborhood pixel 𝑔௣, 22 

    𝑔௣ ൌ ሺ𝑥௖ ൅ 𝑅𝑐𝑜𝑠 ቀ
ଶ௽௣

௉
ቁ , 𝑦௖ െ 𝑅𝑠𝑖𝑛ሺ

ଶ௽௣

௉
ሻሻ                              (1) 23 

where, ( 0,1,..., 1)pg p P  represents the coordinate values of P pixels uniformly distributed on the circular 24 

domain with cg  as the centre and R as the radius. The local texture information at the center pixel is the circular area 25 

in the Figure 1, which can be represented. 26 

 27 
Figure1. The quantized texture feature form of one region 28 

  𝐿𝐵𝑃௚೎
ൌ 2௣ ൈ ∑ 𝑠ሺ𝑔௣ െ 𝑔௖ሻ௉ିଵ

௣ୀ଴                                            (2) 29 

𝑠ሺ𝑥ሻ ൌ ቄ
1,
0,

𝑥 ൐ 0
𝑥 ൑ 0

                                                        (3) 30 

2.2. Sparse expression 31 

Sparse representation means that the signal can be approximately represented by a linear combination of the atoms in the 32 

dictionary. Now, 
1 2[ , ,..., ] D

cX X X X R   is given as the HSI pixel and D  is the number of image bands. In here, 33 

1 2[ , ,..., ]
c

D
i i i iNX x x x R  ,

cN  represents the number of samples in class i . 34 
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For samples in class i , it can be approximated as follow. 1 

1 1 2 2

1 2 1 2

...

= , ,..., , ,...,

c c

c c

i i iN N

T

i i iN N

i i

y x x x

x x x

X

  

  



   

      


                                     (4) 2 

where, iX represents a sparse sub-dictionary of the samples in class i . i  represents the sparse vector of test samples y , 3 

which contains only a few non-zero values. 4 

In order to obtain the sparsest vector i , the following formula is solved. 5 

0
arg min , . .i is t y A                                                (5) 6 

where, 
0

 .  is a 0l  norm, which represents the number of non-zero atoms in the vector, also known as sparsity. A is a 7 

sparse dictionary. It is a NP-hard problem to solve the formula directly. Under some conditions, the minimization solving 8 

problem( 0l ) is approximated by the minimization solving problem( 1l ), which can be relaxed. 9 

1
arg min , . .i is t y A                                     (6) 10 

Furthermore, the solution can be converted to the following formula. 11 
2

0 2
arg min , . .i is t A y                                 (7) 12 

where,  represents the refactoring error. Orthogonal matching pursuit (OMP) algorithm can be used to solve the above 13 

equation. After the sparsity coefficient is calculated, the reconstruction residual for each class of the test sample y can be 14 

calculated. 15 

2
( )i ir y y A                                        (8) 16 

where, {1,2,..., }i C . 17 

Finally, the reconstruction residuals of all category dictionaries are compared. The minimum residual is the category y. 18 

( ) arg min( ( )), 1, 2,...iclass y r y i C                          (9) 19 

3. An image sample labeling method based on neighbourhood information and priority classifier discrimination 20 

3.1. Sample selection method based on multiple logistic regression model 21 

Before the samples are labeled, sample selection is required. This is because if all unlabeled samples are labeled directly, all 22 

unlabeled samples need to be labeled, which will cost a lot of computational cost. Moreover, due to the small number of initial 23 

labeled samples and the limited information available, it is difficult to label some samples with a certain accuracy. Mislabeled 24 

samples obviously affect the classification accuracy of the model. The main objective of the sample selection strategy is to 25 

select the unlabeled samples with the largest amount of information. These unlabeled samples can construct a valuable training 26 

set after labeling, and effectively promote the improvement of classification results. Therefore, a kind of information selection 27 

method based on multiple logistic regression model is proposed to realize the selection of samples. 28 

That is to say, the classified probability matrix 𝑝൫𝑦௜
௞|𝑥௜൯ of each sample by using multiple logistic regression model has a 29 

large amount of information that can be mined as the initial data. The multiple logistic regression classifier is modeled by 30 

discriminant Bayesian decision model. According to the theory of generalized linear model, it can be obtained as follow. 31 

𝑃ሺ𝑦; 𝛿ሻ ൌ 𝑏ሺ𝑦ሻexp ሺ𝛿்𝑇ሺ𝑦ሻ െ 𝑎ሺ𝛿ሻሻ                                  (10) 32 
The specific form of multiple logistic regression is described as follow. 33 

𝑝ሺ𝑦௜ ൌ 𝑘|𝑥௜, 𝜂ሻ ൌ exp ሺ𝜂௞𝑔ሺ𝑥௜ሻሻ
∑ exp ሺ𝜂௞𝑔ሺ𝑥௜ሻሻே

௞ୀଵ
൘                            (11) 34 

where, 𝑔ሺ𝑥ሻ ൌ ሾ𝑔ଵሺ𝑥ሻ, 𝑔ଶሺ𝑥ሻ, … , 𝑔௙ሺ𝑥ሻሿ்  is the feature vectors of the input, and 𝜂 ൌ ሾ𝜂ଵ
், 𝜂ଶ

், … 𝜂௞
்ሿ  represents the 35 

regression parameter vector of the classifier. It is worth noting that the feature vector is often represented by introducing the 36 
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idea of kernel, which is not only used to improve the indivisibility, but also helps the classifier to fit better by training samples. 1 

