
 

1 

Title: Benefits of using convolutional neural networks for seismic data 1 

quality analysis. 2 

 3 
Authors: Paolo Casale¹ and Alessandro Pignatelli¹ 4 
 5 
 6 
¹ Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata 605, 00143 Rome, Italy 7 
Correspondence to:  alessandro.pignatelli@ingv.it  8 
 9 

Keywords: 10 

Seismic signal quality, Machine Learning, Convolutional Neural Networks 11 
 12 

 13 

Abstract. Seismic data represent an excellent source of information and can be used to investigate several phenomena such 14 

as earthquake nature, faults geometry, tomography etc. These data are affected by several types of noise that are often grouped 15 

into two main classes: anthropogenic and environmental ones. Nevertheless instrumental noise or malfunctioning stations 16 

detection is also a relevant step in terms of data quality control and in the efficiency of the seismic network. As we will show, 17 

visual inspection of seismic spectral diagrams allows us to detect problems that can compromise data quality, for example 18 

invalidating subsequent calculations, such as Magnitude or Peak Ground Acceleration (PGA). However, such visual 19 

inspection requires human experience (due to the complexity of the diagrams), time demanding and effort as there are too 20 

many stations to be checked. That’s why, in this paper, we have explored the possibility of “transferring” such human 21 

experience into an artificial intelligence system in order to automatically and quickly perform such detection. The results 22 

have been very encouraging as the automatic system we have set up shows a detection accuracy of over 90% on a set of 840 23 

noise spectral diagrams obtained from seismic station records.      24 

 25 

1.Introduction 26 

 27 
Seismic data quality control is a key point to perform correct analyses of the signal produced by the seismic stations. For 28 

example: exact knowledge and regular check of instrumentation sensitivity are essential for a correct Peak Ground 29 

Acceleration evaluation and magnitude estimate after an earthquake; time marks on seismogram, number of gaps (data 30 

transmission efficiency check) are important for Early Warnings improvements (Picozzi et al., 2015); instrumental transfer 31 

function (Wielandt, 2012) (also called instrument response (Wielandt, 2012)) consistency and good signal-to-noise ratio plays 32 

a fundamental role in any analysis of low frequency signals (Pondrelli et al., 2020; Morelli et al., 2000; Custódio et al., 2014).  33 

Normally some checks are carried out in the operations rooms of seismic monitoring, first of all the  connectivity check of 34 

the stations. For example, there are procedures that display the latency of each individual station in real time (Michelini et 35 

al., 2016). There are also programs that calculate other signal parameters in the time domain such as Offset, RMS (Root Mean 36 

Square of the signal) etc. In these cases, however, these are summary checks that do not provide sufficient information about 37 

the quality of the signal and above all do not ensure whether it is usable for calculating some important Earthquake quantities 38 
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such as Peak Ground acceleration (PGA), Richter Magnitude (ML), Regional Centroid Moment Tensor (RCMT, (Morelli et 39 

al., 2000) etc. For example, the RMS, being a quadratic estimate of the counts (of the digitised signal), does not take into 40 

account the different sensitivities  (Wielandt, 2012) between stations, nor if the sensitivities or instrumental responses 41 

(Wielandt, 2012) are incorrect. For the reasons mentioned above, currently most of the malfunction reports concern the lack 42 

of data. This is also because the signal has not yet been sufficiently analysed and the potential of spectral diagrams has not 43 

been fully explored. As identifying large gaps is generally already performed by automatic procedures, the main aim of  this 44 

work is to capture signal anomalies (even serious and not rare) that often go unnoticed, and, in order to achieve such a result, 45 

a more in-depth systematic study of the input signal in the monitoring rooms is required. 46 

Seismic noise analysis, especially using its several spectral approaches, is a powerful way to investigate stations’ performance 47 

(McNamara and Boaz, 2006) in order to learn about noise sources as well as to check station data quality, detecting 48 

operational problems(McNamara and Boaz, 2006) with a view to the management of seismic networks. In particular, 49 

(McNamara and Buland, 2004) visually recognizing, in a noise spectral diagram, highlights some features due to specific 50 

malfunctions, for example too many calibration impulses, errors in the instrumental response (Wielandt, 2012) data loss (little 51 

gaps), frequent re-centering of the seismometer mass, etc. (Wielandt, 2012) and can suggest some methods for determining 52 

the self-noise of seismometers and for separating instrumental noise from seismic one. (Sleeman et al., 2006) uses three 53 

seismometers operating side by side and proposes a method to measure their self-noise using coherence analysis. 54 

Due to the high number of stations and the different types of waveforms and relative spectra, visual identification of  different 55 

event types (landslides, volcanic tremors, small earthquakes,  explosions etc.) or possible precursor signals or, in many cases, 56 

instrumental malfunctions requires too much time and efforts to be systematically performed by a “human”, even if he is an 57 

expert. So help from the neural networks can be desirable, especially if dealing with noise, as assuming its non-deterministic 58 

nature (Scales and Snieder, 1998; Bormann and Wielandt, 2013). For a general description of neural networks and their state 59 

of the art, see par. 4. 60 

In literature, there are many papers about artificial intelligence applied to the analysis of seismic data  (Pignatelli et al., 2021) 61 

and in some of them neural networks are specifically applied to noise handling but such works concern adjacent sectors, for 62 

example denoising (Bekara and Day, 2019) or detection of specific types of noise or poor data quality in the seismic 63 

prospecting topic (Thorp et al., 2020; Mejri and Bekara, 2020). For example, (Thorp et al., 2020) shows how deep learning 64 

can be used to classify if an image of a seismic stack can be considered in terms of quality level related to some specific noise 65 

types or geological features visibility .  66 

The novelty of this paper is that a huge visual “human experience” focused on the entire noise spectra to detect acceptable 67 

signals from anomalous ones, has been transferred to artificial intelligence in order to automatize check operations for the 68 

efficiency of the seismic network. More specifically, we describe how some seismometer malfunctioning (or errors in 69 

metadata) can be reliably detected by an “expert eye” looking at noise spectral diagrams and how such an experience can be 70 

used to train convolutional neural networks to automatically perform such detection. This allows an efficient monitoring of 71 

the seismic station signal and is definitively a great support to improve data quality control of a seismic network. In this work 72 

we used diagrams obtained, for the most part, from the data of the Italian Seismic Network (ISN, code IV) (Michelini et al., 73 

