Articles | Volume 12, issue 2
https://doi.org/10.5194/gi-12-171-2023
https://doi.org/10.5194/gi-12-171-2023
Research article
 | 
25 Aug 2023
Research article |  | 25 Aug 2023

Collaborative development of the Lidar Processing Pipeline (LPP) for retrievals of atmospheric aerosols and clouds

Juan Vicente Pallotta, Silvânia Alves de Carvalho, Fabio Juliano da Silva Lopes, Alexandre Cacheffo, Eduardo Landulfo, and Henrique Melo Jorge Barbosa

Related authors

Statistical analysis of the long-range transport of the 2015 Calbuco volcanic plume from ground-based and space-borne observations
Nelson Bègue, Lerato Shikwambana, Hassan Bencherif, Juan Pallotta, Venkataraman Sivakumar, Elian Wolfram, Nkanyiso Mbatha, Facundo Orte, David Jean Du Preez, Marion Ranaivombola, Stuart Piketh, and Paola Formenti
Ann. Geophys., 38, 395–420, https://doi.org/10.5194/angeo-38-395-2020,https://doi.org/10.5194/angeo-38-395-2020, 2020
Short summary

Related subject area

Lidar
Comparing triple and single Doppler lidar wind measurements with sonic anemometer data based on a new filter strategy for virtual tower measurements
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Päschke, and Matthias Mauder
Geosci. Instrum. Method. Data Syst., 13, 205–223, https://doi.org/10.5194/gi-13-205-2024,https://doi.org/10.5194/gi-13-205-2024, 2024
Short summary
MOLISENS: MObile LIdar SENsor System to exploit the potential of small industrial lidar devices for geoscientific applications
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022,https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Architecture of solution for panoramic image blurring in GIS project application
Dejan Vasić, Marina Davidović, Ivan Radosavljević, and Đorđe Obradović
Geosci. Instrum. Method. Data Syst., 10, 287–296, https://doi.org/10.5194/gi-10-287-2021,https://doi.org/10.5194/gi-10-287-2021, 2021
Short summary
Dense point cloud acquisition with a low-cost Velodyne VLP-16
Jason Bula, Marc-Henri Derron, and Gregoire Mariethoz
Geosci. Instrum. Method. Data Syst., 9, 385–396, https://doi.org/10.5194/gi-9-385-2020,https://doi.org/10.5194/gi-9-385-2020, 2020
Short summary

Cited articles

Alvarez, J. M., Vaughan, M. A., Hostetler, C. A., Hunt, W. H., and Winker, D. M.: Calibration Technique for Polarization-Sensitive Lidars, J. Atmos. Ocean. Tech., 23, 683–699, https://doi.org/10.1175/JTECH1872.1, 2006. a
Andrade, M. D. F., Kumar, P., de Freitas, E. D., Ynoue, R. Y., Martins, J., Martins, L. D., Nogueira, T., Perez-Martinez, P., de Miranda, R. M., Albuquerque, T., Gonçalves, F. L. T., Oyama, B., and Zhang, Y.: Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives, Atmos. Environ., 159, 66–82, https://doi.org/10.1016/j.atmosenv.2017.03.051, 2017. a
Ansmann, A. and Müller, D.: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, chap. Lidar and Atmospheric Aerosol Particles, Springer New York, New York, NY, 105–141, https://doi.org/10.1007/0-387-25101-4_4, 2005. a
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131, https://doi.org/10.1364/AO.31.007113, 1992. a, b
Antuña-Marrero, J. C., Landulfo, E., Estevan, R., Barja, B., Robock, A., Wolfram, E., Ristori, P., Clemesha, B., Zaratti, F., Forno, R., Armandillo, E., Álvaro E. Bastidas, Ángel M. de Frutos Baraja, Whiteman, D. N., Quel, E., Barbosa, H. M. J., Lopes, F., Montilla-Rosero, E., and Guerrero-Rascado, J. L.: LALINET: The First Latin American–Born Regional Atmospheric Observational Network, B. Am. Meteorol. Soc., 98, 1255–1275, https://doi.org/10.1175/BAMS-D-15-00228.1, 2017. a
Download
Short summary
Lidar networks coordinate efforts of different groups, providing guidelines to homogenize retrievals from different instruments. We describe an ongoing effort to develop the Lidar Processing Pipeline (LPP) collaboratively, a collection of tools developed in C/C++ to handle all the steps of a typical lidar analysis. Analysis of simulations and real lidar data showcases the LPP’s features. From this exercise, we draw a roadmap to guide future development, accommodating the needs of our community.