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Abstract. We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for

automotive light detection and ranging (lidar) sensors independent of a complete vehicle setup. The stand-alone, modular setup

supports both
:
, monitoring of dynamic processes and mobile mapping applications based on Simultaneous Localization and

Mapping (SLAM) algorithms. The main objective of MOLISENS is to exploit newly emerging perception sensor technologies

developed for the automotive industry for geoscientific applications. However, MOLISENS can also be used for other appli-5

cation areas, such as 3D mapping of buildings or vehicle independent data collection for sensor performance assessment and

sensor modeling. Compared to Terrestrial Laser Scanners (TLSs), automotive lidar sensors provide advantages in terms of size

(in the order of 10cm), weight (in the order of 1kg or less), price (typically between 5,000EUR and 10,000EUR), robustness

(typical protection class of IP68), frame rates (typically 10Hz-20Hz), and eye safety of class (typically 1). For these reasons,

automotive lidar systems can provide a very useful complement to currently used TLS systems that have their strengths in10

range and accuracy performance. The MOLISENS hardware setup consists of a sensor unit, a data logger, and a battery pack

to support stand-alone and mobile applications. The sensor unit includes the automotive lidar Ouster OS1-64 Gen1, a ublox

multi-band active Global Navigation Satellite System (GNSS) with the possibility for Real-Time Kinematic (RTK), and a 9-

axis Xsens Inertial Measurement Unit (IMU). Special emphasis was put on the robustness of the individual components of

MOLISENS to support operations in rough field and adverse weather conditions. The sensor unit has a standard screw
:::::
tripod15

:::::
thread

:
for easy mounting on various platforms. The current setup of MOLISENS has a horizontal field of view of 360°, a

vertical field of view with 45° opening angle, a range of 120m, a spatial resolution of a few cm, and a temporal resolution of

10Hz-20Hz. To evaluate the performance of MOLISENS, we present a comparison between the integrated automotive lidar

Ouster OS1-64 and the state of the art,
:::::

high
:::::::
accuracy

::::
and

::::
high

::::::::
precision

:
TLS RIEGL VZ-6000. The mobile mapping appli-
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cation of MOLISENS has been tested under various conditions and results are shown from two surveys in the Lurgrotte cave20

system in Austria and a glacier cave in Longyearbreen on Svalbard.

1 Introduction

Developing new, reliable measurement and monitoring techniques requires emerging cutting-edge technology. This paper intro-

duces a stand-alone, modular MObile
:::::
LIdar SENsor System (MOLISENS) that allows to build

:::::
builds

:
on recent lidar, radar,

:
and

camera innovations , originally
::::
from

:::
the

:::::::::
automotive

:::::::
industry.

:::::::::
Originally,

:::::
these

::::::
sensors

::::
were

:
developed for high-resolution envi-25

ronment perception of automated vehiclesto enable new measurement and monitoring methods for geoscientific applications.

MOLISENS includes a Differential Global Navigation Satellite System (DGNSS)
:
.
:::::::::::
MOLISENS

::::::::
currently

:::::::
includes

:
a
:::::

lidar,
::
a

:::::::
DGNSS,

:
and an Inertial Measurement Unit (IMU) for georeferenced positioning and orientation. The modular setup permits

the use of automotive lidar,
::::::
design

::::::
permits

::::
also

::::
the

:::
use

:
radar and camera sensors (including traffic monitoring sensors),

:
.

::::::::::
Furthermore,

::::
the

:::::
setup

:::::
works

:
without the necessity of a complete vehicle setup. This shall allow measuring geoscientific30

processes reliably, at any remote location, with very high spatial and temporal resolution, and at relatively low costs.

:::::::::::::
Non-automotive

:::::::::::::::::::::::::::
Terrestrial Laser Scanner (TLS)

::::
units

::::
have

::::
been

:::::
used

::
in

:::::
many

:::::::::::
geoscientific

::::::::::
applications

::::
such

:::
as

:::::::
spectral

:::
and

::::::::
structural

:::::::
geology,

::::::::::
seismology,

::::::
natural

:::::::
hazards,

:::::::::::::
geomorphology,

::::
and

:::::::::
glaciology

::
as

::::
listed

::
in

:::
the

::::::
review

::::::::::::::::
Telling et al. (2017)

:
.

::::
Data

:::::::
products

:::::
based

::
on

:::::
TLS

::
are

::::::
widely

::::
used

:::
and

:::::
range

::::
from

:::::::::
controlled

:::::::
outdoor

:::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Rapstine et al., 2020; Rengers et al., 2021; Prokop et al., 2008)

::
to

::::::
natural

::::::::::
observations

::::::::::::::::::::::
(e.g., Rengers et al., 2021)

:::
and

:::::::
damage

::::::::::
assessments

:::::::::::::::::::
(e.g., Olsen and Kayen)

:
.
::::::::
Typically,

:::::::::::::
multi-temporal35

::::
lidar

::::::
studies

::::
deal

:::::
with

:::::::
repeated

:::::::::::::
measurements

::::
over

:::::
years

::::::::::::::::::::::::::::::::::::::::::::
(e.g., O’Neal and Pizzuto, 2011; Neugirg et al., 2016)

::
or

:::::::
months

:::::::::::::::::::::::::::::::::::::::::::
(e.g., Rabatel et al., 2008; Rengers and Tucker, 2015)

::
in

::::
order

::
to
:::::::::
investigate

:::::::::
deforming

:::::::
surfaces.

::::::::
Recently,

:::::::::::
permanently

:::::::
mounted

::::
TLS

::::
have

::::
been

:::::
used

::
to

:::::::
monitor

:::::::
rockfall

::
at

:::::::
intervals

:::
of

::
an

:::::
hour

::::::::::::::::::::::::
(Williams et al., 2018, 2019)

:
or

:::
to

:::::::
monitor

:
a
::::
high

:::::::::
mountain

::::::::::
environment

::
at

:::::
daily

::
or

::::::
hourly

::::::::
intervals

:::::::::::::::::::::
(Voordendag et al., 2021)

:
.
::::::::::::::::::
Rengers et al. (2021)

:::::::
recorded

:
a
:::::

mass
::::
flow

:::::
with

::::::
speeds

::::::
greater

::::
than 1m s−1

:::
for

:::
the

:::
first

:::::
time.

:::::
They

::::
used

::
a
:::::::
modified

:::::::
VZ-400

:::::
TLS

::
at

:
a
::::::
narrow

:::::
field

::
of

::::
view

:::
of

:::
44

◦

:::
×

:::::
0.13

◦
,
::::::
which40

::::::
allowed

::
a

::::::::
sampling

:::
rate

::
of

:
60Hz.

:

::::::::::::::::::::::::
Structure from motion (SfM)

::::::::
especially

::::
from

:::::::::::::::::::::::::::
Unmanned Aerial Vehicle (UAV)

:
,
:
is
:::::::
another

:::
tool

::
to

:::::
derive

:::::::::::::::::
3-dimensional (3D)

::::
point

::::::
clouds

:::
for

:::::::::::
geoscientific

::::::::::
applications.