2016), in part from the Mediterranean Very Broadband Network (MedNet)(Pondrelli et al., 2020) and in part from some of 74 

the local networks (http://cnt.rm.ingv.it/en/instruments) whose data flows into the seismic monitoring rooms of the Istituto 75 

Nazionale di Geofisica e Vulcanologia (INGV) or however contribute to the INGV surveillance system(Michelini et al., 76 

2016) .  77 

 78 
2. Seismic noise and its spectral representation 79 
 80 
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Noise analysis is an important step for seismological data quality check. Although there is still discussion about what signal 81 

and noise are in seismology (Scales and Snieder, 1998; Bormann and Wielandt, 2013), generally seismic signal is defined as 82 

the earthquake induced ground motion recording, while seismic noise as the recording of ground vibration due to any other 83 

source(Holcomb, 1989). Actually, the noise (not only seismic) recorded by seismometers also includes several disturbances, 84 

often induced by instabilities and noise of the instrumentation (Bormann and Wielandt, 2013; Wielandt and Steim, 1986) or 85 

surrounding microclimate that can affect seismometers directly(Wielandt et al., 2002) even without generating ground 86 

vibration. Hereafter, we will therefore refer to noise in this last and more general acceptance and to seismic noise as ground 87 

noise.  88 

In the waveforms recorded by a seismic station, the signal of seismological interest ranges over several orders of frequencies 89 

in relation to the physical phenomena to investigate or the result we want to extrapolate: for examples, the solid tide induced 90 

by the moon and the sun (Broucke et al., 1972) pertains to the sub-mHz region; the Earth’s normal modes to the mHz one 91 

(Wielandt and Steim, 1986); tenths-hundredths of a Hz is the region useful to estimate the magnitude of large earthquakes 92 

(Morelli et al., 2000); 1-10 Hz is the range to localise earthquakes (Allen, 1982; Vassallo et al., 2012); tens of Hz for studies 93 

of tomographic detail and seismic prospecting (Ma et al., 2005). So the knowledge of phenomena that affect the useful signal, 94 

such as seismic noise and, more generally, noise over the whole frequency range is important.   95 

The amplitude of seismic noise is different at different frequencies as shown in the noise spectrum of Figure 1. The physical 96 

quantity on the ordinate is the Power Spectral Density (PSD) (Bendat and Piersol, 2011; Peterson, 1993), in absolute decibel 97 

(dB), referred to the PSD calculated for the acceleration of 1 m/s2. Definitely 0 dB corresponds to 1 (m2/s4)/Hz (Rastin et al., 98 

2012; Bormann and Wielandt, 2013). The figure reports the level of Low and High seismic noise (black curves), according 99 

to the (Peterson, 1993) empirical models for the ground acceleration: the Low Noise Model or LNM (bottom curve) represents 100 

the empirical minimum while the High Noise Model or HNM (top black curve) can be taken as a reference for the maximum 101 

acceptable noise for a useful seismic station. 102 

Not only the amplitude but also the seismic noise sources are mostly different in different frequency ranges (Holcomb, 1989). 103 

As shown in Figure 1, three main regions can be distinguished. For frequencies higher than 1 Hz, seismic noise is mostly due 104 

to anthropic activities (trains and cars, industrial activities, engines, turbines etc) (Stutzmann et al., 2000), even though rain 105 

and wind may also contribute. At intermediate frequencies, ranging from 0.04 to 1 Hz, sea activity is recorded, showing two 106 

peaks (Darbyshire and Okeke, 1969).  LNM shows that the highest one is around 0.2 Hz and this is called secondary frequency 107 

peak. The lowest one (primary frequency peak) is around 0.07 Hz. At frequencies lower than 0.04 Hz, the atmospheric 108 

pressure changes become more important as the frequency decreases (Sorrells, 1971). According to (Sorrells, 1971), the 109 

pressure changes induce a ground tilt and it has a greater effect on the horizontal components (Wielandt et al., 2002; Wielandt 110 

and Forbriger, 1999) (or see e.g. green and blue curves in Figure 1) of the seismometers. Moreover, in this frequency range, 111 

the temperature variations produce a direct effect on the seismometer(Wielandt et al., 2002) and this is an example of “not 112 

seismic” noise: also in this case, the lower is the frequency, the higher is the effect.  113 

Figure 1 also exhibits the noise level in terms of PSD) recorded by AIO seismic station (Antillo, Sicily). We report the vertical 114 

component in red, the North-South (NS) in blue and the East-West (EW) in green. Since in the temporal waveforms used for 115 

the PSD, no appreciable earthquake has been observed, the diagrams represent the noise mean over a month. However, to get 116 

an estimate of the noise statistical distribution over a time interval (one month for example), other representations can be 117 

more useful, as described below.   118 

2.1 Probability Density Function: description and example.    119 
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 The INGV receives and stores signals from seismic stations. As the use of such a signal is not known in advance, the continuous 120 

waveform is permanently collected without discarding any time interval. The seismic waveforms are accessible online on the 121 

EIDA database (EIDA Italia, https://eida.ingv.it/it/). In addition to the waveforms, the database also contains information 122 

about instrumental parameters of the station (for example sensitivity, sampling rate, position, etc.). Such information is called 123 

"metadata". To better represent the noise, the SQLX (Seismic data Quick Look eXtended https://sqlx.science/) software 124 

package (McNamara and Boaz, 2006; McNamara and Buland, 2004; Marzorati and Lauciani, 2015) is useful. Basically, 125 