Generally, the kernel function is radial basis function (RBF) as follow. 2 

𝐾ሺ𝑥௠, 𝑥௡ሻ ൌ 𝑒
ష||ೣ೘షೣ೙||మ

మ೛మ                                              (12) 3 
After the feature vector is determined, the regression parameter 𝜂 of model is only determined, and then the probability 4 

matrix 𝑝൫𝑦௜
௞|𝑥௜൯ of each unlabeled sample belonging to each class is determined. The amount of information of the samples 5 

is determined by the Breaking Ties (BT) and the Least Confidence (LC). In this paper, the BT method is selected to determine 6 

the amount of information. 7 

The BT method shows the similarity between the two categories by comparing the difference between the maximum category 8 

probability and the sub-maximum category probability. The difference is smaller, the similarity between the two types of 9 

samples is greater. The uncertainty is greater, the amount of information is greater. 𝑆௜ is used to indicate the similarity between 10 

categories. The formula is described as follow. 11 

𝑆௜ ൌ 𝑚𝑎𝑥𝑝൫𝑦௜
௞|𝑥௜൯ െ 𝑠𝑒𝑐𝑜𝑛𝑑𝑚𝑎𝑥ሺ𝑝൫𝑦௜

௞|𝑥௜൯ሻ                             (13) 12 
The 𝑆௜ is finally sorted in ascending order. 13 

3.2. A sample labeling method based on neighborhood information and priority classifier  14 

The features of hyperspectral images have some correlation. The ground objects are closer, the correlation is stronger. In the 15 

research of sample labeling, spatial neighborhood information based on training samples is widely used. However, due to the 16 

unknown central pixel and the lack of sufficient determination information, the neighborhood information of unlabeled samples 17 

is relatively less in the research of sample labeling. Generally, the label of any pixel on a hyperspectral image must be consistent 18 

with the label of one pixel in its neighborhood. This property can be applied to label the unlabeled samples. The label 19 

information of training samples around the unlabeled samples can be used to discriminate the unlabeled samples. The labeling 20 

discrimination method based on neighborhood information centers on the sample to be labeled. The labeled samples appearing 21 

around it are labeled with a block diagram. All the occurrences of sample labels are recorded and denoted as the neighborhood 22 

information set. Then, the labeled samples are used as training samples to train the classifier and classify the unlabeled samples. 23 

Determine whether the predicted sample label by the classifier appears in the neighborhood information set of the unlabeled 24 

samples. If it appears, the predicted label by the classifier is the sample label. Otherwise, the samples are put to be labeled back 25 

into the unlabeled sample set. One of the most important problems is whether the unlabeled samples which satisfy the 26 

neighborhood information can be reliably labeled by the classifier. At present, some studies use multiple classifiers to 27 

discriminate together and achieve good classification effect. However, a problem is how to determine the determination of 28 

labels, when the predicted labels by multiple classifiers are inconsistent, but all appear in the neighborhood information set of 29 

unlabeled samples. 30 

Therefore, a sample labeling method based on priority classifier discrimination is proposed in this paper. For unlabeled 31 

samples with the neighborhood information, the classifier with the highest priority is used for prediction. If the obtained 32 

prediction marker appears in the neighborhood information set, its marker is determined. Otherwise, the classifier with the 33 

lowest priority is used for prediction. Then judge whether the label can be determined until the end of the sample labeling. The 34 

sample labeling method based on neighborhood information and priority classifier discrimination is shown in Figure 2. 35 

 36 
Figure 2. Sample labeling process based on neighborhood information and priority classifier discrimination 37 

This labeling method is a cyclical iterative process. Although it is not possible to ensure enough training samples around all 38 

unlabeled samples at the initial stage of sample labeling, it can ensure that some unlabeled samples are sufficient. The unlabeled 39 
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samples are then labeled and extended to the training set. With each iteration, the training set grows. Those unlabeled samples 1 

whose neighborhood training samples are not sufficient may reach the label condition at a certain labeling time. This sample 2 

labeling method with replacement ensures the accuracy of sample labeling to a certain extent, and improves the performance 3 

of classifier step by step. 4 

4. Hyperspectral image classification method based on texture features and semi-supervised learning 5 

4.1. The idea of hyperspectral image classification 6 

Hyperspectral images consist of pairs of continuous spectral bands, which contain rich spectral and spatial information of 7 

earth surface features. So that some objects that cannot be identified by conventional remote sensing means can be identified 8 

in hyperspectral images. However, the abundant data information increases the difficulty of data processing and analysis, and 9 

there are problems such as the difficulty of sample labeling. In order to improve the accuracy of hyperspectral image 10 

classification, a new hyperspectral image classification method based on texture features and semi-supervised learning is 11 

proposed in this paper. Firstly, aiming at the problems of high correlation between bands, information redundancy, high data 12 

dimension and complex processing, LBP is employed to deal with the hyperspectral images. The texture features of 13 

hyperspectral images are effectively extracted to enrich the feature information of samples. Then, to solve the problem of 14 

limited label samples, a new sample labeling method based on neighborhood information and priority classifier is proposed. 15 