::::
For

:::::::
example,

::::::::::::
Lague (2020)

::::::::
compared

:::::
SfM

:
to
:::::
TLS

::
for

::::::
fluvial

:::::::::::::
geomorphology

::::
and

:::::::::::::::::::
Wilkinson et al. (2016)

::
for

::::::
digital

::::::
outcrop

::::::::::
acquisition.

:::
Its

::::
main

:::::::::
advantages

:::
are

::::::::
low-cost,

:::::::
uniform

:::::
point

::::::
density,

::::
high

:::::::::
resolution

::::
RGB

::::::::::
information

::::
with

:::
the

:::::::::
limitations

::
of

::
no

:::::::::
penetration

:::::::
through

:::::::::
vegetation,

::::::::::
requirement

::
of

:::::
good

::::::::::::::::::::::::::::::::::::
Global Navigation Satellite System (GNSS)45

:::::
signal,

::::
and

:::::
UAV

::::
flight

::::::::::
regulations.

:::
In

:::::::
addition,

:::::
SfM

:
is
::::::::::
problematic

:::
for

::::::::
surfaces

::::
with

:::::::::::
homogenous

:::::::
textures

:::
like

:::::
snow

::::
and

::
is

::::::
limited

::
to

::::::
well-lit

::::::::::::
environments.

::
In

:::::
caves

:::::
SfM

::
has

::::
been

:::::
used

::::
with

:::::
digital

::::::::::
close-range

::::::::::::::
photogrammetry

::
by

::
a
::::::
digital

:::::::::
single-lens

:::::
reflex

::::::
camera

::::::::
mounted

::
on

::
a
::::::
tripod

::
in

:::
the

:::::
study

:::
of

::::::::::::::::::
Pukanská et al. (2020)

:
,
:::::
where

::::
they

::::
also

:::::::::
compared

::
it

::
to

:::::
TLS

::::
data.

:::::
Their

:::::::::
conclusion

:::
was

::::
that

:::
both

::::::::
methods

::::
have

::::
their

::::::
specific

::::::::::::
requirements,

:::::::::
advantages,

::::
and

::::::::::::
disadvantages.

::::::::
Therefore,

::::
they

::::::::::::
recommended

:
a
::::::::::
combination

:::
of

::::
both

:::::::
methods

:::
for

:::::::
mapping

::::::::
complex

::::
cave

::::::
spaces.50

:::
The

::::
goal

::
of

:::::::::::
MOLISENS

::
is

::
to

::::::
provide

:::
an

::::::::
additional

::::
tool

::
to

::::
SfM

:::
and

:::::
TLS

:::
with

::
a
::::::
unique

::
set

:::
of

::::::::::
requirements

::::
and

::::::::::
advantages.

:
It
::::::
should

:::
be

::::::
cheaper

:::::
than

::::
TLS,

::::
with

::
a
::::
high

::::::::
sampling

:::::::::
frequency

:::
and

::
be

:::::::::::
independent

::
of

::::::
natural

:::
or

:::::::
artificial

:::::
light,

:::::
while

:::::
being
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::::
small

::::
and

::::
light

:::::::
enough

::
to

::::
carry

::::
into

::::
tight

::::::
spaces

::::
like

:::::
caves.

::
It
:::::
needs

:::
to

::
be

:::::::
suitable

:::
for

:::::
static

::::::::::
applications

:::
on

:
a
:::::
tripod

:::
as

::::
well

::
as

::
for

:::::::
mobile

::::::::
mapping.

:::::::::::
Furthermore,

::
the

::::::
mobile

::::::::
mapping

::::::::
approach

::::::
should

:::::
reduce

:::
the

:::::::
shadow

::::::
effects

::::
from

:::::
static

::::
TLS

::::
uses,

:::
all

::::
while

:::::::
keeping

::::::::
accuracy

:::
and

::::::::
precision

:::::
high.55

Today, the automotive industry is a leading technology driver for lidar, radar
:
,
:
and camera sensors, because the largest

challenge for achieving the next level of vehicle automation is to improve the reliability of the vehicle’s perception sys-

tem (Watzenig and Horn, 2017). Both, lidar, radar
:
,
:
and camera play essential roles in the perception system of automated

vehicles (Marti et al., 2019). The presented work will focus on lidar sensors. However, since MOLISENS is designed as

modular system, integration of radar and camera is possible with little effort.60

Automotive lidar sensors record high-resolution point clouds with very high acquisition frequencies (around 10Hz-20Hz

frame rate) to support applications in fast moving environment such as freeways. High costs of mechanically spinning li-

dars (currently around 5,000EUR to 10,000EUR) are still a limiting factor for many applications, but prices for automotive

lidar have already dropped significantly during the last decade and are expected to drop by another order of magnitude in

the upcoming years caused by newly emerging technologies like micro-electro-mechanical systems (MEMS) based mirrors,65

optical phased array, single-photon avalanche diode (SPAD) detectors, and vertical-cavity surface-emitting laser (VCSEL)

sources (Hecht, 2018; Druml et al., 2018; Thakur, 2016). One example is the Ouster ES2 (Ouster Inc., 2022), which includes

a SPAD detector and VCSEL source. The Ouster ES2 is expected in late 2022 and shall have a range of at a cost of around

. Examples for state-of-the-art automotive lidar types are Ouster OS0 (Ouster Inc., 2021a), Ouster OS1 (Ouster Inc., 2021b),

Ouster OS2 (Ouster Inc., 2021c), Velodyne Alpha Prime (Velodyne Lidar Inc., 2021), and Ibeo Lux 4L/8L/HD (Ibeo Automo-70

tive Systems GmbH, 2021). In addition to range information, several new lidar types, e.g.,
:
Ouster OS (Ouster Inc., 2021a, b, c),

provide intensity information for each received point, which allows to take also the reflectance of the illuminated materials for

new applications into account.
::::
Most

::::::::::::
state-of-the-art

::::::::::
automotive

:::::
lidars

::::::
provide

::
a

:::::
single

:::::
return

::
or

::::
dual

:::::::
returns,

:::::
while

:::::
some

::::
have

::
up

::
to

::::
five

::::::
returns

:::::::::::::::::::::::::::
(Ocular Robotics Limited, 2018)

:::
and

::::
one

:::::
which

:::::
offers

:::::::::::::
full-waveform

::::::::::
information

::::::::::::::::::::
(LeddarTech Inc., 2021)

:
.
:::::::::
Therefore,

:::
this

:::::
limits

:::
the

::::::::::
application

::
of

::::::::::
automotive

::::
lidar

::::::
where

:::::::
multiple

::::::
returns

:::
are

:::::::
needed,

::
as

:::
for

::::::::
example

:::
for

:::::::::
vegetation75

:::::::
removal.

