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Abstract. Environmental observations are crucial for understanding the state of the environment. However, current 

observation networks are limited in spatial and temporal resolution due to high costs. For many applications, data acquisition 

with a higher resolution would be desirable. Recently, Internet of Things (IoT) -enabled low-cost sensor systems offer a 

solution to this problem. While low-cost sensors may have lower quality than sensors in official measuring networks, they can 10 

still provide valuable data. This study describes the requirements for such a low-cost sensor system, presents two 

implementations, and evaluates the quality of the factory calibration for a widely used low-cost precipitation sensor. Here, 

twenty sensors have been tested for an 8-month period against three reference instruments at the meteorological site of the TU 

Dresden. Further, the factory calibration of 66 rain gauges has been evaluated in the lab. Results show that the used sensor 

falls short for the desired out-of-the-box use case. Nevertheless, it could be shown that the accuracy could be improved by 15 

further calibration.  

1 Introduction 

Environmental observations are a pillar of environmental science. They provide the necessary data to describe and model the 

state of the environment and its spatial and temporal changes. Furthermore, the data collected can be used to identify and assess 

possible natural risks and thus warn of potential natural hazards. Environmental observations also form the basis for decision-20 

making in environmental policy and for monitoring the outcome of the resulting measures, which requires reliable and 

systematically collected data. In line with this requirement, data on climate, soil, water balance and air quality are collected in 

many countries by authorities that operate permanent monitoring networks (Kaspar et al., 2013). The stations within these 

monitoring networks are usually equipped with professional measuring tools, which, like the sites themselves, meet certain 

standards of the respective international organisations. Furthermore, the operation and maintenance of such monitoring 25 

networks is ensured by a high level of human resources. And the measured values are subjected to quality control. The resulting 

costs lead to observation networks that cannot be condensed indefinitely, even if observations in higher spatial and temporal 

resolution would be desirable for many applications, e.g., such as warning of flash floods or landslides (Lobligeois et al., 2014; 

Gamperl et al., 2021). 
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Developments over the last two decades in the field of the Internet of Things (IoT) allow this shortcoming of institutional 30 

measurement networks to be addressed. The availability of ever smaller, cheaper, more power-efficient devices and sensors 

combined with the ubiquitous availability of connectivity to the internet make it possible to collect and process data where it 

is needed. Even if the quality and reliability of such devices is lower than that of official measuring stations, the resulting data 

sets with higher spatial and temporal resolution can represent added value. For instance, the use of IoT-enabled sensors allows 

further automation and fine-tuning of agricultural processes by collecting data on climate (e.g. CO2 emissions (Brown et al., 35 

2020)) or soil (e.g. moisture (Adla et al., 2020)). In the field of natural hazard research low-cost GNSS and accelerometer 

devices communicating within an IoT network are used to monitor boulders (Dini et al., 2021). Another study illustrates the 

suitability of IoT devices measuring water level and soil moisture to monitor floods during tropical storms (Mendoza-Cano et 

al., 2021). 

In regard of precipitation monitoring, low-cost weather stations (PWS - personal weather stations) fill gaps in measurement 40 

networks that were previously interpolated or determined by radar and satellite products (with corresponding inaccuracies) 

(Fraga et al., 2019; de Vos et al., 2017). Although many studies have shown that the use of IoT-enabled low-cost precipitation 

sensors is possible (Lopez and Villaruz, 2015; Rodríguez et al., 2021), it is necessary to ensure that the data generated meets 

the necessary requirements for data quality when used in addition to official networks. This can be achieved through the 

calibration of low-cost sensors - however, this step is time-consuming (Humphrey et al., 1997) and hence costly. Therefore, 45 

calibration runs are counter-productive to the intended purpose of low-cost sensor technology. This provokes the question if it 

is suitable, to actually use low-cost sensors relying only on the factory calibration of the manufacturer. To arrive at a conclusion 

about the quality of factory calibration, it is thus necessary to evaluate a larger number of sensors of the same type. In many 

studies utilizing low-cost sensors, only a single or a very small number of instruments have been used, not yet addressing this 

question (Fraga et al., 2019; Strigaro et al., 2019; Sudantha et al., 2019; de Vos et al., 2017).  50 

In this study, we describe the requirements for a low-cost sensor system and show two implementations using open hardware. 