SQLX takes as input the waveforms (in the time domain) and metadata (in particular the instrument transfer function) 126 

contained in the database and produces a series of control diagrams such as spectrograms, PSDs, noise amplitude behaviour 127 

at selected frequencies, trace statistics etc. In addition to the averaged PSD, like the diagrams of Figure 1, SQLX also produces 128 

Probability Density Function (PDF) diagrams (McNamara and Buland, 2004).  An example of PDF is shown in Figure 2. 129 

The concept of PDF is similar to the PSD, but it contains more information as it does not show the noise mean but its statistical 130 

distribution during the analysed time-interval. Other advantages of the PDF are the use of continuous data and the accessibility 131 

to accurate documentation, so it has been adopted around the world(Custódio et al., 2014). Details of the PDF calculation 132 

method are described in(McNamara and Buland, 2004) but here we highlight only some aspects: 133 

a)  a PDF is produced by an elaboration of multiple PSDs and the statistical distribution of the noise is graphically 134 

represented by a colour scale; 135 

b) the power spectra obtained from station waveform (the records are in digital counts) are deconvolved, by the instrument 136 

transfer function, to remove the instrumental response (Wielandt, E., 2003) in order to get  the true value of the PSD at 137 

different frequency ranges in particular at low frequencies, where the sensitivity of the seismometer is not constant as it 138 

decreases with frequency (Wielandt et al., 2002) ; 139 

c) in the PDF calculation procedure, earthquakes, or other transient phenomena (such as occasional disturbances, brief 140 

anomalies in the flow of data) are not discarded. However, having these events a small duration (except for important and 141 

lasting seismic sequences), they appear in the PDF with colours associated with a low level of probability. On the other hand, 142 

the conditions of quasi-stationary seismic noise or lasting instabilities (permanent failures in the instrumentation, errors in 143 

the instrumental transfer function, excessive number of gaps in the waveform, etc.) produce a high level of 144 

occurrence(McNamara and Boaz, 2006) reflected by a corresponding colour in the PDF plot. 145 

As a consequence, as shown in Figure 2, the areas where colours have greater probability of occurrence (red, yellow, green, 146 

cyan ...) represent the noise level "closest" to the average, while the parts with less likely colours, as magenta, substantially 147 

represent the fluctuations. In this way, it is possible to have a picture of how the noise level is distributed in PSD and 148 

frequency, during the whole inspected time interval.    149 

As an example, Figure  2 displays the PDF distribution for the E-W component at TUE station (Stuetta, SO, Italy) in central 150 

Alps, from January 1st to February 8th, 2021. To plot this diagram, 1678 PSDs have been analysed. The used transfer function 151 

is associated with the instrumentation which, in this case, is constituted by a Very Broad Band (VBB) station. A seismic 152 

station is considered VBB if it has a high dynamic digitiser and a seismometer whose sensitivity is high and constant over a 153 

wide range of frequency (Wielandt et al., 2002), in order to cover almost the entire spectrum of seismological interes 154 

t(Wielandt and Steim, 1986). A Broad Band (BB) station is similar to a VBB one but with a slightly narrower bandwidth 155 

(Wielandt et al., 2002).  TUE instrumentation (adopting a sampling rate of 100 sps) fulfils VBB requirements (Pondrelli et 156 

al., 2020, Anon; Mazza et al., 2008; Kinemetrics Inc., n.d.). 157 

Figure 2 also reports the Peterson LNM and HNM reference curves in black. We observe that the  noise at TUE site has an 158 

excellent behaviour in all the frequency range, even in the winter period, when the environmental seismic noise is greater 159 

than in summer (Custódio et al., 2014). In fact, PDF shows that the PSD highest occurrence is quite close to the LNM curve. 160 

No malfunctions of the instrumentation are observed. Nonetheless, two slight effects can be noted, both attributable to the 161 
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near dam for the production of electricity: A) a slight peak around 8 Hz due to the frequency (8.33 Hz = 500 rpm) of the 162 

turbine; B) a low-frequency bimodal trend, for frequencies below 0.03 Hz, probably due to the tilt of the ground (Wielandt 163 

et al., 2002) which, in this case, can occasionally be induced by the variation in the water pressure of the dam on the bottom 164 

when the water level changes to produce energy. 165 

As we have just seen, PDF diagrams are very useful to observe the general trend of a seismic station and in particular to 166 

recognize minor (as in Figure 2) as well as important anomalies in the recorded signal. In the next paragraph we will give 167 

examples indicating some criteria to recognize a malfunction and possibly to hypothesise the causes of specific problems in 168 

the seismic station or in the metadata. 169 

 170 
3. Criteria to detect problems in seismic data using noise spectra 171 
 172 
In the previous paragraph we showed the noise spectrum of one of the best Italian stations (Figure 2). In general, any ISN 173 

station will usually show a higher noise level than TUE. However, as a general criterion, the spectrum shape, representing 174 

the noise trend as a function of the frequency, for a properly working station has to be similar to the one shown in Figure 2: 175 

more specifically, the secondary frequency peak at 0.2 Hz, due to marine activity, must be evident if we analyse a sufficiently 176 

long-time interval. In addition, too high or too low a noise level can highlight problems, for example in the instrumental 177 

sensitivity. Excluding large gaps, there are two general causes of degradation of seismic data and/or subsequent data 178 

processing: 179 

A) Problems with the station’s instrumentation (including little gaps in data transmission)  180 

B) Errors in the metadata stored in the DataBase (for example the sensitivity value): they invalidate many subsequent 181 

processes.  182 

Here we give just a few examples of how and how much (to what extent, to what level of detail) such problems can be 183 

recognized by analysing a noise spectrum, in particular a PDF diagram. 184 

 185 
       3.1Problems at the seismic station. 186 
 187 
An example of a malfunctioning station can be seen in Figure 3 which shows the PDF diagram at the RMP station (Monte 188 

