Articles | Volume 12, issue 2
https://doi.org/10.5194/gi-12-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-12-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Collaborative development of the Lidar Processing Pipeline (LPP) for retrievals of atmospheric aerosols and clouds
Juan Vicente Pallotta
CORRESPONDING AUTHOR
Centro de Investigaciones en Láseres y Aplicaciones, UNIDEF (CITEDEF-CONICET), Buenos Aires, Argentina
Silvânia Alves de Carvalho
Department of Exact Sciences, Volta Redonda School of Industrial Metallurgical Engineering, Fluminense Federal University, Av. dos Trabalhadores 420, 27255-125, Volta Redonda, RJ, Brazil
Fabio Juliano da Silva Lopes
Centro de Lasers e Aplicações (CELAP), Instituto de Pesquisas Energéticas e Nucleares (IPEN), Av. Prof. Lineu Prestes 2242, 05508-000, São Paulo, SP, Brazi
Alexandre Cacheffo
Institute of Exact and Natural Sciences of Pontal (ICENP), Federal University of Uberlândia (UFU), Campus Pontal. Rua Vinte, 1600, Bloco C, 38304-402, Ituiutaba, MG, Brazil
Eduardo Landulfo
Centro de Lasers e Aplicações (CELAP), Instituto de Pesquisas Energéticas e Nucleares (IPEN), Av. Prof. Lineu Prestes 2242, 05508-000, São Paulo, SP, Brazi
Henrique Melo Jorge Barbosa
Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA
Related authors
No articles found.
Marie Brunel, Stephen Wirth, Markus Drüke, Kirsten Thonicke, Henrique Barbosa, Jens Heinke, and Susanne Rolinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-922, https://doi.org/10.5194/egusphere-2025-922, 2025
Short summary
Short summary
Farmers often use fire to clear dead pasture biomass, impacting vegetation and soil nutrients. This study integrates fire management into a DGVM to assess its effects, focusing on Brazil. The results show that combining grazing and fire management reduces vegetation carbon and soil nitrogen over time. The research highlights the need to include these practices in models to improve pasture management assessments and calls for better data on fire usage and its long-term effects.
Tailine Corrêa dos Santos, Elaine Cristina Araujo, Thaís Andrade da Silva, Enrico Valente Freire, Eduardo Landulfo, and Maria de Fátima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2025-968, https://doi.org/10.5194/egusphere-2025-968, 2025
Short summary
Short summary
It is widely used in national emission inventories estimated by IPCC emission factors. These estimates are sources of data uncertainty mainly because they do not include local specificities. Addressing this gap through targeted research and data collection is essential to develop effective mitigation policies and strategies. In the case of residential energy use, GHG emissions and indoor pollutants are expected to increase, especially as natural gas use continues to expand.
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924, https://doi.org/10.5194/egusphere-2025-924, 2025
Short summary
Short summary
The eruption of Hunga Tonga-Hunga Ha'apai injected large amounts of water vapor and sea salt into the stratosphere, altering traditional views of volcanic aerosols. Using balloon-borne samplers, we collected aerosol samples and found high levels of sea salt and calcium, suggesting sulfate depletion due to gypsum formation. These findings highlight the need to consider sea salt in climate models to better predict volcanic impacts on the atmosphere and climate.
Brent A. McBride, J. Vanderlei Martins, J. Dominik Cieslak, Roberto Fernandez-Borda, Anin Puthukkudy, Xiaoguang Xu, Noah Sienkiewicz, Brian Cairns, and Henrique M. J. Barbosa
Atmos. Meas. Tech., 17, 5709–5729, https://doi.org/10.5194/amt-17-5709-2024, https://doi.org/10.5194/amt-17-5709-2024, 2024
Short summary
Short summary
The Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) is a new Earth-observing instrument that provides highly accurate measurements of the atmosphere and surface. Using a physics-based calibration technique, we show that AirHARP achieves high measurement accuracy in laboratory and field environments and exceeds a benchmark accuracy requirement for modern aerosol and cloud climate observations. Therefore, the HARP design is highly attractive for upcoming NASA climate missions.