Furthermore, we analyse the quality of factory calibration for a widely used low-cost precipitation sensor and thus test its 

suitability for an out-of-the-box use. Measurement campaigns were conducted both in the laboratory and in the field.   

2 Methods 

2.1 Requirements for low-cost sensor systems 55 

To improve the resolution of any official environmental measurement network, the sensor systems have to fulfil different 

requirements. When using a high number of sensor systems, they have to be low-cost while maintaining a certain level of data 

quality and reliability to ensure an effective application. Thus, sensors have to be quality checked before being used. To 

further reduce costs, the sensor system should be robust and low-maintenance.  
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The proposed systems should be energy efficient so that the systems can operate for long periods of time without replacement 60 

or can be charged by solar panels. This would make the systems independent from being connected to the power grid, which 

maximises the possibilities for measuring sites. For real- or near real-time use of the data, the use of wireless connectivity is 

required to transmit the data from the sensors to the users. This also improves flexibility in the selection of measuring sites.  

The sensor system should be easy to install, use and maintain, ideally even by people not familiar with the subject. This also 

enables the use of volunteers (citizen scientists) to further reduce costs. Since not all requirements have to be met at all 65 

locations, modularity of the system would be desirable; be it the choice of sensors, power supply or connectivity. Further, to 

make the system as applicable and transferable as possible, open-source hardware should be used. 

2.2 Development of a low-cost sensor system for data acquisition 

When designing a low-cost sensor system, one can either use hardware specifically designed for the use case, or rely on widely 

available open-source hardware. The latter has the advantage to make the system as applicable and transferable as possible. 70 

Two widely used open-source options are either the Raspberry Pi (RPi) or the Arduino ecosystem. 

The Raspberry Pi is a single board computer, that is widely used for a variety of applications such as education, home media 

centres, home automation or IoT projects. The boards can be connected to a wide range of sensors, actuators, and other 

electronic components through 28 digital input/outputs pins using standard connectors and protocols (SPI, I2C, Serial). 

Furthermore, cameras can also be connected to the RPi and therefore used for environmental monitoring, e.g., to measure 75 

water levels (Eltner et al., 2018) or to detect rockfalls (Blanch et al., 2020). On the RPi, Raspbian – a Linux variant is used as 

operating system, while the connected sensors can be controlled and read out e.g., using Python. Since the RPis are real 

computers, the sensor data or captured images can also be processed directly on them. Most RPi Boards provide connectivity 

through an integrated wifi/bluetooth module, but other types of connectivity can be established either via USB (e.g., UMTS 

Dongle) or specific shields connected to the I/O Pins.  80 

Arduino is an open-source electronics platform based on easy-to-use hardware and software. Unlike the Raspberry Pi, the 

Arduino Ecosystem consists of boards featuring different microcontrollers and are not fully-fledged computers. Nevertheless, 

they provide almost the same connectivity to sensors via the same connectors and protocols as used with the Raspberry Pi. 

While the computing abilities on the board are limited compared to the RPi, their energy efficiency is significantly higher. 

Arduino boards with different options of integrated network connectivity (e.g. LoRa, GSM, Narrowband IoT (SigFox)) are 85 

available (Singh et al., 2020).  

Overall, the choice between the Raspberry Pi and Arduino will depend on the specific requirements of the use case and the 

conditions available at the measuring site. If on-site processing of images is needed or power supply is available, the Raspberry 

Pi is a good choice. If one needs to read and broadcast sensor data from remote locations an Arduino is a more suitable, hence 

a more energy efficient and cost-effective option. Thus, two different modular sensor systems are proposed, which are based 90 

on the two different platforms. 
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2.2.1 Raspberry Pi 

The Raspberry Pi Zero W (RPi0W) was chosen to keep energy consumption and acquisition costs low. In previous studies, it 

has been proven suitable to measure hydrological parameters, e.g., via a camera gauge (Eltner et al., 2021). The RPi0W model 

combines the lowest price (sub 10€) with the lowest energy consumption (0.75-1.5W) within the available Raspberry Pi 95 

models, while still being fast enough for e.g. image acquisition.  