Due to the above listed advantages, automotive lidar sensors can complement
:
, non-automotive TLS systems that are nowa-

days used for geoscientific applications. Examples for state-of-the-art TLS used in geosciences are Leica P30/P40 (Leica

Geosystems AG, 2021a), Leica P50 (Leica Geosystems AG, 2021b), or the Riegl VZ–Series (Riegl Laser Measurement Sys-

tems GmbH, 2020). High-end TLS typically provide very detailed and highly accurate point clouds but are more expensive80

(order of 100,000EUR), heavier (order of 5kg to 10kg), less robust (typically IP64),
:
and in certain field scenarios more difficult

to handle than small and light-weight automotive lidar sensors.

To estimate the quality of automotive lidar point clouds, a RIEGL VZ-6000 3D ultra long range TLS (Riegl Laser Measurement Systems GmbH, 2020)

was used for ground-truth acquisition. A test setup was designed to compare the accuracy of the VZ-6000 to automotive lidar

sensors (Hammer, 2021). The MOLISENS system made it possible to record data with an automotive lidar independent of the85

vehicle platform.
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To support mobile mapping applications, MOLISENS includes a DGNSS and an IMU for georeferenced positioning and

orientation. For registration of subsequently recorded point clouds into a cumulative point cloud, i.e.
:
, for creating a 3D map,

the Simultaneous Localization and Mapping (SLAM) algorithm (Bălas, a et al., 2021; Zhang and Singh, 2017) LIO-SAM (Shan

et al., 2020) is used. Lidar based mobile mapping systems have already been tested in various disciplines such as indoor90

mapping applications (Tucci et al., 2018), urban mapping applications (Moosmann and Stiller, 2011; Zhang and Singh, 2017;

Behley and Stachniss, 2018), and for geoscientific surveys (Bosse et al., 2012; Kukko et al., 2012; Wang et al., 2013). A major

advantage of MOLISENS compared to previous systems is the modular setup focused on automotive sensors, that allows to

easily exchange and update existing components and extend the system with additional automotive sensors, such as radar and

camera.95

Apart from newly emerging perception sensor technology, MOLISENS also benefit from recent developments in the GNSS

sector. Typically, DGNSS technology for positioning requires extensive additional gear that must be transported into the field,

i.e.
:
,
:
rover and base station. New GNSS platforms integrate multi-band GNSS and Real-Time Kinematic (RTK) technology

to yield accuracies in the order of centimeters with a single device and internet connection. Such GNSS platforms are de-

signed primarily for industrial tracking and wearable applications so they are optimized in size, weight, update rate, and power100

consumption (Janos and Przemysław, 2021).

The
::
To

:::::::
estimate

::::
the

::::::
quality

::
of

::::::::::
automotive

:::::
lidar

::::
point

:::::::
clouds,

::
a

::::::
RIEGL

::::::::
VZ-6000

::::
3D

::::
high

::::::::
accuracy

:::
and

::::::::
precision

:::::
TLS

:::::::::::::::::::::::::::::::::::::::::
(Riegl Laser Measurement Systems GmbH, 2020)

:::
was

::::
used

::
for

:::::::::::
ground-truth

::::::::::
acquisition.

::
A

:::
test

::::
setup

::::
was

:::::::
designed

::
to
::::::::
compare

::
the

::::::::
accuracy

::
of

:::
the

::::::::
VZ-6000

::
to

:::::::::
automotive

::::
lidar

:::::::
sensors

::::::::::::::
(Hammer, 2021).

::
In

::::::::
addition,

:::
the MOLISENS system has been tested

under various conditions and results are shown from two mapping surveys in the Lurgrotte cave system in Austria and a glacier105

cave in Longyearbreen on Svalbard.

:::::
Other

:::::::
potential

:::
use

:::::
cases

::
in

:::::::
physical

:::::::::
geography

:::
are

:

–
::::::::::
underground

:::::::::::::
measurements:

::::::::
cave/mine

::::::::
mapping,

:

–
:::::::::
monitoring

::::::
glacier

:::::
caves,

:::::::
calving

:::::::
glaciers,

–
:::::::::
monitoring

::
of

:::::
snow

:::
and

::::::::::
avalanches,110

–
:::::::::
monitoring

::
of

:::::
mass

::::::::::
movements,

–
:::::::::
monitoring

::
of

::::::
fluvial

:::::::
systems,

:

–
:::::::::
monitoring

::
of

::::::
erosion

::::
and

:::::::::
deposition

::::::::
processes,

:

–
:::
sea

::
ice

::::::::
detection

::::
and

::::::::
mapping,

–
::::::
coastal

::::::::
mapping,115

–
::::::::::
archaeology,

::::::::
historical

:::
and

:::::::
cultural

:::::::::::
preservation,

:::
and

:

–
::::::
forestry

:::::::
surveys.

:
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:::::::
Potential

:::
use

:::::
cases

::
in

:::::
urban

:::::::::::
environments

:::
are

:

–
::::::::
highways

:::::::
surveys,

–
:::::::
roadside

::::::::
inventory

:::::::
projects,

:
120

–
:::::
power

:::
line

:::::::
corridor

:::::::
surveys,

:

–
::
3D

::::
City

:::::::::
modeling,

:::
and

:

–
::
3D

::::::
indoor

:::::::::
modeling.

This article is organized as follows: Section 2 gives an overview on the hard- and software components of MOLISENS. In

Section 3, the integrated automotive lidar OS1-64 is described and compared to the state-of-the-art TLS VZ-6000. In Section 4,125

the point cloud processing package pointcloudset and the used mapping algorithm are described. The results of two mapping

campaigns are shown in Section 5. The discussion of the measurement campaigns and an outlook on future applications are

given in Section 6. The conclusion is presented in Section 7.

2 MOLISENS setup

MOLISENS provides a stand-alone, modular framework which is capable of integrating various automotive lidar, radar, and130

camera sensors, that support Robot Operating System (ROS) functionality, with low adjustment effort. The hardware setup

follows International Protection (IP) standards of automotive sensors, e.g., the OS1-64 has an IP class of 69K with the cable

attached (Ouster Inc., 2020b), which makes it suitable for fieldwork in rough environments. Figure 1 depicts the hardware

components of MOLISENS. The data logger and the sensor unit are connected via a self-developed wire harness which avoids

the need of multiple cables. The setup can either be powered by batteries or by a Alternating Current (AC)/Direct Current (DC)135

mains adapter. The environment is scanned by the sensor unit and the transmitted sensor data are recorded by the data logger.

The data can be downloaded via a Local Area Network (LAN) interface for further post-processing on a computer. The weight

of the whole setup, i.e., sensor unit, data logger, battery pack, and wire harness, is for mobile measurements (Table ??), which

require external batteries. Table ?? shows also the dimensions of the modules of MOLISENS.
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MOLISENS (MObile LIdar SENsor System)

sensor unitenvironment data logger post processing

(a) (b) (c)

battery

Figure 1. Hardware
:::::::::
MOLISENS

::::::
concept

::::
with

:::::::
hardware components and interfaces of MOLISENS

::
(b)

::::
with

:
a
:::
pen

::
for

::::
scale.