Leandro Alex Moreira Viscardi, Giuseppe Torri, David K. Adams, and Henrique de Melo Jorge Barbosa
Atmos. Chem. Phys., 24, 8529–8548, https://doi.org/10.5194/acp-24-8529-2024, https://doi.org/10.5194/acp-24-8529-2024, 2024
Short summary
Short summary
We evaluate the environmental conditions that control how clouds grow from fair weather cumulus into severe thunderstorms during the Amazonian wet season. Days with rain clouds begin with more moisture in the air and have strong convergence in the afternoon, while precipitation intensity increases with large-scale vertical velocity, moisture, and low-level wind. These results contribute to understanding how clouds form over the rainforest.
Cássia Maria Leme Beu and Eduardo Landulfo
Wind Energ. Sci., 9, 1431–1450, https://doi.org/10.5194/wes-9-1431-2024, https://doi.org/10.5194/wes-9-1431-2024, 2024
Short summary
Short summary
Extrapolating the wind profile for complex terrain through the long short-term memory model outperformed the traditional power law methodology, which due to its universal nature cannot capture local features as the machine-learning methodology does. Moreover, considering the importance of investigating the wind potential and the need for alternative energy sources, it is motivating to find that a short observational campaign can produce better results than the traditional techniques.
Elion Daniel Hack, Theotonio Pauliquevis, Henrique Melo Jorge Barbosa, Marcia Akemi Yamasoe, Dimitri Klebe, and Alexandre Lima Correia
Atmos. Meas. Tech., 16, 1263–1278, https://doi.org/10.5194/amt-16-1263-2023, https://doi.org/10.5194/amt-16-1263-2023, 2023
Short summary
Short summary
Water vapor is a key factor when seeking to understand fast-changing processes when clouds and storms form and develop. We show here how images from a calibrated infrared camera can be used to derive how much water vapor there is in the atmosphere at a given time. Comparing our results to an established technique, for a case of stable atmospheric conditions, we found an agreement within 2.8 %. Water vapor sky maps can be retrieved every few minutes, day or night, under partly cloudy skies.
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022, https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
Short summary
In Central Amazonia, new particle formation in the planetary boundary layer is rare. Instead, there is the appearance of sub-50 nm aerosols with diameters larger than about 20 nm that eventually grow to cloud condensation nuclei size range. Here, 254 growth events were characterized which have higher predominance in the wet season. About 70 % of them showed direct relation to convective downdrafts, while 30 % occurred partly under clear-sky conditions, evidencing still unknown particle sources.
Janaína P. Nascimento, Megan M. Bela, Bruno B. Meller, Alessandro L. Banducci, Luciana V. Rizzo, Angel Liduvino Vara-Vela, Henrique M. J. Barbosa, Helber Gomes, Sameh A. A. Rafee, Marco A. Franco, Samara Carbone, Glauber G. Cirino, Rodrigo A. F. Souza, Stuart A. McKeen, and Paulo Artaxo
Atmos. Chem. Phys., 21, 6755–6779, https://doi.org/10.5194/acp-21-6755-2021, https://doi.org/10.5194/acp-21-6755-2021, 2021
Anin Puthukkudy, J. Vanderlei Martins, Lorraine A. Remer, Xiaoguang Xu, Oleg Dubovik, Pavel Litvinov, Brent McBride, Sharon Burton, and Henrique M. J. Barbosa
Atmos. Meas. Tech., 13, 5207–5236, https://doi.org/10.5194/amt-13-5207-2020, https://doi.org/10.5194/amt-13-5207-2020, 2020
Short summary
Short summary
In this work, we report the demonstration and validation of the aerosol properties retrieved using AirHARP and GRASP for data from the NASA ACEPOL campaign 2017. These results serve as a proxy for the scale and detail of aerosol retrievals that are anticipated from future space mission data, as HARP CubeSat (mission begins 2020) and HARP2 (aboard the NASA PACE mission with the launch in 2023) are near duplicates of AirHARP and are expected to provide the same level of aerosol characterization.
