Articles | Volume 6, issue 1
https://doi.org/10.5194/gi-6-159-2017
https://doi.org/10.5194/gi-6-159-2017
Research article
 | 
31 Mar 2017
Research article |  | 31 Mar 2017

One-chip analog circuits for a new type of plasma wave receiver on board space missions

Takahiro Zushi, Hirotsugu Kojima, and Hiroshi Yamakawa

Abstract. Plasma waves are important observational targets for scientific missions investigating space plasma phenomena. Conventional fast Fourier transform (FFT)-based spectrum plasma wave receivers have the disadvantages of a large size and a narrow dynamic range. This paper proposes a new type of FFT-based spectrum plasma wave receiver that overcomes the disadvantages of conventional receivers. The receiver measures and calculates the whole spectrum by dividing the observation frequency range into three bands: bands 1, 2, and 3, which span 1 Hz to 1 kHz, 1 to 10 kHz, and 10 to 100 kHz, respectively. To reduce the size of the receiver, its analog section was realized using application-specific integrated circuit (ASIC) technology, and an ASIC chip was successfully developed. The dimensions of the analog circuits were 4.21 mm  ×  1.16 mm. To confirm the performance of the ASIC, a test system for the receiver was developed using the ASIC, an analog-to-digital converter, and a personal computer. The frequency resolutions for bands 1, 2, and 3 were 3.2, 32, and 320 Hz, respectively, and the average time resolution was 384 ms. These frequency and time resolutions are superior to those of conventional FFT-based receivers.

Download
Short summary
Plasma waves are important observational targets for scientific missions investigating space plasma phenomena. Conventional plasma wave receivers have the disadvantages of a large size and a narrow dynamic range. We proposes a new receiver that overcomes the disadvantages of conventional receivers. The analog section of the new receiver was realized using application-specific integrated circuit (ASIC) technology in order to reduce the size, and an ASIC chip was successfully developed.