And a sample selection strategy is designed to find some samples from a large number of unlabeled samples. Secondly, the 16 

selection samples are labeled by using the neighborhood information and the priority classifier. Finally, the classifier is applied 17 

to achieve accurate classification of hyperspectral images. 18 

4.2. The model of hyperspectral image classification  19 

The hyperspectral image classification model based on texture features and semi-supervised learning is shown in Figure 3. 20 

   21 
Figure 3. Hyperspectral image classification model based on texture features and semi-supervised learning 22 

5. Case analysis 23 

5.1. Experimental data 24 

(1) Indian Pines data 25 

The images of Indian pines in northwest Indiana were collected by AVIRIS sensor. The images consist of 145×145 pixels 26 

and 224 spectral reflection bands with a wavelength range of 0.4~2.5 nm, including 16 types of feature elements. The false 27 

color map and real ground object distribution are shown in Figure 4. 28 
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    1 
(a)False color image               (b)Ground truth 2 

Figure 4 Hyperspectral remote sensing images of Indian Pines  3 
(2) Salinas Scene data 4 

The AVIRIS spectrometer collects images of the Salinas Valley in California, USA, with a size of 512×217 pixels and a 5 

total of 224 bands. After removing the bands covering the water absorption area, 204 bands were used, including 16 types of 6 

ground feature elements. The false color map and the real ground object distribution are shown in Figure 5. 7 

      8 
(a)False color images     (b)Ground truth 9 

Figure 5 Hyperspectral remote sensing image of Salinas Scene  10 
(3) Pavia University data 11 

Images of the Italian University of Pavia campus taken by the Rosis Spectrometer. It is 610 × 340 pixels in size and has a 12 

total of 115 wavebands. The 103 wavebands after removing the wavebands covering the water-absorbing region contain a total 13 

of 9 types of features. The false color map and the real ground object distribution are shown in Figure 6. 14 

     15 
(a)False color image        (b)Ground truth 16 

Figure 6 Hyperspectral remote sensing image of Pavia University  17 
In the experiment, 10% of each type of ground object of the three kinds of data is randomly selected as the training samples, 18 

and the rest is the test samples. 19 
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5.2. Evaluation criteria 1 

Confusion Matrix (CM) is usually used in the classification and evaluation of hyperspectral images. A confusion matrix is 2 

generally defined as follow. 3 

𝑃 ൌ ቎

𝑝ଵଵ
𝑝ଶଵ

𝑝ଵଶ …
𝑝ଶଶ …

𝑝ଵ௡
𝑝ଶ௡

… … … …
𝑝௡ଵ 𝑝௡ଶ … 𝑝௡௡

቏                                        (14) 4 

where, n denotes the number of objects in the category, 𝑝௜௝ represents the number of samples belonging to class i that were 5 

assigned to class j. The total amount of data in each row denotes the true number of objects in that category. The total amount 6 

of data for each column represents the total number of samples. 7 

Based on the confusion matrix, three classification indexes can be obtained, which are Overall Accuracy (OA), Average 8 

Accuracy (AA) and Kappa coefficient. 9 

𝑂𝐴 ൌ
∑ ௣೔೔

೙
೔సభ

ே
                                                      (15) 10 

where, N represents the total number of samples participating in the classification. 𝑝௜௜ represents the number of correctly 11 

classified samples of class i. It represents the probability that the classified result corresponds to its true label for each random 12 

sample. 13 

𝐶𝐴௜ ൌ
௣೔೔

ே೔
                                                     (16) 14 

where, 𝑁௜ represents the total number of samples for the first category in class i. 𝐶𝐴௜ represents the probability that 15 

category i is correctly classified. 16 

𝐾𝑎𝑝𝑝𝑎＝
൫௡൫∑ ௣೔೔

ಿ
೔సభ ൯ି∑ ൫∑ ௣೔ೕ ∑ ௣ೕ೔

ಿ
ೕసభ

ಿ
ೕసభ ൯ಿ

೔సభ ൯

௡మି∑ ቀ∑ ௣೔ೕ ∑ ௣ೕ೔
ಿ
ೕసభ

ಿ
ೕసభ ቁಿ

೔సభ
                              (17) 17 

The Kappa coefficient comprehensively considers the number of objects correctly classified and the error of being 18 

misclassified on the diagonal of the confusion matrix. 19 

5.3. Parameter determination and analysis 20 

5.3.1 Sample selection methods 21 

The quality of sample selection directly affects the efficiency of the whole experiment, and also affects the performance of 22 

classifier. In order to select the best sample selection method, the experimental results of IE, ME, BT and LC on three kinds of 23 

hyperspectral images were compared. The experiment is set to take 10 initial samples for each class, and all remaining samples 24 

are test samples. Two hundred unlabeled samples were selected by four sample selection methods in each iteration, and the 25 

real labels were given to the unlabeled samples. The samples were used to expand the training set, train the classifier and 26 

classify the test samples. The quality of the sample selection method is determined according to the classification results after 27 

each iteration is executed. The classification accuracy of different sample selection methods on different data sets is shown in 28 

Table 1. 29 
Table 1 The classification accuracy of different methods on different data sets(%) 30 