The RPi based model is powered through the mains, which allows for running it constantly, as energy consumption is not a 

critical factor. Thus, logging of sensor data in a high resolution and uploading it in a sufficient schedule is possible. While it 

is possible to power the Raspberry Pi system using a solar panel and battery, the energy consumption of 0.5 to 5 Watts 

(depending on the performed processes and chosen model) may require a large panel and battery generating higher costs.  100 

On the RPi, the sensors were connected to the I/O Pins and read out via small python scripts. For many sensors, libraries for 

Python are available, making communication between sensor and RPi easy to set up. Read out data was then written into a 

SQLite database file. Depending on the use case, data can be instantly transmitted or read out periodically from the database 

and subsequently uploaded into a cloud infrastructure. Here, the Message Queuing Telemetry Transport (MQTT), a lightweight 

message transport protocol, was used. Data transfer was realized either through the on-board wifi module, or using a USB-105 

UMTS modem utilizing a dial-up internet connection. This connection is also used for setting and frequently updating the 

system time of the RPi via the internet, as the RPI has no built-in real-time clock (RTC).  

2.2.2 Arduino 

The proposed Arduino system consists of an Arduino Board from the Arduino MKR series, which uses a low power ARM 

Cortex-M0 SAMD21 processor. Specifically, the Arduino MKR Fox 1200 and the Arduino MKR GSM 1400 were used – 110 

other network options are available. The main benefit of the proposed system is the reduced energy consumption compared to 

the RPi system. As the energy consumption in the active state (measuring or transmitting sensor data) is already 80% lower 

compared to the RPi, the energy consumption of the whole system can be reduced to less than 5 mW by utilizing deep sleep 

modes through a low power-library. The Arduino system can be run directly from two 1.5 V batteries or a small solar panel. 

We achieved running times of up to six months on a pair of D-Cells and basically unlimited running time on a small solar 115 

panel and a LiPo Cell for buffering.  

The Arduino system requires two additional parts – namely a standard SD card for data storage, and an external real-time clock 

(RTC) module. For the MKR Fox 1200 version of the Arduino system this creates a limitation of the system as the time cannot 

be updated online through the SigFox network. Thus, the accuracy of the timestamps relies on the drift of the RTC module. 

Here the DS3231 was used, which can have a drift of up to 2ppm (maxim integrated, 2015), which equals to about 63 seconds 120 

over the course of a year. 

Another limitation of the MKR Fox 1200 version is the bandwidth and message limit the used ISM-band possess (this also 

applies to e.g., LORA-Wan). Here, only 140 messages of 12 bytes a day are allowed for transmission, which might be a 
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bottleneck if several sensors are used. So, if data (and transfer) with a high temporal resolution is needed, one has to consider 

a GSM based solution. 125 

2.2.3 System cost 

In this study, the costs for the cheapest monitoring solution is the described RPi option, powered through the mains while 

transferring the measured data via WLAN (about 40 Euro + sensors). The cheapest off-grid solution (system based on Arduino 

MKR Fox 1200) costs about 75 Euros + sensors. A detailed summary of system configurations and corresponding costs is 

given in Table 1. 130 

Table 1. Cost for different sensor systems depending on use case 

electricity x x 
solar powered battery 

powered 

solar powered 

wifi x  
  (x) + camera 

system 
RPi ZeroW 

10 euro 

RPi ZeroW 

10 euro 

Arduino 

MKR Fox 

45 euro 

Arduino 

MKR Fox 

45 euro 

RPi ZeroW 10 

euro 

power supply 
power adapter 

10 euro 

power adapter 

10 euro 

5W solar 

panel + 

battery 

loading circuit 

30 euro 

D-Cells 

5 euro 

50W+ solar 

panel + 

battery 

loading circuit 

100+ euro 

accessories 
SD card housing 

20 euro 

SD card GSM 

modem housing 

35 euro 

SD card 

RTC module 

housing 

25 euro 

SD card 

RTC module 

housing 

25 euro 

SD card 

housing 

(GSM 

modem) 

20/35 euro 

cost total 40 euro 55 euro 100 euro 75 euro 
130+/145+ 

euro 
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2.2.4 Low-cost environmental sensors 

The developed systems are capable of connecting to widespread types of low-cost sensors (e.g., the temperature/humidity 135 

sensors DHT22 and SHT31). In this study, a Bosch BME280 weather sensor (i.e., temperature, humidity, air-pressure) and the 

semi-professional Davis Vantage Pro2 rain gauge had been used for demonstration.  