Porzio, Rome). The instrumentation is very similar to the TUE station (par. 2) i.e. a 120 s very broad band Trillium 189 

seismometer (http://support.nanometrics.ca/) and a GAIA digitizer, which has almost 24 bits(Cirrus Logic Inc., n.d.) 190 

(https://www.mouser.com/datasheet/2/76/cs5371-72_f3-1160187.pdf) These slight differences in instrumentation are not 191 

notable in the spectral representation. In Figure 3a, the lower edge of the coloured area follows a sloped straight line almost 192 

everywhere, except for a slightly pronounced peak around 0.2 Hz and for the behaviour at the extreme frequencies. Moreover, 193 

from 0.02 to at least 3 Hz this lower edge is almost the mode i.e., the most statistically populated trend, as can be seen from 194 

the colours (red, yellow, green ...) associated with the highest probability of occurrence. In general, the shape of the curve 195 

looks very different from a normal VBB station, such as TUE (Figure 2). The shape of the diagram indicates problems with 196 

the seismometer, probably in its positioning. The subsequent on-site intervention revealed that the malfunction was due to a 197 

slight inclination of the seismometer ("out of bubble"). Once the seismometer was repositioned, the diagrams mirrored a 198 

normal VBB station (Figure 3b) with its typical shape. In fact, in Figure 3b (showing the PDF of the same station after the 199 

intervention) the lower part of the coloured area no longer has a straight edge and, especially at medium and low frequency, 200 

the trend has a maximum and a minimum. In particular, in a medium frequency zone (0.07--0.4 Hz), it follows the LNM 201 

curve and resolves the secondary peak well. Note that RMP shows a very noisy (although still acceptable) pattern at high 202 

frequencies, but the shape and the shades of colour in the diagram indicates site noise and not a serious instrumentation 203 

problem.  204 
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As other examples, Figure 4 (a and b) show two spectra that highlight problems at the seismic station. In Figure 4a the PDF 205 

of the TERO Broad Band station (Teramo, Italy, in Central Apennines) shows a bimodal trend at medium and low-medium 206 

frequency, the most frequent curve is far below the LNM curve. This means that the BB seismometer has a not-constant 207 

behaviour, revealing that it is often not powered or switches from BB to "Short Period" mode (Custódio et al., 2014). For 208 

practical purposes the two are substantially equivalent; in fact in both cases any subsequent analysis using Long Period 209 

amplitudes is  invalidated (Custódio et al., 2014). Figure 4b shows the noise at ARRO station (Arrone TR, Central Apennines) 210 

where INGV has installed a short period seismometer Lennartz type Le5s whose corner frequency (Wielandt et al., 2002) is 211 

equal to 0.2 Hz  (5 s period,  https://www.lennartz-electronic.de/wp-content/uploads/2021/04/Lennartz-212 

SeismometerManual.pdf ). On the vertical component (indicated by the code EHZ in the title of the diagram; codes of seismic 213 

data channels are described in (Scott, Halbert, n.d.)) in Figure 4b, one can see a splitting of the blue curve into a bimodal 214 

trend. This behaviour reveals an intermittent problem in the vertical component of the seismometer. In fact, a correct trend 215 

would be the one shown in the lower blue curve, representing the typical trend of "short period" stations. This type of anomaly 216 

on the vertical component was also observed in other stations with the same seismometer (Le5s) such as ATCC (Casa 217 

Castalda, [PG], central Apennines), FOSV (Fossato di Vico [PG]) etc. 218 

 219 
   3.2Errors in the metadata (Instrumental Transfer Function). 220 
 221 
A sensitivity error is shown in figure 5a reporting the noise trend at the GIGS VBB station (Gran Sasso, Central Italy) over 222 

a time interval of more than 5 months. The shape of the spectrum is correct because for frequencies higher than 0.07 Hz it 223 

follows LNM shape but its value is too low, i.e. the correct spectrum would be the same but  translated at higher PSD values. 224 

An error (subsequently corrected) is evident in the memorization of the instrumental sensitivity while populating the Metadata 225 

archive.  226 

The last example concerns a short period station: in Figure 5b we see the noise at the BARO station (Barbarano, VT, Central 227 

Italy). Here a 5 s seismometer (https://lunitek.it/seismic/seismic-sensors/tellus-5s/), is installed (similar to ARRO's Le5s). 228 

The shape of the spectrum is very different from the typical one for this short period seismometer, shown in the lower blue 229 

curve of Figure 4b. In fact, an error was readily found in the transcription of the polynomials describing the instrumental 230 

transfer function. After the correction, the diagram exhibited the correct trend.   231 

 232 

So, in this section we have shown that PDF visual analysis can potentially detect seismic station malfunctions and errors in 233 

metadata. However the shape of the noise spectra depends on many variables (Bormann and Wielandt, 2013) that can be 234 

environmental (Custódio et al., 2014), anthropogenic (Stutzmann et al., 2000), instrumental(Bormann and Wielandt, 2013) 235 

or related to the quality of the station installation(Anglade et al., 2015), therefore the variety of the PDFs diagrams is much 236 

wider than the few examples shown here. There are several other examples, leading an expert user to detect malfunctioning 237 

and often to understand its causes too (McNamara and Buland, 2004; McNamara and Boaz, 2006). However, the stations and 238 

the diagrams produced by automatic spectra generators are too many to be checked every time by “human” operators. On the 239 

other hand, as we have seen, the noise spectra have a complex typology and therefore transferring the criteria of a complex 240 

visual recognition into an adequate deterministic algorithm is not easy. On the contrary, the simplified criterion “good/bad” 241 

based on noise average which must remain between a minimum and a maximum threshold (Massa et al., 2022) (even if on 242 

selected frequency bands) does not represent the complexity of human visual evaluation. In fact, for example, the expert 243 