:::
The

::::
data

:::::
logger

:
is
::::
21.5

::
×

::
16

::
× 14cm

::
and

::::::
weighs 2.1kg.

:::
The

:::::
sensor

::::
unit

:::::
weighs

:
1.0kg

:::
and

::
the

::::
total

:::::
weight

::
of
:::
the

:::::::
complete

:::::
system

::
is
:
5.5kg

Weight and dimensions of hardware setup. unit weight in dimensions in data logger 21.5 · 16 · 14 sensor unit 10.5 · 10.5 · 15140

wire harness between data logger and sensor unit 200 Lithium-Ion (Li-ion) battery 16.7 · 10.0 · 7.9 total weight

2.1 Sensor unit

The sensor unit consists of the OS1-64 Gen1 which is an automotive rotating lidar sensor, a ublox active multi-band GNSS

antenna of the ANN-MB series, and the 9-axis Xsens MTi 630 IMU. Between the OS1-64 and the IMU is a space that heat

produced by the OS1-64 can be dissipated. The sensor unit has a ()
:::
1/4

:::::
inch thread, which is a standard camera thread,145

mountable on handles, tripods, or other standardized setups.

2.2 Data logger

2.2.1 Hardware

The data logger consists of two DC/DC converters, one 24V/24V converter and one 24V/5V converter for internal power sup-

ply, a RaspberryPi 4 as processing unit, a RaspberryPi hat
:::::::::::::::::::::::::::
Hardware Attached on Top (HAT) for the real-time clock, a Rasp-150

berryPi hat
:::::
HAT with a 1TB Solid State Drive (SSD) for data storage, a RaspberryPi hat for Global Positioning System (GPS)

::::
HAT

:::
for

::::::
GNSS data, a Long Term Evolution (LTE) stick to retrieve RTK data and the Ouster interface board that is responsible

for powering the OS1-64 and for data transmission. Interfaces provided by the data logger are a connector for power supply

6



of the whole setup, a 24-pin connector for Ouster data and power supply, the IMU Universal Serial Bus (USB) interface, a

Sub-Miniature A (SMA) connector for the GPS
:::::
GNSS antenna, a Registered Jack 45 (RJ45) connector for Ethernet, and a155

USB connector. Furthermore, the data logger’s
:::::::
interface

:
includes one on/off button, two red buttons for selecting the measure-

ment programme, one green button for start and stop measurements, and an Organic Light Emitting Diode (OLED) display,

which shows the measurement programs, the state of the LTE connection, and the filename of the current measurement. The

aluminum housing of the data logger includes an aluminum plate to the integrated circuits on the RaspberryPi which allows

for appropriate cooling of the hardware. The OLED display can be seen through a transparent plastic window in the aluminum160

housing.

2.2.2 Software

The software stack of the data logger is shown in Figure 2. Although the official operating system for RaspberryPi is Raspbian

(https://www.raspbian.org/), Ubuntu Server 20.04 Long Term Support (LTS) (https://ubuntu.com/download/raspberry-pi) was

installed as operating system for MOLISENS, since the integration with ROS (https://www.ros.org) works best on Ubuntu. ROS165

is an open-source middleware widely used for robotic applications. A major advantage of ROS is the extensive list of open-

source third-party packages and tools for different domains, e.g., Autoware (https://www.autoware.org/) for the automotive

domain.

Ubuntu Server 20.04 LTS

Robot Operating System (ROS)

Data Recording 
Package

Lidar Sensor 
ROS Driver

IMU Sensor 
ROS Driver

GPS Sensor 
ROS Driver

Middleware

Operating System

Figure 2. Software stack of the data logger.

In ROS, a master called roscore controls and registers all nodes running in the system. Each node, which can be defined

as an entity that performs a task, can exchange data with other nodes by publishing or subscribing messages through topics.170

Topics are communication channels, which are defined by a unique name and a specified type of message that is transported.

ROS officially supports C++, Python, and Lisp but other programming languages are also possible through unofficial channels.

The specific software packages used in MOLISENS are:

– Data recording package: We developed a ROS package in Python that provides an easy interface to start and stop the

data recording as well as a flexible configuration for the specific requirements of the use case. Both, the sampling rate175

of either 10Hz or 20Hz of the OS1-64 and the number of points in horizontal direction of either 1,024 or 2,048, can be

selected by the user just before the measurements by using the red and green buttons on the data logger. The IMU data
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are recorded with 200Hz and the GPS
::::::
GNSS data with 1Hz. The ROS package records all messages from the specified

topics and creates a time synchronous rosbag
::::
ROS

:::
bag

:
file including the data from all sensors. Later, this rosbag

:::::
ROS

:::
bag file can be used as input to a SLAM algorithm to generate a 3D map of the measurement area.180

– Lidar sensor package: The ROS package provided by the sensor manufacturing company was implemented (Ouster Inc.,

2020a). It provides transforming the raw data from the sensor into point cloud messages and also includes visualization

tools to proof that the lidar sensor is correctly mapping the scenario and to check the light intensity of the points. Due to

the computational limitations of the RaspberryPi, only raw data are recorded. The recorded raw data are converted into

point cloud messages in a post-processing step.185

– IMU sensor package: Similar to the lidar sensor, the ROS driver provided by the manufacturer is used (Xsens, 2021).

Only the configuration and topic selection was adopted to meet the requirements of our use case. Most of the topics were

omitted to increase the performance of the system.

– GPS
::::::
GNSS sensor package: Another self-developed Python package was used to retrieve the National Marine Electron-

ics Association (NMEA) messages from the ublox GPS
::::::
GNSS module. This driver is also able to receive correction190

data from Radio Technical Commission for Maritime (RTCM) messages through the integrated Networked Transport of

RTCM via Internet Protocol (NTRIP) client. By using this NTRIP client, correction data from the external services are

included into the GPS
:::::
GNSS module to improve the accuracy of the measurements. The usage of this correction data

is called GPS
:::::
GNSS RTK. The precision is below 2.5cm with fixed RTK when the signal from the satellites is clear

and also the base station from the correction data service is not far away, i.e., less than 10km, from the GPS
::::::
GNSS195

module (Dunning, 2018). When the situation is not optimal, the module is still able to reach a precision between 10cm

and 45cm with RTK float (Dunning, 2018).