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020, https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign is a resource for the next generation of spaceborne multi-angle polarimeter (MAP) and lidar missions. Conducted in the fall of 2017 from the Armstrong Flight Research Center in Palmdale, California, four MAP instruments and two lidars were flown on the high-altitude ER-2 aircraft over a variety of scene types and ground assets. Data are freely available to the public and useful for algorithm development and testing.
Cited articles
Alvarez, J. M., Vaughan, M. A., Hostetler, C. A., Hunt, W. H., and Winker,
D. M.: Calibration Technique for Polarization-Sensitive Lidars, J.
Atmos. Ocean. Tech., 23, 683–699,
https://doi.org/10.1175/JTECH1872.1, 2006. a
Andrade, M. D. F., Kumar, P., de Freitas, E. D., Ynoue, R. Y., Martins, J.,
Martins, L. D., Nogueira, T., Perez-Martinez, P., de Miranda, R. M.,
Albuquerque, T., Gonçalves, F. L. T., Oyama, B., and Zhang, Y.: Air quality
in the megacity of São Paulo: Evolution over the last 30 years and
future perspectives, Atmos. Environ., 159, 66–82,
https://doi.org/10.1016/j.atmosenv.2017.03.051, 2017. a
Ansmann, A. and Müller, D.: Lidar: Range-Resolved Optical Remote Sensing of
the Atmosphere, chap. Lidar and Atmospheric Aerosol Particles,
Springer New York, New York, NY, 105–141, https://doi.org/10.1007/0-387-25101-4_4, 2005. a
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.:
Independent measurement of extinction and backscatter profiles in cirrus
clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31,
7113–7131, https://doi.org/10.1364/AO.31.007113, 1992. a, b
Antuña-Marrero, J. C., Landulfo, E., Estevan, R., Barja, B., Robock, A.,
Wolfram, E., Ristori, P., Clemesha, B., Zaratti, F., Forno, R., Armandillo,
E., Álvaro E. Bastidas, Ángel M. de Frutos Baraja, Whiteman, D. N., Quel,
E., Barbosa, H. M. J., Lopes, F., Montilla-Rosero, E., and Guerrero-Rascado,
J. L.: LALINET: The First Latin American–Born Regional Atmospheric
Observational Network, B. Am. Meteorol. Soc., 98,
1255–1275, https://doi.org/10.1175/BAMS-D-15-00228.1, 2017. a
Artaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M. J., Arana, A., Sena,
E. T., Cirino, G. G., Bastos, W., Martin, S. T., and Andreae, M. O.:
Atmospheric aerosols in Amazonia and land use change: from natural biogenic
to biomass burning conditions, Faraday Discuss., 165, 203–235,
https://doi.org/10.1039/c3fd00052d, 2013. a
Baars, H., Ansmann, A., Althausen, D., Engelmann, R., Heese, B., Müller, D.,
Artaxo, P., Paixao, M., Pauliquevis, T., and Souza, R.: Aerosol profiling
with lidar in the Amazon Basin during the wet and dry season: Aerosol
profiling in Amazonia, J. Geophys. Res.-Atmos.,
117, D21201, https://doi.org/10.1029/2012JD018338, 2012. a
Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., Preißler, J., Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y., Stachlewska, I. S., Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A., Schneider, F., Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E., Lihavainen, H., Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F., Mattis, I., Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T., Souza, R. A. F., Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G., Deng, R., Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling, Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, 2016. a
Barbosa, H., Lopes, F., Silva, A., Nisperuza, D., Barja, B., Ristori, P.,
Gouveia, D., Jimenez, C., Montilla, E., Mariano, G., Landulfo, E., Bastidas,
A., and Quel, E.: The first ALINE measurements and intercomparison exercise