 

2.2.5 Low–cost rain gauge 

The considered rain gauge is using the tipping bucket principle. It consists of a collector cone with a spherical opening on the 140 

top. The collected precipitation is lead through a debris-filtering screen into a container with two buckets on a pivot. When 

one bucket fills up with water, it eventually tips and empties the container, bringing the other bucket in position to be filled. 

Each time the bucket tips, a contact is triggered, which can be counted by a connected microcontroller or sensor system. 

Within the timeframe of this study, the design of the Davis rain gauge has been altered by the manufacturer. In particular, three 

different models were available in that timeframe. In the first update the design of the upper part (collector cone) of the device 145 

was changed. While the old version (model nr. 7852M/7857M) had the shape of a truncated cone, the new one (model nr. 

6463M/6465M further referenced as TYPE A) has the shape of the funnel inside the cone. After the field study described in 

the next chapter, the design (model nr. 6464M/6466M further referenced as TYPE B) was changed again. This time the tipping 

mechanism was changed from a two-bucket design into a one-bucket design. Instead of tipping and bringing the second bucket 

into position, the new design uses a counterweight, that returns the bucket back into the collection position after emptying 150 

when reaching the given amount of precipitation. The three types can be seen in Table 2.  As the older types are still widely in 

use, the results of this study still apply for a widespread of users.  

Table 2: Different versions of low-cost rain gauge 

model 7852M/7857M 
6463M/6465M 

(TYPE A) 

6464M/6466M 

(TYPE B) 

collector 

cone 

   

https://doi.org/10.5194/gi-2023-7
Preprint. Discussion started: 22 May 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

measuring 

mechanism 

   

 

 155 

2.3 quality assessment of a low-cost rain gauge 

To draw a benefit from the use of low-cost sensors, these have to provide a certain level of data quality and reliability. Thus, 

these properties have to be assessed and verified for a given sensor type. Two goals were pursued in regard of the performance 

assessment: On the one hand, the accuracy of the rain gauge was assessed. On the other hand, the quality (spread) of the factory 

calibration and thus the suitability in a low-cost, out-of-the-box use case was examined. Therefore, two studies have been 160 

performed, which will be described in the following sections. 

2.3.1 Lab-calibration 

To assess the quality of the factory calibration, a static calibration was carried out (Marsalek, 1981). Hereby the volume of 

water, which is required to tip the bucket, is measured using a syringe and a micro scale.  

The calibration was carried out in the lab for 37 new tipping gauges of type TYPE A. Furthermore, 20 rain gauges of the same 165 

type used in the field study, were also examined directly at site, i.e., lab-calibrated onsite, after carrying out the field study. As 

the manufacturer changed the design after the completion of the field study, another lab-calibration with nine fabric new gauges 

of the type TYPE B was carried out.  

All measurements were taken using a G&G micro scale with an accuracy of 0.01 g. The rain collector has a diameter of 16.5 

cm, which equals to an amount of 4.277 ml or 4.269 g of water (Tanaka et al., 2001) for each tipping of the bucket, i.e., after 170 

0.2 mm rain water has been collected, as stated by the manufacturer. For each gauge the following process was executed 20 

times: 

1. Calibration of the micro scale using a 100 g calibration weight. 

2. Weighing of an arbitrarily chosen amount of water (4 - 7 g) on the micro scale. 

3. Drawing up water into a syringe directly from the scale. 175 

4. Slowly dripping water into one chamber of the tipping bucket (starting on the side of the pole mount) until 

the bucket tips. 

5. Clearing of the remaining water in the syringe back onto the micro scale and subsequently taking a weight 

measurement. 
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6. Calculating the difference between the two measurements. 180 

7. Removing remaining water in the bucket using a paper towel.  

8. Back to Step 2. 

 

Each weighing side was triggered ten times (for model 6463M/6465M) to minimise the influence of random measurement 

inaccuracies. In addition to calculating the weight differences, an iterated mean value of these differences was calculated. The 185 

deviation of this iterated mean value from the mean value after ten measurements provides information about the number of 

measurements after which the mean value calculated up to that point is stable, i.e., converged. This value can help to estimate 

how many measurements are necessary to make a reliable statement about the weighing properties of the precipitation tipping 

buckets. Further, the obtained mean allows statements on absolute accuracy to be made.  According to the manufacturer, the 

expected value is 0.2 mm. Deviations from this value show whether over- or undercatch is to be expected in the precipitation 190 

measurement. 