2.3 Power supply

MOLISENS can be powered either with batteries (e.g., Lithium Iron Phosphate (LiFePO4), Li-ion) or with an AC/DC mains

adapter that provides a nominal voltage of 24V. The battery supply supports mobile measurements whereas the mains adapter200

may be used when recorded data are transferred to the post-processing computer. The described setup including the data logger

and the sensor unit draws a current of about 1A when data of all three sensors are recorded. We used either a Li-ion-battery with

10.4Ah for 10.4h of measuring or two parallel LiFePO4-batteries with 3.6Ah each, so 7.2Ah in total, for 7.2h of measuring. The

operating temperature for discharging is limited between −20°C to
:::
and +60°C for both types of batteries. We used batteries

from AccuPower (AccuPower Research, Development and Distribution Company (Ltd.), 2022).205
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3 MOLISENS with automotive lidar OS1-64 Gen1

3.1 OS1-64 Gen1 specifications

The Ouster OS1-64 is a mechanical spinning lidar scanner that costs about 10,000EUR. The ingress protection level is IP69K

with Input/Output (I/O) cable attached, so it offers complete protection against contact, i.e., it is dust-tight and waterproof. It is

classified as a mid-range lidar sensor and can detect objects up to a distance of 150m. The minimum range is 0.8m. The laser210

operates with eye safety class 1 per IEC 60825-1:2014, which makes it possible to operate the lidar without any restrictions

regarding the eye safety of the operator or other persons within the measurement range. The wavelength of the laser is 855nm.

The range resolution is 0.3cm, so it is able detect individual objects when the distance between those objects in scanning

direction is 0.3cm or greater. The range accuracy is stated with +/-5cm for Lambertian targets and +/-10cm for retroreflec-

tors (Ouster Inc., 2020b). The precision depends on the range and is between +-1cm and +-5cm. The vertical resolution of215

the OS1-64 is given by the 64 channels which are evenly distributed within the 33.2° vertical field of view. The horizontal

resolution is configurable and can be 512, 1,024, or 2,048 scanning points in horizontal direction for the 360° field of view.

The angular sampling accuracy vertically and horizontally is +/-0.01°. The sampling frequency can be configured with 10Hz or

20Hz. At 10Hz, the scanner rotates and scans 10 times per second and produces up to 64 · 2,048 points per rotation. Therefore,

the OS1-64 is able to detect over 1.3 million points per second at 10Hz rotation rate.220

A computer with ROS installed can read and record the data which are forwarded by the Ouster interface box. In our case, the

necessary components are integrated in MOLISENS. We decided to record only raw lidar data to be able to store
::::
more

::::
data

::
at

about 1.3 million points per second, IMU measurements with 200Hz, and GPS
:::::
GNSS measurements with 1Hz. The raw lidar

data do not comprise the actual 3D-points with x-, y-, and z-coordinates, but information such as timestamp, measurement

id, and range for each measurement. These data is used in a post-processing step for the derivation of 3D-points. Recording225

the raw data instead of the point cloud data reduces the total data rate, i.e., lidar, IMU, and GPS
:::::
GNSS data, from 77MB/s to

15.14MB/s, a factor of more than 5. Up to 18h of recording are possible with 1TB of data storage that we use in MOLISENS.

3.2 OS1-64 performance assessment

We assessed the performance of the OS1-64 against the VZ-6000 in a standardized test setup which is based on Boehler et al.

(2003). The first frame of each OS1-64 measurement was used for the test. Specifically, the following attributes were analyzed:230

systematic and surface-induced range errors and angular errors.

We tested the systematic noise in the range measurements of the lidar. For that purpose, a plane target was scanned. We

took
::::
used a wall perpendicular to the observation direction as the plane target. The wall was modeled as a plane . Therefore,

:::
and

:
the normal distance between every point in the point cloud and this plane can be calculated. The standard deviation

of the distribution of these normal distances, which represent the range errors, was derived (Figure 3). We investigated two235

different materials: retroreflective foil and a cardboard with black dull spray paint. Those surfaces need to be in the same plane

perpendicular to the observation direction to quantify the deviations of surfaces with high and low reflectivity. This was realized

by attaching the materials to a wooden board which was mounted on the wall. We analyzed the reflectance of the materials
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based on the comparison to Lambertian targets. From a perpendicular angle the reflectivity of the retroreflector was 200%

relative to a 100% Lambertian target. The black dull spray paint had a reflectivity of 10% relative to a 100% Lambertian target240

. These reflectance values represent the ratio of the measured reflectance to the reflectance of a standard Lambertian material

(Muckenhuber et al., 2020, Birkebak et al., 2018). The scanned wall in the background was used to model a reference plane.

The normal distances between points and reference plane can be calculated by subtracting the thickness of the wooden board

and the target thickness. A reflectance threshold
:::::::
threshold

::
in

:::
the

::::::::::
reflectance

::::
value

:
was used to select the points representing

the target
::
in

::
the

::::::::::
pointcloud.245

We used scanned circles to determine the vertical and horizontal distances for quantifying the angular accuracy. We attached

four circles, representing a rectangle, with dimensions of 4.5m · 2m, to a wall. This rectangle was scanned from three different

positions which yields six independent vertical and six independent horizontal distances.

The results of the tests on systematic range errors showed that the OS1-64 has a higher standard deviation in the range error

distribution compared to a TLS such as the VZ-6000 (Figure 3 (a)). The most significant range errors of up to 25cm occurred250

when scanning retroreflective targets with the OS1-64 (Figure 3 d
::
(d)). Furthermore, the range errors in this case are not only

larger but are also spread out over a large range of values with a standard deviation of 6.9cm. According to the manufacturer,

the errors occurring with retroreflectors result from the time walk error. This error is caused by clock errors and is an internal

error source of lidar systems. This means that the light returns so strongly that it deforms the shape of the received signal which

leads to an error in the estimation of the peak, i.e., the distance measured (Nahler et al., 2020).255
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(a)
(b)

(c)
(d)

Figure 3. Results of the accuracy assessment of the OS1-64 compared to the VZ-6000 which was used as the reference lidar: (a) range error

for a white wall, i.e., normal distances between measurements and ideal plane of the wall, (b) angular error, (c) range errors for black target

with low reflectivity, i.e.,
:
normal distances between measurements and ideal plane of black target, (d) range errors for retroreflectors, i.e.

:
,

normal distances between measurements and ideal plane of retroreflector.

Figure 4 shows parts of point clouds with observed artifacts. Areas without data appear near highly reflecting objects (Fig-

ure 4 (a) and (b)). The results also show that the OS1-64 performed better at detecting low reflectance targets in close proximity
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than the VZ-6000 (Figure 4 (c) and (d)). We found that the VZ-6000 shows larger errors when scans are conducted in indoor

environments and at low ranges between and .

(a) (b) (c) (d)

Figure 4. Artifacts observed in the accuracy tests: (a) and (b) areas without data resulting from blooming filter in the OS1-64 data, (c) a part

of the OS1-64 point cloud with a corner of the room, (d) a part of the VZ-6000 point cloud with a corner of the room.