Data  Selection method 1 2 3 4 5 6 7 8 9 10 

Indian Pines 

IE 78.39 79.10 79.99 80.71 82.11 83.47 84.10 85.51 86.48 87.23 

ME 80.33 86.83 91.08 92.92 95.28 97.02 98.00 98.45 98.90 99.13 

BT 91.47 95.47 98.22 98.36 98.64 98.59 98.66 98.71 99.34 99.29 

LC 84.74 88.95 91.63 94.33 95.27 96.46 98.15 98.55 98.62 98.66 

Pavia 
University 

IE 69.87 71.31 71.75 71.74 72.04 72.40 73.25 73.36 73.76 74.45 

ME 73.01 75.23 78.74 82.78 89.14 92.82 95.14 96.10 97.13 97.82 

BT 87.54 92.63 94.51 95.24 95.84 96.10 96.39 96.50 96.69 96.71 

LC 74.91 76.33 80.76 84.45 87.23 89.89 90.27 90.67 90.56 91.47 

Salinas Scene 
IE 84.16 84.60 84.65 85.02 85.09 85.25 85.50 85.65 85.91 85.98 

ME 85.14 89.29 92.81 94.31 96.48 97.41 98.04 98.20 98.66 98.88 
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BT 95.30 96.98 98.26 98.71 98.95 98.90 99.03 99.21 99.25 99.24 

LC 88.60 91.19 92.84 93.58 93.80 95.74 97.56 97.72 98.56 98.86 

 1 

From Table 1, it can be seen that the classification accuracies of ME, BT and LC are greatly improved with the increase of 2 

the number of iterations on the three data sets. The results of the BT method are significantly better than those of the other 3 

methods. The accuracy can be improved to a high level in the first few iterations, indicating that BT method can select samples 4 

with greater classification improvement. Therefore, the BT method is chosen as the sample selection method in this paper. 5 

5.3.2 Determination of sample size 6 

In the labeling process, the samples are not completely labeled correctly. The more samples are screened, the more samples 7 

may be misclassified. This will make the training set more noisy and affects the generalization ability of the classifier. If the 8 

number of samples is too small, the number of labeled samples will not be enough to improve the classification accuracy of the 9 

classifier or will reduce the classification efficiency. The results of classification accuracy under different sample sizes are 10 

shown in Table 2. 11 
Table 2 The classification accuracy results under different sample sizes(%) 12 

Data Quantity 1 2 3 4 5 6 7 8 9 10 

Indian Pines 

200 77.30 77.57 78.32 77.97 78.59 78.97 78.96 79.28 79.51 79.23 

400 77.54 78.60 79.80 80.80 82.13 82.20 83.03 83.77 83.83 83.85 

600 77.52 79.54 79.37 79.27 80.08 81.99 83.89 83.60 84.30 84.48 

800 77.75 79.84 80.87 80.22 82.11 83.91 84.41 84.57 85.12 85.94 

1000 77.85 80.49 80.28 82.74 81.35 82.60 84.18 85.88 86.77 87.84 

1200 77.85 79.95 79.79 80.38 81.59 84.41 84.72 85.74 87.48 88.85 

1400 78.18 80.20 80.09 83.96 85.00 85.78 87.93 89.90 91.07 91.20 

1600 78.55 80.56 80.59 84.12 86.90 87.82 89.02 90.87 91.49 91.83 

1800 78.34 79.76 79.23 82.64 85.39 87.32 88.81 89.97 90.69 91.46 

2000 78.01 79.16 80.24 82.55 86.02 87.48 88.66 89.63 90.02 90.46 

Pavia 
University 

200 68.75 73.93 76.73 78.18 79.23 80.92 81.85 82.40 82.74 83.60 

400 66.41 73.11 75.45 78.20 81.18 82.13 82.57 83.39 84.07 83.98 

600 68.88 76.35 78.22 80.73 82.59 83.29 83.68 84.57 84.95 84.98 

800 69.89 77.50 80.31 81.91 83.22 84.85 84.99 84.79 85.16 85.31 

1000 70.28 76.35 79.92 82.68 83.83 84.48 84.84 85.21 85.37 85.04 

1200 70.24 75.18 80.32 83.13 84.14 85.04 85.30 85.55 85.04 84.90 

1400 70.34 76.23 80.57 82.46 83.92 84.71 85.59 85.77 85.87 86.47 

1600 70.40 75.87 80.64 83.06 83.93 84.69 85.28 86.02 86.19 85.83 

1800 69.77 76.12 80.18 82.99 85.19 85.04 84.89 85.26 85.68 85.68 

2000 69.71 75.90 82.29 83.40 84.41 85.23 85.59 85.77 85.86 85.87 

Salinas 
Scene 

200 85.09 87.26 89.04 89.35 89.24 89.22 88.85 88.47 88.14 88.03 

400 84.94 88.34 89.88 89.26 89.12 88.88 88.26 87.68 87.40 87.25 

600 85.69 90.85 90.80 90.42 89.71 89.04 88.63 87.84 87.12 86.60 

800 85.36 89.17 88.87 87.96 87.46 86.85 86.42 85.69 85.13 84.58 

1000 85.35 88.93 89.88 89.04 88.34 87.58 87.03 85.49 85.08 85.08 

1200 85.04 89.66 90.08 88.98 87.67 87.14 86.13 85.30 85.09 84.85 

1400 85.07 88.46 89.39 88.63 88.10 88.06 87.34 86.81 86.69 86.58 

1600 85.47 89.54 89.88 88.87 87.68 86.21 85.00 84.34 83.89 83.70 

1800 85.50 90.16 90.15 89.45 88.58 87.71 86.79 86.52 86.31 85.93 

2000 85.48 89.40 89.38 88.60 87.73 85.98 85.67 85.12 85.39 85.34 
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 1 