2.3.2 Field study 

A field study was carried out at the meteorological site of the TU Dresden. The site is situated in the valley of the river Wilde 

Weißeritz (50°59' N, 13°35' E, altitude 220m NN, average annual precipitation in the period 1981/2010 was 795.4 mm 

(Tharandt Klimastation, 2023)). Several different professional instruments are measuring precipitation here, including a 195 

traditional Hellmann rain gauge, an Ott Pluvio gauge and a Young tipping gauge. These instruments are regularly maintained 

to meet the specifications of the World Meteorological Organization.  

The Hellmann gauge is made of a steel cylinder and has a collecting area of 200 mm². The collected water runs through a 

funnel into a small container, which is emptied daily and the amount of water in the container measured to calculate the 

precipitation for the last 24 hours. The Hellmann device is used as the reference for the climatological measurements taken at 200 

this station since 1951 (Fig 1).  

The Ott Pluvio is a weighing rain gauge consisting of a collector cylinder (collecting area of 200 mm²) and weighing cell. The 

weight of the water collected in the cylinder is weighed constantly und subsequently a precipitation amount for each minute is 

generated. The resolution of the precipitation data is 0.1 mm.  

The third professional device is a professional Young tipping gauge – utilizing the same measurement principle as the low-cost 205 

gauge, i.e., using tipping bucket. The Young gauge also has a collecting area of 200 mm² and it has a measurement resolution 

of 0.1 mm per tip. In contrast to the low-cost gauges, this device is equipped with a heating, which allows for snow precipitation 

to be measured. 

The setup of the study was chosen to enable the analysis of the spread of measurements relying on the factory calibration. 

Therefore, an array of 20 identical, fabric new, low-cost rain gauges of the TYPE A were set up. The rain gauges were mounted 210 

on a wooden frame in an array of four by five devices, covering an area of about 1 m². The frame is levelled and set at a height 

of about 1 m above ground to match to the height of the reference gauges, located about 10 m to the south of the reference 
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instruments. The setup is shown in Fig 1. A Raspberry Pi (RPi Modell 3b) sensor system is used to log the precipitation data 

(i.e., timestamps of tipping events) of the rain gauges. To compare the low-cost gauge measurements with the reference 

instruments, the amount of tipping events is multiplied by 0.2 mm per tipping, as stated by the manufacturer. Cumulative 215 

rainfall was measured in the months from August 2018 to April 2019. 

 

 

Figure 1: Tharandt meteorological site (in background) and field study setup (in foreground)  

3 Results 220 

3.1 Lab-calibration 

In total, 66 rain gauges have been tested. Of these devices, 37 were fabric new gauges of TYPE A and 20 had been used already 

for about half a year (i.e., in the field study –TYPE A). Further nine gauges used the new single tipping bucket mechanism 

(TYPE B). None of the gauges had been recalibrated before (Krüger, 2023). 
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Considering all rain gauges of TYPE A, the mean water amount required for one tip was 0.174 mm with a standard deviation 225 

of 0.013 mm. The mean value for new gauges was 0.175 mm (std. dev. 0.014 mm) and amounted for the used gauges to a 

mean of 0.172 mm (std. dev 0.009 mm) (Fig. 2). In contrast, the amount of water required for one tip for gauges of TYPE B 

was 0.194 mm with a standard deviation of 0.004 mm.  

 

Figure 1: Comparison between used and fabric new gauges – precipitation needed per tip. 230 

The measured average rain amount to tip the bucket is lower than the stated value of the manufacturer (0.2 mm) for both types, 

although the average of Type B is only 2.9% off compared to -13.2% for Type A. The measurements in the laboratory were 

taken without the rain collector and thus are not accounting for loss-effects of evaporation and wind.  

The measurements of both Type A groups (used and new gauges) show large differences between the left and right side of the 

tipping bucket. This leads to larger errors for small precipitation events (Fig 3.). Nevertheless, the influence of the different 235 

sensitivities of the respective left and right sides decreases continuously with an increasing number of tips during a precipitation 

event and eventually approaches the mean value of all left and right tips of the gauge. To minimize this influence Marsalek 

(1981) states that a standard deviation of less than 2% of the mean is desirable – no gauge of Type A could satisfy this need. 
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Figure 2: Development of relative errors due to difference between left and right tippings 240 

Although no bias due to tipping bucket sides is an issue for Type B, differences between individual measurements still exist. 