The found performance issues comprise the following artifacts: range errors at highly reflective targets for the OS1-64,260

areas without data around highly reflective targets for the OS1-64, corner artifacts for the VZ-6000, and multipath artifacts

for the VZ-6000. The systematic range errors, which can be considered as noise, can have great impact on mapping micro-

scale features. According to the manufacturer, the effect of areas without data is caused by an integrated blooming filter in

the OS1-64. This filter removes bloomed, i.e.,
:
overly saturated, points. The range errors of the OS1-64 have a big impact on

current point cloud georeferencing methods where retroreflectors of known position are used as distinguishable objects in a265

point cloud. Other georeferencing methods, like the matching with georeferenced point clouds, must be considered.

4 Data processing for lidar applications

4.1 Data processing of point cloud time series

Automotive lidar sensors record point clouds in the order of a million points per second at acquisition rates ranging from 10Hz

to 20Hz. In addition to the x-,y-, and z- coordinates, also other parameters such as
:::::
range,

:
intensity, reflectivity, noise, etc.270

are stored
::::::
ambient

::::
near

:::::::
infrared,

:::::::
azimuth

::::::
angle,

:::
and

:::::
time

:::::
stamp

:
for each point

:::
are

:::::
stored

:::::::::::::::::
(Ouster Inc., 2020b). This leads to

datasets in the order of gigabytes in the form of 3D point clouds recorded over time. Most software deals with single point

clouds and the tools provided by ROS are not designed for post-processing and data analytics. Therefore, a Python package

called pointcloudset (Goelles et al., 2021) was developed along the sensor hardware. The package is available on the Python

Package Index (PyPI) for easy installation with pip. This package organizes the data in the following way: The point cloud275

data stored in a ROS bag-file (.bag) is read into a pointcloudset Dataset. This Dataset object consists of multiple PointCloud

objects, timestamps, and metadata.

The package is optimized for analytics on the whole dataset to answer questions like: "At which point and when was the

highest returned intensity of the whole dataset?" or "How many clusters of points in a 0.5m radius exist between 5 and 10 10m in
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x direction in the 124s frame?". Several queries like this can be chained together to form complex pipelines. The computation is280

only executed at the very last step when the answer is required by so called "lazy evaluation". The computation is performed on

multiple Central Processing Units (CPUs) in parallel. The package is not limited to build-in
::::::
built-in functions and additional

arbitrary functions can be implemented and applied. Furthermore, the package provides tools for visualization, import and

export of widely used point cloud formats. Also a direct interface to the powerful open3D and pandas libraries (Zhou et al.,

2018; The pandas development team, 2020) is implemented for additional applications. For more details see the documentation285

on https://virtual-vehicle.github.io/pointcloudset/.

4.2 SLAM algorithm

In robotics, SLAM algorithms are a fundamental prerequisite for feedback control, obstacle avoidance, and planning since

SLAM allows a robot’s six Degrees Of Freedom (DOF) state estimation (Bălas, a et al., 2021). Here, we use a SLAM algorithm

to generate one cumulative point cloud from a time-series of point clouds. MOLISENS is either mounted on a moving platform290

or carried along by a person while recording data. The data recording unit uses ROS as middleware and all data is recorded in

a rosbag
::::
ROS

:::
bag

:::
file, which includes IMU, lidar, and GNSS data. Each recorded data type in the rosbag

::::
ROS

:::
bag

:::
file

:
has a

timestamp. The recorded data is the input for the mapping algorithm LIO-SAM (Shan et al., 2020), which is applied offline in

a post-processing step.

LIO-SAM uses the lidar odometry data to estimate the six DOF trajectory of the mapping sensor. The state estimation295

problem is solved by a factor graph. This incorporates IMU-pre-integration, lidar odometry, GNSS data, and loop closure. The

system does not depend on continuous GNSS data. Therefore, the GNSS factor is only added when the estimated position

covariance is larger than the received GNSS position covariance. The loop closure factor is responsible for detecting whether

a new node has a small Euclidean distance to a prior state. If this is detected, the algorithm tries to match the new state to the

near, past state. This is especially useful to correct for potential drifts
::::
drift in altitude when GNSS is the only absolute sensor300

available. These advantages compared to
:::::::
methods

::::
such

::
as

:
Lidar Odometry and Mapping (LOAM) (Zhang and Singh, 2017)

and other previous state of the art algorithms made it well suited for our use cases.

5 Applications in geoscience

To test the MOLISENS setup in challenging field conditions, two mapping surveys in the Lurgrotte cave system in Austria and

in a glacier cave in Longyearbreen on Svalbard have been conducted. The following Section presents the results of these two305

measurement campaigns.

5.1 Application in speleology

The Lurgrotte, a partially water-bearing cave 15km north of Graz in Styria, Austria, was chosen as a study area for MOLISENS.

The approximately 6km long cave passes through the Tanneben massif between the localities of Semriach and Peggau. Parts

of the cave are accessible to tourists. The cave is characterized by an abundance of speleothems, water-bearing passages, and a310

13
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heterogeneous cave geometry in which narrow passages alternate with large chambers, such as the Great Dome. With an area

of approximately 5,100m2, the Great Dome is one of the ten largest cave chambers in Austria (Plan and Oberender, 2016).

Due to these heterogeneous characteristics, the Lurgrotte Semriach is well suited for testing the application of MOLISENS in

speleology.
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Figure 5. Study area Lurgrotte Semriach. (a) Hillshade visualization (1m · 1m raster resolution) and cave map (b) detailed view of the test

passage in which the OS1-64 surveys were carried out including the Great Dome (Großer Dom) (c) a narrow passage with paved footpath

within the cave segment open for visitors (image by Christian Bauer). Data: cave map: Bock and Dolischka (1953); ALS-data: CC-BY-4.0:

Land Steiermark - data.steiermark.gv.at. (d) Measurement (2), starting at cave entrance, turning point right before the Great Dome, and end

at cave entrance; point cloud colored by z-coordinate in metres, visualized with CloudCompare.
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Scanning a cave system, such as the Lurgrotte Semriach, with a TLS would demand several 10s to 100s
::::
tens

::
to

::::::::
hundreds315

scan positions, i.e.,
:
a significant effort in terms of time and costs. Using MOLISENS, we were able to produce a point cloud

without the necessity of time consuming scans at individual positions. The mapping campaign demonstrated that MOLISENS

can provide a cumulative point cloud even without the use of GNSS measurements. Also, the LIO-SAM algorithm was tested

on whether it is able to co-register point clouds that were recorded partly outdoor and indoor. More than 300m of complex

cave geometry could be scanned with MOLISENS in less than 12 minutes (Figure 5 (d)). Measurement (1) includes the switch320

from an outdoor environment to an indoor environment in a single measurement. Measurement (2) was conducted only inside

the cave. An overview of the recorded data is given in Table 1.