It can be seen from Table 2 that the selection of sample screening quantity in different data sets presents different rules. 2 

Indian Pines datasets have the highest classification accuracy after 10 iterations are finished. Pavia University datasets 3 

has the highest classification accuracy after 8,9, and 10 iterations are finished. Salinas Scene datasets have the highest 4 

classification accuracy after 2,3, and 4 iterations are finished. The sample screening quantity with the highest accuracy 5 

is regarded as the experimental parameter, which were 1600 for Indian Pines, 1400 for Pavia University and 600 for 6 

Salinas Scene. 7 

5.3.3 Determination of block window size 8 

The size of the block window determines the neighborhood information set of the samples, which directly affects the 9 

accuracy of the pseudo-tagging method. Due to the different scale of data sets, the optimal block window size is also 10 

determined by a large number of experiments. The classification accuracy under different block window sizes is shown 11 

in table 3. 12 
Table 3 The classification accuracy (%) under different block window sizes 13 

Data Block window size 1 2 3 4 5 6 7 8 9 10 

Indian Pines 

3 77.62 77.86 78.35 78.65 78.91 79.14 79.09 79.12 79.56 79.56

4 77.73 78.24 78.65 78.75 78.70 78.66 79.14 79.18 79.70 79.74

5 78.41 79.61 79.41 81.28 81.11 81.73 82.67 82.84 84.18 84.68

6 77.85 80.14 80.41 80.91 80.90 83.54 84.91 85.09 86.42 88.30

7 78.86 80.58 82.58 84.90 86.55 86.99 88.47 88.87 89.58 90.98

8 78.33 78.95 81.00 84.24 85.44 86.37 87.60 88.13 88.57 89.19

9 79.61 81.00 83.39 85.51 85.71 86.34 86.78 86.86 87.07 87.86

10 78.61 79.32 83.45 85.45 85.59 85.69 86.12 87.00 87.17 87.32

Pavia 
University 

5 68.39 68.38 68.38 68.38 68.38 68.38 68.38 68.38 68.38 68.38

10 68.20 67.67 69.05 69.06 68.30 68.13 68.06 67.98 67.89 67.62

15 70.91 70.59 70.96 70.50 71.89 73.54 73.80 74.58 75.25 75.32

20 71.47 71.63 73.60 76.12 75.99 75.61 77.18 77.51 77.81 78.14

25 71.25 74.57 78.52 79.15 81.95 82.32 83.66 84.88 85.45 85.51

30 70.28 76.35 79.92 82.68 83.83 84.48 84.84 85.21 85.37 85.04

35 71.48 77.43 80.15 81.75 83.18 83.62 84.11 83.65 83.23 83.17

40 73.40 77.50 80.36 81.92 83.15 82.68 82.23 82.38 82.18 82.04

Salinas Scene 

5 83.94 83.94 83.94 83.94 83.94 83.94 83.94 83.94 83.94 83.94

10 83.61 84.16 84.95 85.03 84.77 84.68 84.59 84.82 84.61 85.48

15 83.86 83.17 85.51 87.04 87.70 88.44 89.77 89.60 91.01 91.09

20 84.16 86.84 89.41 90.56 90.22 90.69 91.02 91.13 90.87 90.68

25 84.11 88.22 89.46 89.68 89.35 88.77 87.86 87.49 86.71 86.78

30 85.35 88.93 89.88 89.04 88.34 87.58 87.03 85.49 85.08 85.08

35 86.17 88.80 88.67 87.67 86.63 85.84 85.26 84.87 83.95 83.06

40 86.86 89.25 89.02 87.78 86.37 84.74 83.60 82.83 81.69 80.92

As can be seen from Table 3, different datasets present different changes in classification accuracy. Compared with the other 14 

two data sets, the scale of Indian Pines is the smallest, so its experimental block window side length values from 3 to 10. With 15 
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the increase of the number of iterations, the classification accuracy showed a trend of gradual increase, and the optimal accuracy 1 

was obtained when the side length was 7. When the side length of the block window for Pavia and Salinas datasets is too small, 2 

the classification accuracy will not improve with the increase of iteration times. This indicates that the neighborhood 3 

information set cannot help the sample to distinguish the category at this time. 4 

With the increase of the side length of the block window, the number of iterations to achieve the optimal classification 5 

accuracy is advanced, but the optimal accuracy decreases. The block window is larger, the more noise information will be 6 

introduced, and that will affect the accuracy of sample labeling. Therefore, the block window size of the Indian Pines dataset 7 

is 7 * 7, and the block window sizes of the Pavia and Salinas datasets are 25 * 25 and 20 * 20, respectively. 8 

5.3.4 Determination of priority classifier 9 

In fact, the determination of pseudo-tags of samples mainly depends on the determination of classifiers, KNN, SRC, NRS, 10 

MLR are employed to determine the pseudo-tags. The experimental results of single classifier and combination of different 11 

classifiers on different data sets are shown in Table 4 ~ Table 6. 12 
Table 4 The experimental results of different classifier combinations in Indian Pines data set 13 