However, this variation is much smaller than the differences, which could be observed within the Type A group. While the 

average SD of the single measurements for Type A gauges was 5.6% (new) and 4.7% (used) of the mean, it was only 1.6% for 

Type B gauges (see Fig. 4). Seven out of nine tested gauges of Type B fulfilled the threshold of 2% stated by Marsalek (1981).  

 245 

Figure 3: Comparison between used and fabric new gauges – SD of single measurements in percentage of mean 

3.2 Field study 

Precipitation data was collected for the period from 01 August 2018 to 30 April 2019. As there were some gaps in the data for 

the professional gauges in August 2018 and at the end of April 2019, the data for the whole dataset was analysed for the period 

from 01 September 2018 to 25 April 2019. 250 

Figure 5 shows the plot of cumulated precipitation for the whole investigation period. The type A rain gauges show on average 

less underestimation (413.2mm, -10.9%, SD = 18.9mm) than the other automatic rain gauges when compared to the Hellmann 

gauge (463.7mm). While the results of the Ott Pluvio are slightly worse than the results of the low-cost gauges (380.3mm, -

18.0%) the results of the Young tipping gauge are considerably worse than the low-cost gauges (310.8mm, -33.0%). 
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 255 

Figure 4: Cumulative precipitation for all low-cost gauges and three professional gauges for whole study time 

The measured sums of the 20 low-cost gauges are ranging from 374.6mm, which is slightly less than the Ott Pluvio, to 

444.6mm, which is slightly less than the sum of collected precipitation of the Hellmann gauge. The distribution of the 

measurements of the low-cost gauges compared to the professional gauges is shown in Fig. 6. 

 260 

Figure 5: Distribution of cumulative precipitation of 20 low-cost and 3 professional gauges 

https://doi.org/10.5194/gi-2023-7
Preprint. Discussion started: 22 May 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

Comparing the cumulated rainfall values of the different gauges in more detail, two periods of strong deviations of the low-

cost gauges to the professional gauges can be seen. This observation can be made for all low-cost gauges and is caused by 

partial blocking of the funnel with snow on 08 January 2019 and 03 February 2019 (see Fig. 7 – showing cumulative rainfall 

with hourly resolution). On 08 January 2019, rising temperatures lead to simultaneous snow melting in all gauges and a 265 

subsequent run off and registration of the snow water on 12 January 2019 and the following days. On 03 February 2019 a 

warming of the black funnel due to solar irradiation led to a slightly different pattern of precipitation measurement. This time, 

the gauges at the edge of the array were emptied first (#1-5, 10, 15, 20), while the ones inside the array were blocked longer 

(e.g., #6-9, 11-14, 16-19) until 08 February 2019. 

  270 

Figure 6: Cumulative rainfall for two selected periods with hourly resolution. Note, hourly data for the Hellmann gauge is not 

available and hence this gauge is not shown in the figure. 

Although results of cumulated precipitation over the whole testing period are promising, Pearson correlation coefficient values 

for shorter timeframes are not. The correlations for daily values between the different low-cost gauges are high (0.937…0.997). 

However, the correlations with the professional gauges are significantly lower (0.779 - 0.841 for Hellmann, 0.730 - 0.784 for 275 

Young 

 and 0.828 - 0.890 for the Ott Pluvio). The low correlation values can partly be explained by the circumstance that the low-

cost gauges have no heating for handling snow precipitation. Removing the days with blockage and subsequent melting of 

water from the dataset (09 January – 15 January / 03 February – 10 February) yields a strong increase of the correlation values 

(daily) with the professional gauges (0.973 – 0.990 for Hellmann, 0.897 – 0.912 for Young and 0.973 – 0.991 for the Ott 280 

Pluvio). Nevertheless, correlation values within the group of low-cost gauges are higher compared to the professional gauges, 

ranging from 0.977 to 0.999 for daily values.  