Table 1. Comparison of measurements conducted in Lurgrotte; 0.1m is the minimum average point spacing that can be produced by LIO-

SAM

Parameter Measurement (1) Measurement (2)

Duration 6min 37s 11min 58s

IMU messages 158,816 287,525

Lidar packet messages 499,368 912,505

Size of .bag file 6.0GB 10.9GB

Number of points in final point cloud 10,719,001 6,393,490

Average point spacing 0.1m 0.1m

It has to be noted that a final validation of the point cloud data was not possible at this stage. A validation of the data quality

and accuracy requires a geodetic reference. A marked closed traverse and local reference points were measured from the cave

entrance to the Great Dome after our fieldwork at the Lurgrotte. The drilled mountings of these marks could be used used again325

for further tests with our system. A valid assessment of the accuracy of the produced map can then be accomplished with this

reference.
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(a) (b)

Figure 6.
::::
Panel (a) Karst

:::::
shows

::::
karst shapes, artificial concrete, and metal elements

:::::::
structures in the

:::::::
Lurgrotte cave (image by Christian

Bauer).
:::::
Panel (b) A

::::
shows

::
a detailed view on the recorded 3D pointcloud

:::::
image of the depicted cave section , the scanned handrails mark

:::::::
including the walking path through the cave

:::
and

::::::
handrail (visualized in

:::::
created

::::
with CloudCompare).

5.2 Application in glaciology

To test MOLISENS for cryospheric applications, a glacier cave was mapped in the glacier Longyearbreen on the Svalbard

archipelago, Norway. The morphological changes of glacier caves give information about the englacial water routing. Ice330

volume changes in caves are common throughout the year and the inter-seasonal comparison of ice dynamics can indicate a

change in the hydro-climatic regime of the glacier (Perşoiu and Lauritzen, 2017). Previous work on cold glacier caves in the

study area involved geomorphological mapping and seasonal temperature monitoring (Alexander et al., 2020; Guðmundsdóttir,

2011), but detailed 3D measurements of a glacier cave system are typically not available.

Our aim was to create a 3D point cloud which represent the shape of the glacier cave and the surrounding surface of the335

glacier. The results are shown in Figure 7. The measurement campaign showed that it is possible to create a cumulative point

cloud from the predominant surfaces in and around glacier caves. These surfaces are composed of ice, snow, sediments, and

moraine material. Measurements were recorded by walking through the caves bidirectionally with MOLISENS. The recorded

data resulting were then processed with the LIO-SAM algorithm to create a cumulative point cloud of the glacier cave and the

surrounding surface of the glacier.340

Figure 7 (a) represents a segment of the processed point cloud showing the glacier cave and the glacier surface from below.

The cross sections shown in Figure 7 (c) and (d) are one meter long segments along the cave direction. Some outlier points are

visible that are
::::
might

:::
be a result of the scanners range errors , multi-path errors created by ice surfaces, and the torso of the

person holding the scanner.

::
In

:::::::
general,

:::
the

::::::
Ouster

:::::::
OS1-64

::::::
should

:::::::
perform

::::
well

:::
for

:::::::::::
glaciological

::::::::::
applications

::::
due

::
to

:::
the

::::::::::
wavelength

::
of

:
855nm

:::::
where345

::::::::
absorption

:::
in

:::
ice

::
is

:::::
lower

::::::::::::::::::::::
(Warren and Brandt, 2008)

::::
than

::
at

:::
the

::::::::::
wavelength

::
of

:::
the

::::::::
VZ-6000

::
at

:
1064nm

:
or

:::::
other

:::::
TLS

:::::
which

::::
have

:
a
::::::::::
wavelength

::
of

:::::::
typically

:
1550nm

::::::::::::::::
(Deems et al., 2013)

:
.
::::::
Further

::::::::::::
investigations

::
of

:::
the

:::::
errors

:::
are

::::::
needed

::
in

:::
the

::::::
future.
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(a)

(c)

(d) (e)

(d)

(b)

Figure 7.
:::::::
Resulting

::::
point

:::::
cloud

::::::::::
visualizations

::
of

:::
the

:::::
glacier

::::
cave

::
on

:::::::::::
Longyearbreen

:::
(a).

:::::
Panel

::
(b)

:::::
shows

:::
and

:::::
image

::
of

::
the

:::::::
entrance

:::
and

::
(c)

::
a

:::
view

::::
from

:::::
below

:::
the

::::
point

::::
cloud

::::
with

:::
the

:::::
glacier

::::
cave

:::
and

::
the

::::::
glacier

::::::
surface.

::::
Panel

:::
(d)

::::
shows

:::
the

:::::::
extracted

::::
cave

::::
(nadir

:::::
view)

:::
with

::::
two

::::
cross

::::::
sections

:::
with

:::
the

::::
same

::::
color

:::
bar

::
as

::
in

:::
(c).

Resulting point cloud visualizations of glacier cave 1 on Longyearbreen (a) shows the segment of the point cloud with the

glacier cave and the glacier surface (view from below) (b) shows the extracted cave (nadir view) (c) cross section 1 (d) cross

section 2 (e) photo of the entrance of the cave
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6 Discussion and outlook

6.1 Automotive lidar as part of MOLISENS

Our comparison shows that automotive lidar sensors such as the OS1-64 can offer advantages for certain applications compared350

to conventional TLS such as the VZ-6000. These are the price, size,
:::::::::
advantages

:::
are

:::
the

:::::
lower

:::::
price,

::::::
smaller

::::
size,

:::::
lower

:
weight,

and
::::::::
increased robustness but also the ability to acquire data in narrow spaces .

:::
and

:::::
while

:::::::
moving.

:::
We

:::::
found

::::
that

:::
the

::::::::
VZ-6000

:::::
shows

:::::
larger

:::::
errors

:::::
when

:::::
scans

:::
are

:::::::::
conducted

::
in

:::::
indoor

::::::::::::
environments

:::
and

::
at

:::
low

::::::
ranges

:::::::
between

:
5
:::
and

:
15m

:
.

The accuracy of the data depends on the target properties. A black target had errors of up to 5cm5cm, while a retroreflective

material up to 22cm22cm. Nevertheless, for numerous applications the data can be the foundation for many kinds of analysis.355

We recommend to refrain from analyzing features smaller than 10cm 10cm in the processed point clouds. The given accuracy

of up to 5cm for ranges greater than 50m leads to an increase in noise when the SLAM algorithm is used. Applying smooth-

ing filters on the cumulative point cloud is recommended. The frequency and magnitude of the distance error when scanning

retroreflective surfaces is expected to be reduced with upcoming firmware version. Although, this must be considered if retrore-

flective targets are used during geo-referencing. Better yet would be to use non-retroreflective target for geo-referencing, e.g.
:
,360

white paper with black markings. The drifts in the SLAM processed point clouds has yet be quantified and workflows for geo

referencing have to be tested
:::::::
Another

::::::::::
challenging

::::::
surface

::
is
::::::
water,

:::::
which

:::::::
absorbs

::::::
typical

::::::::::
wavelengths

:::
of

:::::::::
automotive

:::::
lidar

::
in

::
the

:::::::::::
near-infrared

::::::::::::::::
(e.g., Lague, 2020).