Classifier Index 1 2 3 4 5 6 7 8 9 10 

KNN 
NUM 314 673 1139 1630 2178 2680 3324 4063 4820 5474 

OA(%) 78.69 79.93 81.20 82.05 82.49 84.38 85.70 86.52 87.33 87.77 

SRC 
NUM 311 648 1068 1525 2032 2606 3248 3899 4668 5522 

OA(%) 78.64 80.42 80.10 81.56 82.87 84.39 85.83 87.04 87.92 88.19 

NRS 
NUM 315 673 1116 1597 2136 2697 3265 3815 4437 5016 

OA(%) 78.82 81.02 80.96 83.71 84.94 85.57 86.87 88.01 89.25 89.42 

MLR 
NUM 133 295 580 936 1296 1790 2396 3077 3858 4648 

OA(%) 77.55 79.31 82.21 83.91 83.99 85.75 87.36 87.68 88.27 88.41 

KNN+SRC 
NUM 317 706 1120 1702 2294 2967 3728 4494 5233 5950 

OA(%) 78.71 80.96 81.99 83.97 84.96 85.82 86.99 87.75 87.93 88.10 

KNN+NRS 
NUM 317 707 1198 1691 2308 2954 3625 4450 5374 6305 

OA(%) 78.78 80.27 80.73 82.51 83.82 85.45 87.56 89.06 89.95 90.19 

KNN+MLR 
NUM 318 712 1206 1794 2555 3398 4292 5072 5783 6678 

OA(%) 78.79 80.56 82.57 86.08 87.10 87.87 88.50 88.88 89.18 89.31 

SRC+KNN 
NUM 317 706 1134 1673 2223 2875 3658 4317 5011 5748 

OA(%) 78.71 81.09 81.51 83.17 84.27 85.84 86.94 87.54 88.26 88.64 

SRC+NRS 
NUM 318 730 1205 1778 2372 3091 3969 4813 5787 6641 

OA(%) 78.81 80.79 82.37 85.03 86.81 88.45 88.93 89.86 90.49 90.78 

SRC+MLR 
NUM 315 708 1153 1744 2457 3322 4231 5042 5800 6735 

OA(%) 78.80 80.92 82.16 85.16 86.24 87.61 88.39 88.71 89.07 89.19 

NRS+KNN 
NUM 317 707 1202 1712 2385 3021 3700 4538 5399 6333 

OA(%) 78.74 80.67 81.33 83.36 84.46 86.35 87.93 89.23 90.03 90.43 

NRS+SRC 
NUM 318 734 1207 1728 2378 3061 3959 4799 5691 6739 

OA(%) 78.77 81.01 82.56 84.52 86.37 87.43 88.95 90.11 90.61 90.90 

NRS+MLR 
NUM 318 694 1148 1690 2446 3194 4102 4950 5768 6792 

OA(%) 78.91 81.39 81.62 85.51 87.21 89.63 90.28 90.92 91.28 91.88 

MLR+KNN 
NUM 318 677 1166 1689 2429 3246 4018 4737 5677 6672 

OA(%) 78.30 81.13 81.85 85.94 87.22 88.28 88.77 88.98 89.20 89.29 

MLR+SRC 
NUM 315 704 1258 1741 2439 3286 4097 4867 5775 6760 

OA(%) 78.31 81.81 82.55 85.09 86.86 88.30 89.01 89.44 90.21 90.71 

MLR+NRS 
NUM 318 683 1154 1701 2458 3301 4219 5057 5997 6889 

OA(%) 78.46 81.49 82.11 86.14 87.86 89.70 90.68 91.58 92.15 92.42 

From the experimental results on the Indian Pines dataset, it can draw the following conclusions. With the increase of 14 

iterations, the classification accuracy of each sample increased gradually. Compared with the results of the single classifier, the 15 

SRC has the largest number of samples after 10 iterations are finished, but the classification effect is not the best. The classifier 16 
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with the best classification effect is NRS. The number of samples and classification accuracy of the combination of two groups 1 

of classifiers are mostly better than that of a single classifier. The experimental results are different for two groups of classifiers 2 

with different priority. The classifier with NRS can achieve more than 90% classification effect after 10 iterations are finished. 3 

The number of combinations with MLR was more than 6600 after 10 iterations are finished, and the best combination was 4 

MLR + NRS after 10 iterations are finished. 5 
Table 5 The experimental results of different classifiers for Pavia University data 6 