Measuring principles (weighing vs. tipping gauge) and resolutions (0.1 mm vs. 0.2 mm) differ between Ott Pluvio and the 

low-cost gauges. Therefore, correlation values were calculated for a wide range of accumulation intervals (one minute to one 

day) to assess which accumulation intervals might be needed for acquiring reliable data. As expected, correlations increase 285 

with an increased accumulation time. As already shown for the daily values, correlations within the group of low-cost gauges 
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are higher than correlations between low-cost gauges and Ott Pluvio. Nevertheless, differences decrease with increasing 

accumulation intervals (Fig. 8).  

 

Figure 7: Average Correlation values for different accumulation intervals (low-cost vs low-cost and low-cost vs Ott Pluvio) 290 

As the correlation of the low-cost gauge with the Ott Pluvio is very low for accumulation intervals of 15 min and less, one 

could try to use several low-cost rain gauges to overcome this problem. We investigated this by randomly choosing a subset 

of gauges (1 to 5) from the dataset and subsequently calculating the correlation of their average measurement with the reference 

gauge for 2000 simulations. Results for 1, 5 and 15 min can be seen in Fig. 9. It can be shown that an increase of used gauges 

leads to increased correlations. The biggest gain can be seen when changing from one to two gauges. The effect than diminishes 295 

with further gauges. Nevertheless, the benefit of added gauges is a lot smaller compared to increasing the accumulation interval.  

 

Figure 8: Correlation for average rainfall measured by subset of 1-5 low-cost gauges with Ott Pluvio for 3 different accumulation 

intervals 
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4 Discussion 300 

In this study, we assessed the suitability of a widely used low-cost precipitation sensor for an out-of-the-box use, i.e., applying 

the sensor in the field without prior calibration. The results of the lab calibration suggest that it is beneficial to check the factory 

calibration for the older type of the sensor (Type A) for outliers.  

4.1 Lab-Calibration 

It could be shown for Type A gauges that the mean of two consecutive tipping’s is consistent across all tested gauges resulting 305 

in a mean of 0.174 mm per tip. However, it also became obvious that some tipping gauges deviated strongly from this mean 

value. Utilizing the presented analysis scheme outliers from the expected mean can be detected after approx. 4 to 5 tilts per 

side. Furthermore, the amount of water required for a tipping of one of the buckets is important. In the case of large differences 

between both bucket sides, the measurement accuracy of very small precipitation events, in which only a few tilts occur, will 

be affected more strongly, resulting in larger relative errors. However, this is only the case for odd numbers of tipping. A re-310 

calibration of the gauge is recommended if the difference between both bucket sides is larger than 0.05 mm of precipitation 

(25 % of nominal volume). In contrast, Marsalek (1981) advised to continue the calibration until the mean was within of 2 % 

of the nominal volume.  

The measured means of the tipping are consistently lower than 0.2 mm across all gauges (Type A and B) leading to the 

assumption that a factory calibration might have been performed. Furthermore, potentially only one side of the mechanism 315 

(Type A only) had been calibrated until the desired volume was met, which could have led to the observed differences between 

the two buckets. Due to the design of a tipping bucket, water is lost when the bucket is tilted, as the other bucket is not in 

position again fast enough. This can lead to an under-catch, which increases with the rainfall intensity. These errors can range 

from 10 % to 30 % (Humphrey et al., 1997; Marsalek, 1981). Furthermore, error influences due to evaporation and wind are 

conceivable. 320 

In contrast to the results of gauges of type A, the measured mean for type B (0.194 mm) is considerably closer to the nominal 

volume (0.2 mm). Also, the deviations between the single measurements are much smaller compared to type A. These gauges 

might have been factory calibrated to a higher volume because the mechanism is less prone to under-catch at higher rainfall 

intensities.  

4.2 Field-study 325 

In the field study it could be shown, that the gauges of type A in average show accumulated rainfall results, which are closer 

to the Hellman reference gauge, than the two other professional gauges. Nevertheless, the spread of the measured precipitation 

totals is about twice as big as stated in the manufacturers datasheet (± 4 %), with deviations ranging from - 9.3 % to + 7.6 % 

compared to the mean of all gauges. Even the SD for alle gauges (4.6 %) is bigger than that value. The manufacturer is stating, 

that this accuracy is valid for rain rates up to 100 mm hr-1, which was not observed by any of the gauges in the study period. 330 
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Part of the variation can be explained by the lack of recalibration of the individual gauges. In the lab-calibration, calibration 

values ranging from 0.159 mm to 0.185 mm have been obtained. Here, the spread amounts to –7.6 % to +7.6 % of the mean 

of all gauges. Nevertheless, calibration values and observed precipitation totals show only a moderate negative correlation, as 

can be seen in Fig. 10. For example, gauge 14 recorded the least number of tips and its correlation value (amount of water 

needed per tip) was also the highest. In contrast gauge 10 and gauge 13 measured about the same amount of precipitation 335 

(tippings) – but their calibration values are on completely different levels.  