evaluates not the single average trace (figure.1) and not in selected frequency bands but annual or monthly distribution 244 

diagrams of the noise spectra, as are PDFs (as in  figure 2). 245 
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For all the reasons described above, in this work, we have considered noise spectra of many stations to explore the possibility 246 

of using artificial intelligence able to automatically detect diagrams revealing malfunctioning stations. In the following 247 

paragraphs we describe how we used a pre-trained convolutional neural network to perform “transferring” of human 248 

experience to an automatic system.  249 

4. Machine learning general description  250 

The main benefits in using Machine learnings are: 251 

1) Machine learning algorithms are very general and, without specific changes, except the input data, they can 252 

solve many different problems. That’s the reason why such techniques are becoming very popular in many 253 

different areas as medical diagnosis, business decisional processes, face authentication, scams recognition and 254 

many others;  255 

2) Machine learning application requires, as only effort, to provide enough data to let the machine learn how to 256 

solve the problem and then the system will be able to solve the same problem autonomously and automatically 257 

in different situations, assuming that such situations are similar to the provided ones.  258 

3) Machines' emotions' lack can be very advantageous to avoid statistical bias. For example, medical research 259 

procedures require double blinded protocols to avoid biases.  260 

 261 
As well known, machine learning algorithms are divided into two groups: supervised methods and unsupervised ones.  262 

A supervised method tries to predict a variable (answer or label) when some others (predictors) are known. As an example, 263 

in “mortgage lending”, the predictors could be personal data such as age, income, job position etc….. and the answer could 264 

be the knowledge if the person requiring the mortgage will default or not.     265 

In order to apply a supervised technique, the first step is to collect data including both the predictors and the answer (labelled 266 

data). Such data will feed the algorithm that will “learn by itself” if predictors show patterns (said features) able to predict 267 

the answer. This machine learning stage is named training. This stage is probably the most difficult one as the user has to 268 

collect labelled data. However, after the training, if successful, the algorithm is able to automatically predict the answer for 269 

any other datasets including all the provided predictors.  270 

In order to check how the model is able to “generalise” its validity and how it is accurate when predicting labels for data not 271 

included into the training, a common practice(Lantz, 2013) is, before doing the training, randomly choose a part of the 272 

available dataset and remove it from the training process. So, when the training has been performed, the excluded data (named 273 

test data and containing the labels we are looking for) provide a powerful source to verify the model accuracy as this dataset 274 

includes both the true labels and, when used as input for the model, the predicted labels. This allows the accuracy percentage 275 

computation Accuracy = matched results/total test data. When dealing with machine learning, the best way to show methods 276 

accuracy is using the “confusion matrix” (Lantz, 2012). A confusion matrix is a table counting where the predicted classes 277 

agree or disagree with the true values as described in the par. 5 and in Figure  7.  278 

The unsupervised machine learning techniques (the most important one is clustering) are basically methods to group similar 279 

records of a dataset. How many records must be considered similar depends on different mathematical metrics related to the 280 

specific algorithm. A “real life” example is clustering used by retailers to divide customers into different groups according 281 

to their personal data (gender, income, age, etc...). Such groups are used to assess different promotions. 282 

4.1 Artificial neural networks description 283 

 284 
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Artificial neural networks (ANNs) represent a part of supervised machine learning techniques (Lantz, 2013). ANNs 285 

“architecture” is inspired by the structure of the primate cerebral cortex, in order to learn increasingly abstract features of the 286 

input and best support the desired output (O’Shea and Nash, 2015; Rawat and Wang, 2017). Basically, ANNs consist of a set 287 

of layers of neurons. Input data is inserted into the first layer (each input data into a single neuron) and each neuron elaborates 288 

the input value according to a transfer function depending on the ANNs used. Once each data input has been processed by 289 

the neuron it is “passed” to the next neuron’s layer where the input is a linear combination of the previous layer outputs. Such 290 

linear combinations are determined by a set of coefficients (named neuron weights). The process is iterated along all the 291 

layers to the last layer (named “output layer”) and the outputs are compared to the provided labels. According to the 292 

discrepancy between the true labels and the got ones a backward propagation process starts modifying the weights. Such 293 

propagation involves the iterative adjustment of a single parameter vector with the goal of minimising the differences between 294 

the true and predicted values (Cao and Parry, 2009). 295 

4.2 Convolutional neural networks 296 

 297 
Convolutional neural networks (CNNs) are a specialized type of artificial neural network that excel at extracting local features 298 

from matrices. Their structures are more intricate, and their layers primarily consist of filters applied to matrices (Cao and 299 

Parry, 2009). Unlike traditional neural networks that recognize global features, the main task of CNNs is to identify local 300 

features. This means that each neuron focuses on a limited number of inputs (or neurons from the previous layer) instead of 301 

collecting data from all of them. 302 

A detailed explanation of CNNs would be too lengthy and specific for the scope of this paper. To gain a deep understanding 303 

of CNNs, we recommend referring to (O'Shea and Nash, 2015; Rawat and Wang, 2017). In this paper, we will provide an 304 

overview of the main features of CNNs, which consist of four types of layers: convolutional layers, pooling layers, fully 305 

connected layers, and a single softmax layer (O'Shea and Nash, 2015). 306 

Convolutional layers are the most essential component for examining local features, as only a limited number of 307 

inputs/neurons are connected to each neuron of the next layer. This approach enables each neuron to inspect specific areas. 308 

