Preprints
https://doi.org/10.5194/gi-2023-18
https://doi.org/10.5194/gi-2023-18
17 Jan 2024
 | 17 Jan 2024
Status: this preprint is currently under review for the journal GI.

Improving the Magic constant – data-based calibration of phased array radars

Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt

Abstract. We present two methods for improved calibration of multi-point electron density measurements from incoherent scatter radars (ISR). They are based on the well-established Flatfield correction method used in imaging and photography, where we exploit the analogy between independent measurements in separate pixels in one image sensor and multi-beam radar measurements. Applying these correction methods adds to the current efforts of estimating the magic constant or system constant made for the calibration of multi-point radars, increasing data quality and usability by correcting for variable, unaccounted, and unpredictable variations in system gain. This second-level calibration is especially valuable for studies of plasma patches, irregularities, turbulence, and other research where inter-beam changes and fluctuations of electron density are of interest. The methods are strictly based on electron density data measured by the individual radar and require no external input. This is of particular interest when independent measurements of electron densities for calibration are available only in one pointing direction or not at all. A correction factor is estimated in both methods, which is subsequently used to scale the electron density measurements of a multi-beam ISR experiment run on a phased array radar such as RISR-N, RISR-C, PFISR, or the future EISCAT3D radar. This procedure could improve overall data quality if used as part of the data-processing chain for multi-beam ISRs, both for existing data and for future experiments on new multi-beam radars.

Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt

Status: open (until 25 May 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on gi-2023-18', Anonymous Referee #1, 04 Mar 2024 reply
Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt
Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt

Viewed

Total article views: 382 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
326 43 13 382 9 10
  • HTML: 326
  • PDF: 43
  • XML: 13
  • Total: 382
  • BibTeX: 9
  • EndNote: 10
Views and downloads (calculated since 17 Jan 2024)
Cumulative views and downloads (calculated since 17 Jan 2024)

Viewed (geographical distribution)

Total article views: 365 (including HTML, PDF, and XML) Thereof 365 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 26 Apr 2024
Download
Short summary
We present a second-level calibration method for electron density measurements from multi-beam incoherent scatter radars. It is based on the well-known Flat field correction method used in imaging and photography. The methods improve data quality and useability as they account for unaccounted, and unpredictable variations in the radar system. This is valuable for studies where inter-beam calibration is important such as studies of polar cap patches, plasma irregularities and turbulence.