 

Figure 10: Calibration values vs measured precipitation of the 20 gauges used in the field study (TYPE A) 

Multiplying the calibration values of each gauge with the tippings recorded by the associated gauge, the resulting measured 

precipitation would be much lower (due to the lower mean of 0.172 mm). However, the standard deviation would also be much 340 

smaller (13.2 mm vs 18.9 mm (Fig. 11)). Scaling the mean of the calibration values to the manufacturer claimed value of 0.2 

mm would result in a higher precision of the obtained precipitation. But this step is only possible for a larger group of gauges 

at hand.  
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Figure 11: Comparison between different calibration values used. 345 

Further, other error sources can have an impact on the measured precipitation. As the 20 gauges have been placed in very 

dense array, some of the gauges are shielded from the wind compared to others. This could also have an influence on 

evaporation behaviour, as some gauges are more exposed to direct sunlight, than others. This could already be seen in the 

behaviour of the melting snow described above. A further source of error might also be the non-optimal mount of the gauges. 

To ensure good readings, the gauges have to be perfectly levelled (Burt, 2009). While installing the array, the levelling was 350 

done using the provided circular bubble level, which has a limited accuracy. Last but not least, although the array only covered 

an area of about 1 square meter, small scale variability of rain fields could also play a role for obtaining different precipitation 

readings. 

5 Conclusions 

In this study two low-cost sensor systems based on the Arduino and Raspberry Pi families have been presented. Here it could 355 

be shown that utilizing widely available open hardware allows the user to flexibly create a sensor system tailored to the needs 

on a given site, while keeping the costs low. The presented systems are capable to log sensor data of various sensors and are 

able to either log data locally or transmit the data to the internet.  

Further the factory calibration of the widely used Davis tipping rain gauge was examined, both in the laboratory and in the 

field. In the lab, different generations of the gauge have been tested. Here, the results show a distinct difference between the 360 

old and the newer generation of the gauge. While for the older type in average 0.174 mm of water was needed for a tip, 0.194 

mm was needed for the newer generation - which is less than officially stated by the manufacturer. For the older type it was 

also found, that the gauges are not tipping equally with both buckets. This leads to errors in the precipitation measurements 

for small rain events. To minimize this error, gauges should be checked and calibrated for equal tipping before installation. 

This is particularly important for the probably already several ten thousand gauges of TYPE A in use worldwide. Here the 365 
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factory calibration should at least be checked. For the newer TYPE B it could be found, that the deviation between the tippings 

is much smaller compared to the old type. If this has a positive impact on the accuracy was not within the scope of this study, 

but has to be further investigated. Nevertheless, for these gauges, the factory calibration should also be checked before use, as 

our sample was very small (n=9). 

Beside the lab calibration, 20 gauges (TYPE A) have been tested against professional rain gauges in the field. Here, the results 370 

showed an undercatch when compared to the reference Hellmann gauge of the climate station where the array was installed. 

Further, it could be shown that the spread of the factory calibration is larger (by magnitude of 2) than stated by the 

manufacturer. Nevertheless, results of the low-cost gauge have been closer to the reference than Young Tipping gauge and Ott 

Pluvio respectively. Our results suggest (high correlation for longer accumulation intervals vs. professional gauges), that the 

error due to undercatch could be mitigated by applying a factor for each gauge – however, this would require measurements 375 

against a reference station, either in the field or in the lab. 

The study has shown that the tested low-cost sensor is suitable for use in the collection of meteorological data. However, the 

factory calibration should at least be checked, if not recalibrated before use. Paired with a low-cost sensor system and properly 

set up, these sensors can be beneficial for the densification of existing sensor networks. For accurate results, the desired out-

of-the-box use is not recommended. 380 
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