Pooling layers are generally added after convolutional layers to reduce their size. For instance, each 2x2 convolutional output 309 

matrix is replaced by its maximum value. 310 

The fully connected layers play an important role in the CNN by modifying the output matrix. Typically, the first fully 311 

connected layer in a CNN is followed by additional fully connected layers that transform the output from a 2D to a 1D 312 

structure (Pignatelli et al., 2021). For instance, a fully connected layer might represent a 6x4 matrix as a single vector of 24 313 

components. 314 

After passing through the fully connected layers, the output is fed into the softmax layer, which converts the numbers in the 315 

last fully connected layer into probabilities for each label. Finally, the predicted label is the one that corresponds to the highest 316 

probability value. 317 

4.3 Pre-trained convolutional neural networks 318 

 319 
Before training a convolutional neural network, a very difficult step is deciding its architecture (in other words the sequence 320 

of layer types and their parameters). However previous works (Pignatelli et al., 2021) have shown how using images of data 321 

rather than data can be very advantageous as it’s possible using pre-trained networks. 322 

Pre-trained networks have very efficient architectures already tested for general purposes (such as images classification). A 323 

very famous one is Alexnet (Han et al., 2017; Krizhevsky et al., 2012). 324 
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The primary function of Alexnet is to extract meaningful features from images, which can be used by the final layers of the 325 

network for various classification or regression tasks. One key advantage of using Alexnet is that many of the weights are 326 

already pre-calculated to identify basic image features (such as geometric shapes, segments, etc.). Consequently, the network 327 

is largely pre-trained and optimized for use, and the training process mainly involves fine-tuning the pre-existing parameters. 328 

This results in a faster and more efficient training process compared to designing a neural network from scratch. Additionally, 329 

a smaller amount of input data is required compared to a new neural network.. Alexnet model is shown in Figure 6. 330 

As our main task was to discriminate between spectra coming from well functioning stations and from malfunctioning or 331 

broken stations, we realised that using Alexnet was a possible great approach. 332 

 333 

5.Method application 334 

 335 
As in our study the goal is to discriminate regular signals from signals recorded by damaged stations (bad metadata can also 336 

“damage” spectra), it’s mandatory to collect both human classified “ok signals” and “broken signals”. In our study we find 337 

that just images of data fulfil our goal, so basically we have collected two groups of images and labelled them ”ok” or 338 

“broken” according to our knowledge. In our specific case, as a set of data, we have chosen PDF spectral diagrams, similar 339 

to those seen in paragraphs 2 and 3 (Figures 2 to 5). We recall that they substantially represent the level of seismic and/or 340 

instrumental noise of a seismic station. As a first step we have selected  broadband (BB) stations with 100 sps sampling and 341 

flat response to ground velocity at least up to 40 seconds, that is with a band from no more than 0.025 to at least 25 Hz (see 342 

par. 2), whose channels are conventionally named HH*(Scott, Halbert, n.d.) , for the three cartesian components of the ground 343 

motion: HHZ (Vertical), HHN (North-South) and HHE (East-West). The choice of limiting the analysis to the broad (and 344 

very broad) band was meant to ease learning, as the diagrams of these stations are similar to each other but significantly 345 

different from those of the short period stations (channels EH*, SH*,...) especially at low frequency, as is evident when 346 

comparing Figure 2 with the lower part of Figure 4b. In the first approach we used data of the year 2019. The BB and VBB 347 

considered stations are a subset of about 300 stations over about 500 ones that in 2019 provided data to the INGV monitoring 348 

centers (Michelini et al., 2016) and to the INGV database. For each  station, the SQLX package (paragraph 2) produces a 349 

large variety of diagrams among which we have chosen the annual diagrams, as the seismic noise (and sometimes also 350 

instrumental one) can undergo considerable variations not only day/night but also weekly, monthly or seasonal. Using the 351 

annual averages, it is easier to divide the diagrams into "OK" and "Broken”, as within the "OK" class the annual diagrams 352 

are more homogeneous and similar. In summary, the chosen data set for the first training has the following characteristics:   353 

 354 
a) Broadband (BB) or VBB stations (HH* channels) belonging to Italian, Mediterranean or local networks.  355 

b) PDF spectra (similar to figures 2—5) 356 

c) Annual diagrams for the year 2019 357 

d) All three components of motion are analysed (a diagram for each component). 358 

5.1 Training and first test  359 

 360 
We collected 280 PDF spectral diagrams of the year 2019, respectively 140 "OK" and 140 "Broken", the latter showing trends 361 

that, according to the human eye, definitely belong to defective stations. Once such data had been gathered, we used them to 362 

feed the Alexnet network. As described in the machine learning general description section, to check the method accuracy 363 

we randomly split the dataset into two groups: 80% (224 diagrams) of training data and 20% (56 diagrams) of test data using 364 
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the “stratification” option (Kubat and Kubat, 2017) to keep the classes as much possible distributed as the total dataset.  We 365 

performed the training step providing Alexnet with 224 diagrams and declaring for each one whether it was "OK" or 366 

"Broken". Once the training process ended, we applied the trained model to the test data, i.e. the 56 diagrams not used for 367 

training, specifically 28 “Broken” diagrams and 28 “OK”. The results show an accuracy of 92% and are detailed in figure 7. 368 

 369 

5.2 Second test: Increase images number to confirm network accuracy and improve its robustness 370 

 371 

After the first test, additional labelled data have been provided to the Alexnet to improve the learning phase. More specifically 372 

61 additional “OK” and 106 additional “Broken” diagrams belonging to years other than 2018 were provided including their 373 

labels. So, the total of the diagrams used for the learning phase was 447. The reason why we preferred to increase mostly the 374 

number of "Broken" diagrams is that they present a greater variety as there are many possible causes of malfunction in a 375 

seismic station, while broadbands “OK” are more homogeneous. Results are summarised in the confusion matrix in Figure 376 

8. As one can see, Increasing the number of labelled data has resulted in a significant increase in accuracy in the test (96.6%). 377 

However, we considered data used for the test still not enough (89 diagrams) and so we have performed a more robust test 378 

on a much larger number of diagrams.  379 

 380 
5.3 Third test: Verification with data from the year 2018 381 
 382 
As a more robust test, we selected 840 diagrams of the year 2018, therefore never previously analysed by the neural network 383 