In our fieldwork, MOLISENS has proven to record data in complex environments even without a GNSS signal.
::::::::
Although,

::
the

:::::
drifts

::
in

:::
the

:::::::
SLAM

::::::::
processed

::::
point

::::::
clouds

:::
has

:::
yet

:::
be

::::::::
quantified

::::
and

::::::::
workflows

:::
for

:::::::::::::
georeferencing

::::
have

::
to

:::
be

:::::
tested.

:
With365

the data from our fieldwork, the mapping algorithm LIO-SAM was able to map the environment and the trajectory of the

mapping sensor into a point cloud. This shows that results are possible under the following conditions:

– snow and ice surfaces
:
,

– arctic weather conditions (−20°C),
:

– very narrow spaces (< 1m)
:
,
:::::
and/or

:
370

– rough sensor handling due to rough terrain or narrow spaces
:
.

The lack of GNSS data for cave measurements caused drifts induced by small propagating errors in the IMU data. These

drifts are yet to be quantified.

6.2 Other automotive sensors

In addition to lidar, other automotive perception sensors such as radar systems can be integrated into MOLISENS. Modern375

automotive and traffic monitoring radar sensors typically operate at 24GHz, e.g., Smartmicro TRUGRD Stream (s.m.s, smart

microwave sensors GmbH, 2021), or 77GHz (Ramasubramanian and Ramaiah, 2018), e.g., Continental ARS540 (Continental
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AG, 2016, 2017), have a range up to 300m, and apply Frequency-Modulated Continuous Wave (FMCW) technologies for

relative distance and velocity estimation (Patole et al., 2017) and digital beam-forming to control the direction of the emitted

wave (Hasch, 2015). In addition to data on object level (i.e., list of detected traffic participants), radar data is typically also380

provided as radar clusters. Clusters represent radar detections with information like position, velocity, and signal strength.

This raw data format allows to develop and apply new algorithms for detecting changes in the backscatter behavior of the

environment caused by various geoscientific processes.

6.3 Potential applications

We envision MOLISENS as an
:
a useful tool in geosciences. The IP level of the OS1-64 allows us to conduct measurements385

under adverse conditions and rough sensor handling. This opens a wide range of applications ranging from cave mapping,

glacier surface analysis to meltwater channel monitoring with the potential to increase our understanding of the drainage

systems of glaciers. A 3D model of a glacier cave can be used to parameterize volumetric properties of the cave with the aim

of analyzing cave morphology (Gallay et al., 2015; Šupinský et al., 2019). The recorded intensity values for ice surfaces are

significantly lower than for surfaces covered with,
:
e.g.,

:
moraine material or sediments. Hence, the generated data is also a useful390

basis for change detection of, e.g., the ice surface (Milius and Petters, 2012)
::
In

:::::::
general,

::::::
surface

:::::
types

:::::
could

::
be

:::::::::::
distinguished

::
if

:::
they

:::::
have

:
a
:::::::::
significant

::::::::
difference

::
in
::::::::
intensity.

The portable nature, low cost, and robustness of MOLISENS opens up for new applications well beyond cave mapping.

Mobile high resolution 3D mapping of glacier fronts using snowmobiles on sea ice is another possible application and could

be conducted at relatively high velocities (up to 60-80km/h). Similarly, regular mapping of coastal bluffs susceptible to coastal395

erosion (e.g. Guégan and Christiansen, 2017)
:::::::::::::::::::::::::::::::
(e.g., Guégan and Christiansen, 2017), can be undertaken throughout the polar

night season that hinder structure-from-motion
::::
SfM photogrammetry for large parts of the year in polar regions.

Besides mobile measurements, static measurements can be conducted with MOLISENS to record rapid processes in 3D

over time with up to 20Hz. The scanner can be placed permanently in an area of interest and in case of an event, the scanning

process could be initiated automatically or remotely. Vice versa constant scanning could detect a process happening which400

would trigger further process chains.

MOLISENS is also a handy teaching tool since it rapidly acquires data at a fraction of the cost of a conventional TLS. In

addition, it can be taken along on excursions more easily, and safety concerns are minimal even in large groups due to the laser

class 1 rating. Both at
::
At the University of Graz and the University Centre in Svalbard (UNIS) it is planned to use MOLISENS

for excursions and practicals focusing on cryospheric topics, mapping methods, integrated geological methods, and digital405

geological techniques (Senger et al., 2021).

Other potential use cases in physical geography are:

– Underground measurements: cave/mine mapping

– Monitoring glacier caves, calving glaciers

– Monitoring of snow and avalanches410
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– Monitoring of mass movements

– Monitoring of fluvial systems

– Monitoring of erosion and deposition processes

– Sea ice detection and mapping

– Coastal mapping415

– Archaeology, historical and cultural preservation

– Forestry surveys

Potential use cases in urban environments are:

– Highways surveys

– Roadside inventory projects420

– Power line corridor surveys

– 3D City modeling

– 3D indoor modeling

This list can be further extended since the system can be attached to a wide range of platforms. Tests have been conducted

with platforms like cars, agricultural machines, and boats with promising results. Further optimizing weight and power con-425

sumption of the system can also enable small UAVs s as potential platforms. Apart from geoscientific applications, MOLISENS

provides an easy to use setup for testing automotive perception sensors for,
:

e.g.,
:
sensor modeling and sensor Fault Detection,

Identification, and Recovery (FDIR) method development.

7 Conclusion

In this work, we present a newly developed mobile lidar sensor system called MOLISENS. The system combines an automotive430

lidar with IMU and GNSS
::::
IMU

:::
and

::::::
GNSS. It provides the opportunity to collect 3D data for a wide range of use cases and

applications. Besides the hardware we introduced the post-processing tools provided by the two open source packages LIO-

SAM and pointcloudset. LIO-SAM is a SLAM algorithm for cumulative point cloud generation, and pointcloudset a Python

package for analysis and post-processing of static measurements.

The integration of the automotive lidar OS1-64 and the mobile mapping approach was tested in measurement campaigns in435

the Lurgrotte cave, Austria and in glacier caves on Longyeabreen
::::::::::::
Longyearbreen, Svalbard. The system offers a flexible, easy

to use, and time-efficient way to acquire 3D point cloud, GNSS, and IMU data. The offline SLAM processing resulted in point
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clouds which can be the basis to investigate numerous geoscientific problems. The robustness of the sensors and the data logger

as well as the battery and storage capacities are well suited to demanding fieldwork situations.

In the near future, additional sensors, such as radar and camera, shall be integrated into MOLISENS and further broaden the440

range of applications. This is possible due to the modular design structure of MOLISENS.

Code and data availability. pointcloudset is available at https://github.com/virtual-vehicle/pointcloudset and LIO-SAM at https://github.

com/TixiaoShan/LIO-SAM

Sample availability. Point could data from Longyearbreen Glacier Cave, Svalbard is available at https://doi.org/10.3217/182j2-hdn17
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