Classifier Index 1 2 3 4 5 6 7 8 9 10 

KNN 
NUM 236 444 661 965 1210 1466 1812 2254 2762 3251 

OA(%) 71.19 73.36 74.70 75.69 76.10 76.16 77.28 78.48 77.60 77.69 

SRC 
NUM 225 477 733 1080 1492 2047 2793 3654 4605 5631 

OA(%) 72.21 72.19 76.97 79.12 80.08 81.77 83.09 84.07 84.95 85.27 

NRS 
NUM 225 438 763 1007 1256 1487 1726 1893 1991 2179 

OA(%) 71.22 73.74 75.14 76.59 76.15 76.47 76.41 76.20 75.68 75.40 

MLR 
NUM 100 244 396 605 829 1035 1304 1587 1872 2183 

OA(%) 72.36 76.37 77.18 79.04 79.40 81.16 82.21 82.18 83.36 85.85 

KNN+SRC 
NUM 248 473 787 1118 1509 1996 2552 3111 3975 4837 

OA(%) 71.48 72.82 74.61 76.59 78.38 80.08 80.82 81.62 82.40 83.99 

KNN+NRS 
NUM 240 491 775 1067 1382 1850 2403 3040 3794 4415 

OA(%) 71.11 73.83 77.44 78.83 79.50 79.58 79.39 80.11 80.74 81.48 

KNN+MLR 
NUM 244 515 822 1176 1616 2162 2905 3698 4745 5682 

OA(%) 71.37 75.03 77.84 78.08 79.73 79.59 81.30 83.88 84.90 85.08 

SRC+KNN 
NUM 248 476 795 1215 1725 2298 3055 3967 4977 5913 

OA(%) 71.38 72.54 75.26 78.09 79.19 80.21 81.88 83.31 83.35 83.51 

SRC+NRS 
NUM 242 511 867 1385 1889 2513 3201 3988 4910 5794 

OA(%) 71.40 74.12 77.56 80.80 82.19 82.55 83.02 83.80 84.34 85.09 

SRC+MLR 
NUM 236 507 841 1289 1731 2261 3016 3928 4939 6015 

OA(%) 71.52 73.62 76.47 78.45 79.51 81.54 83.10 84.37 84.68 84.66 

NRS+KNN 
NUM 240 486 803 1119 1541 1992 2557 3190 3939 4611 

OA(%) 71.05 74.37 76.57 77.77 78.06 77.21 76.75 77.35 78.88 79.28 

NRS+SRC 
NUM 242 501 803 1296 1792 2433 3089 3839 4776 5798 

OA(%) 71.44 74.50 76.72 79.93 81.44 81.90 82.85 83.81 85.00 85.48 

NRS+MLR 
NUM 234 517 828 1237 1796 2446 3354 4220 5061 5857 

OA(%) 71.49 75.47 77.89 80.86 83.68 84.43 84.93 85.12 85.57 85.46 

MLR+KNN 
NUM 244 486 746 1170 1658 2300 3205 4208 5336 6514 

OA(%) 71.47 75.30 76.67 78.76 80.35 82.97 85.05 86.05 86.88 87.02 

MLR+SRC 
NUM 236 504 903 1310 1708 2207 3009 4024 5098 6234 

OA(%) 71.71 74.01 79.30 79.81 80.40 83.03 86.27 86.93 87.97 88.53 

MLR+NRS 
NUM 234 524 787 1205 1738 2374 3116 3953 4754 5586 

OA(%) 71.63 75.94 79.83 80.66 82.75 84.64 85.98 86.19 86.37 86.87 

As can be seen in Table 5, compared with the experimental results by single classifier, the number of labeled samples with 7 

SRC is the largest after 10 iterations are finished, which is higher than the other three methods. However, the MLR obtained 8 

best classification results. After 10 iterations are finished, the number of labeled samples of the two classifiers is more than that 9 

of the single classifier. With KNN, SRC and NRS as the first priority classifiers, the classification results of the sample set after 10 

10 iterations are not as good as those obtained by using MLR. The combination of MLR as the first priority classifier has better 11 

classification effect than single MLR after 10 iterations are finished. 12 
Table 6 The experimental results of different classifiers for Salinas Scene data 13 

Classifier Index 1 2 3 4 5 6 7 8 9 10 

KNN 
NUM 133 251 443 684 963 1304 1672 2047 2425 2857 

OA(%) 83.38 86.46 86.46 86.65 87.26 87.31 87.79 87.92 87.66 87.15 
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SRC 
NUM 144 275 441 666 937 1255 1606 1968 2391 2811 