Alexnet. Actually, the human operator first examined 877 diagrams of 2018 and discarded 37 of them because they were 384 

considered “uncertain”.  494 (58.8%) of the remaining 840 were classified as “OK” and 346 (41.2%) as “Broken”. This was 385 

the work that took most of the time. Before letting the machine analyse the 840 diagrams of the 2018, a new training was 386 

performed with the same 447 diagrams of the previous second test. In this case, as the test was meant to be applied to such 387 

new data, we decided to increase the training data percentage with respect to the previous training. So, 90% of diagrams (and 388 

not 80%) were used for the training as the significant test was successively performed with new data. We needed to spare 389 

10% of data for the validation(Lantz, 2013)  process.    390 

The results are shown in figure 9. In total, the machine guessed 758 diagrams out of 840, equal to an accuracy of over 90%. 391 

Compared to the individual classes, the accuracy is 88.4% for the “Broken” class (306 out of 346) and 91.5% for the “OK” 392 

class (452 out of 494). Throughout this analysis, we have taken for granted the infallibility of the human operator and this is 393 

not an established fact, but the hypothesis of operator error is remote precisely because the "uncertain" diagrams have been 394 

discarded a priori by the human.  395 

 396 
5.4. Fourth test: introducing a third class.    397 
 398 
In the last test we noticed a high percentage of successes (over 90%), and a not similar percentage of false positives (8.1%) 399 

and false negatives (12.1%) indicating a “precautionary” trend of the neural network. The choice of having a "precautionary" 400 

or alternatively "unscrupulous" neural network depends on whether we want a slightly suspicious station to be reported to us 401 

as broken (with the risk of having a consistent number of false alarms) or if we want to deal with stations that are definitely 402 

malfunctioning (with the risk of losing the signalling of a number of stations that are not working well). It is a choice that 403 

often depends on external conditions, there are many elements to decide a strategy or another: for example the total number 404 

of stations, the density of the seismic network, the relative position of the damaged stations and our capacity for rapid 405 

intervention on the station site or remote intervention.  406 
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Having a very or little precautionary neural network depends on how we train the neural network, for example on how we 407 

choose to consider "uncertain" diagrams. Every choice we make has pros and cons. In fact, compared to the "uncertain" 408 

diagrams, we can: a) discard them all a priori in learning --but Alexnet will sooner or later meet "uncertain" spectra among 409 

the many diagrams that we will give it to analyse and in those cases how will Alexnet compute?; b) insert them all in the OK 410 

spectra --less precautionary choice; c) insert them all in the Broken spectra --more precautionary choice; d) decide and classify 411 

diagram by diagram --a more demanding choice for the human operator and perhaps producing different results from operator 412 

to operator, e) create a third intermediate class of "uncertain" diagrams but, in the 2019 data set, they were not many and 413 

machine learning would be based on a few diagrams.  414 

The INGV database also receives data from other local networks. Recently the number of stations received has significantly 415 

increased and, with it, also the percentage of uncertain diagrams, in many cases because there are temporary failures due to 416 

the non-connection between station and INGV, therefore the continuity of the data is lost; in these cases the choice whether 417 

to declare a malfunctioning station or not depends on the quantity and length of the gaps (time intervals without data or 418 

telemetry drop-out) but the evaluation is still subjective and there will always be a percentage of questionable cases. 419 

Furthermore, in local networks the occurrence of non-standard installations is more frequent than in the ISN and sometimes 420 

cheap instruments are used; in these cases the documentation to control all parameters is not always complete or clear. So the 421 

2021 spectra data set shows a number of “uncertain” diagrams adequate to train Alexnet with three classes: two extreme (OK 422 

and BAD) and one intermediate (Dubious).  423 

For the three-class learning we used a much larger number of diagrams than in the previous steps. We selected the year 2021 424 

and collected 1865 PDF spectral diagrams. The intervention of a single human expert lasted about three weeks to classify 425 

them into 3 classes, respectively 554 "OK", 476 “Dubious” and 835 “BAD”. As in the previous analyses, for training, 426 

(learning) Alexnet used 80% of the diagrams and for testing the remaining 20% (373 diagrams). The results are summarised 427 

in figure 10 (a and b). 428 

With the introduction of the 3rd class (intermediate) the total accuracy decreased up to 85.5% but on the other hand a very 429 

comforting result is that no BAD diagram has been judged OK and no OK diagram has been judged BAD by the neural 430 

network. Thus no “absolute” false positives or “absolute” false negatives resulted out of the processing. However, there are 431 

some BAD or OK diagrams that have been judged Doubtful and conversely there are some Doubtful diagrams that have been 432 

placed in the OK or BAD classes.  433 

The result can however be considered useful overall because the network has shown that it can restrict the set of diagrams on 434 

which to deepen the analysis and on which we should probably intervene (no OK diagrams was judged BAD). Then, 435 

according to the opportunities and the above considerations (number and density of the stations etc.) the operators will 436 

evaluate if and when to investigate the doubtful cases.  437 

The reasons why the number of damaged stations increased in 2021 are similar to those why the uncertain diagrams increased: 438 

a growth of connected stations and an increase (in absolute and percentage) of stations with degraded data transmission. 439 

Pending improvement of the data transmission systems, being able to narrow down the field of malfunctioning stations is in 440 

any case very useful for scheduling maintenance interventions.  441 

 442 
  443 
6. Conclusions 444 

 445 
Good quality seismic data collection is very important in terms of geophysical research. More specifically, spectral analysis, 446 

in its various forms, is a very important investigation step for the purpose of checking the quality of seismic data. 447 

Unfortunately check and maintenance of many stations require a lot of “human” effort to keep the system running properly. 448 

In this paper, we have shown how visual inspection represents a powerful tool to achieve a high standard check level and 449 
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how artificial intelligence can be helpful in such tasks. More specifically the experience and knowledge of an expert in this 450 

field can be “transferred” into a neural network able to automatically discriminate signals coming from malfunctioning 451 

stations from the ones collected from working ones, with an accuracy of more than 90%, obtained in the third test on 840 452 

diagrams. Previous tests were performed with a smaller number of diagrams and gave higher accuracy. In any case, a good 453 

policy is to try to increase the accuracy of the network as much as possible by providing even more data for learning. The 454 

accuracy has increased from the first to the second test from about 93% to over 96% as additional learning diagrams (label) 455 

were provided before the second verification test.  456 

To further restrict the set of stations on which to intervene, we have introduced a third intermediate class which contains the 457 

diagrams showing a dubious operation of the station  (the number of this type of diagrams increased in the last two years). 458 

The idea is to intervene initially only on stations judged BAD, reserving future insights on stations judged “uncertain”. For 459 

the three-class learning we used a much larger number of diagrams than in the previous steps. With the introduction of the 460 

3rd class, the total accuracy decreased up to 85.5% but on the other hand no BAD diagram has been judged OK and vice 461 

versa. The errors concern having placed an element in a class rather than in the next one. This result shows the reliability of 462 

Alexnet and allows us to concentrate the first interventions only on the stations judged as BAD and subsequently to investigate 463 

the Dubious ones. Being able to narrow the number of very suspicious stations to intervene on is still a very useful result for 464 

scheduling maintenance intervention. The applicability of the trained network may be not limited just to the Italian network 465 

but to every international one having BB or VBB seismometers.  466 

The overall results look very promising for future developments where we hope to extend the analysis to short period stations 467 

and to be able to carry out the analysis on lower time intervals (for example one or two months), possibly also using other 468 

types of diagrams. 469 

 470 
 471 
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581 
Figure 1: Noise Spectra recorded in Antillo (ME, Italy) station (AIO code).  Where thermal and electronic effects are negligible (in 582 
this case for f > 0.04 Hz approximately), the colored curves represent Vertical (Red), N-S (Blue) and E-W (Green) components of 583 
ground acceleration level spectrum at various frequencies. In black the empirical noise models of Peterson    584 
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 585 
Figure 2: Seismic noise at TUE station (Central Alps) for the horizontal E-W components. The colored zone represents the 586 
Probability Density Function of the Power Spectral Density.  The Peterson curves LNM and HNM are reported in black. The label 587 
"30+" refers to a probability greater than 30%. TUE station has a STS2 seismometer(Anon, 2020) and a Q330HR(Kinemetrics 588 
Inc., n.d.) digitiser/acquisitor. Instrument response is flat in velocity from about 0.01 to about 50 Hz(Pondrelli et al., 2020) 589 
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 590 
 591 
Figure  3: PDF noise level at the RMP seismic station (Monte Porzio, Rome) in the period  3 Nov - 3 Dec 2018 (a, before the 592 
intervention) and  1 jan - 18 Apr 2020 (b, after the intervention). On the left, the lower part of the colored area (statistically the 593 
most frequented) follows an sloped straight line almost everywhere, except for a very slight peak around 0.2Hz and at extreme 594 
frequencies. This abnormal behaviour indicates problems in the seismometer or in its positioning.  595 
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 596 
 597 
Figure 4 (a and b) a): Noise spectrum at TERO station (Teramo, Central Italy). The station consists of a BB seismometer, Trillium 598 
40 s (http://support.nanometrics.ca/) and a GAIA digitizer/acquisition system(Michelini et al., 2016; Cirrus Logic Inc., n.d.) . At 599 
medium and low-medium frequency the noise is much lower (about 20 dB) than the LNM curve.  b): Noise at the ARRO station 600 
(Arrone, Terni, Central Italy). The station consists of a Short Period seismometer (https://www.lennartz-electronic.de/wp-601 
content/uploads/2021/04/Lennartz-SeismometerManual.pdf) and a GAIA. The bimodal trend on the vertical component denotes a 602 
malfunction (sometimes) of the seismometer.  603 
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 604 
 605 
Figure  5 (a and b) a): noise at the GIGS station (Gran Sasso, central Italy) for more than  5 months time interval. The VBB 606 
station consists of a Trillium 240s seismometer (http://support.nanometrics.ca/ )  and a GAIA digitizer/acquisition 607 
system(Michelini et al., 2016; Cirrus Logic Inc., n.d.).  The PDF shows a noise lower than LNM on about half of the analyzed 608 
band   b): Noise at the BARO station (Barbarano, VT, Central Italy) with a Short Period Tellus 5s seismometer 609 
(https://lunitek.it/seismic/seismic-sensors/tellus-5s/ ) and a GAIA(Michelini et al., 2016; Cirrus Logic Inc., n.d.). The shape of the 610 
spectrum is very different from the typical trend of a 5 s seismometer which instead follows the lower blue curve of Figure  4b. 611 
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 612 
 613 

 614 
Figure 6 Alexnet classification architecture   615 
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 616 
Figure 7: Confusion matrix and total accuracy of trained Alexnet neural network applied to the first set of test data. The test is 617 
performed on 20% of total labelled data.  618 

https://doi.org/10.5194/gi-2023-4
Preprint. Discussion started: 8 May 2023
c© Author(s) 2023. CC BY 4.0 License.



 

22 

 619 
Figure 8: Confusion matrix and total accuracy of trained Alexnet neural network relative to second learning test. The test is 620 
performed on 20% of total labelled data.   621 
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 622 

 623 
Figure  9 Confusion Matrix for the test on 840 diagrams. The main diagonal indicates the successes.    624 
 625 
 626 
 627 

        628 
 629 
Figure 10 a) Confusion Matrix for the test on 373 diagrams.  (The remaining 1492 of 1865 diagrams were used for the training). 630 
The training diagrams have been divided into three classes. The main diagonal indicates the successes.   b) Percentage of successes 631 
and failures of the previous 3 x 3 matrix (three classes) 632 
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