OA(%) 83.10 83.56 85.11 85.83 85.81 86.63 86.50 86.64 86.95 86.96 

NRS 
NUM 148 271 423 668 952 1263 1569 1940 2351 2799 

OA(%) 84.04 86.06 87.62 87.63 87.10 87.48 88.44 88.43 88.32 87.92 

MLR 
NUM 102 177 302 451 621 867 1176 1518 1848 2217 

OA(%) 82.88 85.41 87.11 88.36 88.73 90.68 91.52 92.20 91.70 92.02 

KNN+SRC 
NUM 146 294 479 694 976 1330 1691 2106 2520 2985 

OA(%) 83.60 84.65 85.38 86.76 87.39 87.39 88.00 88.11 87.53 87.23 

KNN+NRS 
NUM 150 297 500 761 1108 1466 1891 2354 2834 3316 

OA(%) 83.53 86.43 87.14 87.49 87.64 87.37 88.06 88.03 87.95 88.03 

KNN+MLR 
NUM 143 285 508 768 1132 1546 2026 2526 3049 3590 

OA(%) 83.38 85.50 86.34 88.35 88.80 90.07 90.24 90.08 89.86 89.79 

SRC+KNN 
NUM 146 287 472 686 957 1281 1673 2061 2485 2892 

OA(%) 83.25 84.70 85.79 85.88 86.70 86.92 86.89 86.93 86.85 86.90 

SRC+NRS 
NUM 150 280 493 755 1017 1328 1708 2114 2539 2982 

OA(%) 83.07 85.55 86.28 85.47 86.66 86.97 87.52 87.05 87.19 87.16 

SRC+MLR 
NUM 150 271 483 720 1108 1499 1958 2451 2969 3487 

OA(%) 83.15 84.27 87.25 87.88 88.88 89.29 89.36 89.85 89.70 89.85 

NRS+KNN 
NUM 150 298 519 814 1148 1556 2037 2538 3027 3522 

OA(%) 84.01 87.12 87.79 87.30 87.54 88.38 88.09 88.25 87.95 87.88 

NRS+SRC 
NUM 150 284 488 803 1158 1539 1988 2482 2955 3423 

OA(%) 83.91 87.23 86.98 87.73 88.30 88.97 89.57 89.57 89.60 89.43 

NRS+MLR 
NUM 153 293 509 762 1104 1509 1940 2441 2934 3452 

OA(%) 83.87 85.82 88.25 89.93 90.40 90.51 90.75 90.48 90.12 89.61 

MLR+KNN 
NUM 143 299 521 825 1187 1602 2046 2514 2993 3407 

OA(%) 82.80 85.42 87.67 88.79 89.68 90.06 90.54 90.92 91.27 91.32 

MLR+SRC 
NUM 150 292 521 799 1123 1537 2007 2448 2929 3367 

OA(%) 82.91 85.45 88.89 90.12 90.21 90.93 90.99 91.83 92.08 92.64 

MLR+NRS 
NUM 153 315 564 841 1197 1605 2064 2561 3060 3500 

OA(%) 82.81 84.87 88.16 89.34 89.69 90.03 90.42 90.52 91.19 91.43 

 1 

For Salinas Scene data, the number of labeled samples by MLR after 10 iterations is the smallest, but the classification 2 

accuracy of the labeled samples is the highest. After 10 iterations are finished, the number of iterations of the two classifiers is 3 

also higher than that of the single classifier. However, from the perspective of the performance of labeled samples in 4 

classification, MLR+SRC has higher classification results than MLR, which indicates that the addition of classifiers does not 5 

necessarily improve the classification accuracy, and experiments and analysis are needed for different data sets. 6 

From the three experiments, it can be seen that the method with the largest number of labeled samples does not necessarily 7 

achieve the best classification results. The labeled samples are needed to improve the classification accuracy of the classifier, 8 

so the obtained labeled samples after 10 iterations are taken as the evaluation criteria. The Indian Pines data set uses a 9 

combination of classifiers MLR + NRS. The Pavia University and Salinas Scene data sets use MLR + SRC. 10 

5.4. Experimental results and analysis 11 

Based on the above analysis, the related parameters are shown in Table 7. 12 
Table 7 The parameter settings 13 

Data set Indian Pines Pavia University Salinas Scene 

Selection policy BT BT BT 

Number of selections 1600 1400 600 

Window size 7*7 25*25 20*20 

Combination of classifiers MLR+NRS MLR+SRC MLR+SRC 

Number of labeled samples 6889 6234 3367 
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Firstly, the local binary pattern is used to extract the features of spatial texture information of hyperspectral remote sensing 1 

images. Secondly, the sample labeling method based on neighborhood information and priority classifier is proposed to obtain 2 

the learned pseudo-labeled samples. Then the SRC classifier is trained with the labeled samples, and the test samples are 3 

predicted. The obtained classification results are compared with those obtained by the SRC classifier on the initial training data, 4 

and the classification results of training models with different training data are shown in Table 8. 5 
Table 8 The classification results of training models with different training data 6 

Training samples Index Initial samples Labeling samples 

Indian Pines 

AA 67.93%  84.70%  

OA 77.38%  92.42%  

KAPPA 0.746 0.914 

Pavia University 

AA 60.53%  81.87%  

OA 69.00%  88.53%  

KAPPA 0.609 0.848 

Salinas Scene 

AA 82.59%  87.76%  

OA 84.00%  92.64%  

KAPPA 0.823 0.918 

The classification visualizations of the classification model for the initial samples and labeled samples are shown in Figure 7 

7 and Figure 8. 8 

            9 

(a)Indian Pines              (b)Pavia University             (c)Salinas Scene 10 
Figure 7 The classification results of the initial samples 11 

 12 

          13 

(a)Indian Pines              (b)Pavia University                   (c)Salinas Scene 14 
Figure 8 The classification results of the labeling samples 15 
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By comparing with the results of the experiments, it is not difficult to find that the classification results of the classifier 1 

trained with expanded samples on the three sets of data are better than those of the classifier trained with initial samples. 2 

Moreover, from the classification visualization, it can see that the obtained classification results by the classifier and the labeled 3 

samples is smoother and has fewer discrete points, which indicates that the generalization ability of the classifier is improved 4 

by labeling the samples. 5 

6. Conclusion  

For the difficulties of hyperspectral image processing and analysis, a hyperspectral remote sensing image classification 

method based on texture features and semi-supervised learning is implemented by introducing local binary model, sparse 

representation and mixed logistic regression model. The local binary pattern is employed to deal with the hyperspectral data 

and extract the texture features of the hyperspectral remote sensing image. A sample labeling method based on neighborhood 

information and priority classifier is proposed to obtain the learned pseudo-labeled samples. The problem of limited labeled 

samples of hyperspectral images is solved. The data of Indian Pines, Salinas scene and Pavia University are selected in here. 

The experiment results of the BT method are obviously better than those of other methods. The block window of Indian Pines 

dataset is 7*7. The block windows of Pavia University and Salinas scene are 25 * 25 and 20 * 20, respectively. The combination 

of MLR and SRC can get better classification results. The obtained classification results by the classifier and the labeled 

samples are smoother and has fewer discrete points, which indicates that the generalization ability of the classifier is improved 

by labeling the samples from the classification visualization. 
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