on lidar inversion algorithms, Optica Pura y Aplicada, 47, 99–108,
https://doi.org/10.7149/OPA.47.2.99, 2014a. a
Barbosa, H. M. J., Barja, B., Pauliquevis, T., Gouveia, D. A., Artaxo, P., Cirino, G. G., Santos, R. M. N., and Oliveira, A. B.: A permanent Raman lidar station in the Amazon: description, characterization, and first results, Atmos. Meas. Tech., 7, 1745–1762, https://doi.org/10.5194/amt-7-1745-2014, 2014b. a, b
Böckmann, C., Wandinger, U., Ansmann, A., Bösenberg, J., Amiridis, V.,
Boselli, A., Delaval, A., Tomasi, F. D., Frioud, M., Grigorov, I. V.,
Hågård, A., Horvat, M., Iarlori, M., Komguem, L., Kreipl, S.,
Larchevêque, G., Matthias, V., Papayannis, A., Pappalardo, G.,
Rocadenbosch, F., Rodrigues, J. A., Schneider, J., Shcherbakov, V., and
Wiegner, M.: Aerosol lidar intercomparison in the framework of the EARLINET
project. 2. Aerosol backscatter algorithms, Appl. Opt., 43, 977–989,
https://doi.org/10.1364/AO.43.000977, 2004. a
Córdoba-Jabonero, C., Sorribas, M., Guerrero-Rascado, J. L., Adame, J. A., Hernández, Y., Lyamani, H., Cachorro, V., Gil, M., Alados-Arboledas, L., Cuevas, E., and de la Morena, B.: Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula, Atmos. Chem. Phys., 11, 3067–3091, https://doi.org/10.5194/acp-11-3067-2011, 2011. a
D'Amico, G., Amodeo, A., Baars, H., Binietoglou, I., Freudenthaler, V., Mattis, I., Wandinger, U., and Pappalardo, G.: EARLINET Single Calculus Chain – overview on methodology and strategy, Atmos. Meas. Tech., 8, 4891–4916, https://doi.org/10.5194/amt-8-4891-2015, 2015. a
Dionisi, D., Barnaba, F., Diémoz, H., Di Liberto, L., and Gobbi, G. P.: A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM10 estimation, Atmos. Meas. Tech., 11, 6013–6042, https://doi.org/10.5194/amt-11-6013-2018, 2018. a
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments,
Appl. Opt., 23, 652–653, https://doi.org/10.1364/AO.23.000652, 1984. a
Freudenthaler, V., Linné, H., Chaikovski, A., Rabus, D., and Groß, S.: EARLINET lidar quality assurance tools, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2017-395, in review, 2018. a
Gouveia, D. A., Barbosa, H. M. J., and Barja, B.: Characterization of cirrus
clouds in central Amazon (2.89∘ S, 59.97∘ W): Firsts results from
observations in 2011, Special Section: VII Workshop on Lidar Measurement in
Latin-America, Opt. Pura Apl., 47, 109–114, https://doi.org/10.7149/OPA.47.2.109,
2014. a
Gouveia, D. A., Barja, B., Barbosa, H. M. J., Seifert, P., Baars, H., Pauliquevis, T., and Artaxo, P.: Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements, Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, 2017a. a
Gouveia, D. A., Barja, B., Barbosa, H. M. J., Seifert, P., Baars, H., Pauliquevis, T., and Artaxo, P.: Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements, Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, 2017b. a, b, c
Grigorov, I. and Kolarov, G.: Rayleigh-fit approach applied to improve the
removal of background noise from lidar data, in: 17th International School
on Quantum Electronics: Laser Physics and Applications, edited by: Dreischuh,
T. N. and Daskalova, A. T., International Society for
Optics and Photonics, SPIE, https://doi.org/10.1117/12.2012998, 2013. a
Guerrero-Rascado, J. L., Landulfo, E., Antuña, J. C., de Melo Jorge Barbosa,
H., Barja, B., Álvaro Efrain Bastidas, Bedoya, A. E., da Costa, R. F.,
Estevan, R., Forno, R., Gouveia, D. A., Jiménez, C., Larroza, E. G., da
Silva Lopes, F. J., Montilla-Rosero, E., de Arruda Moreira, G., Nakaema,
W. M., Nisperuza, D., Alegria, D., Múnera, M., Otero, L., Papandrea, S.,
Pallota, J. V., Pawelko, E., Quel, E. J., Ristori, P., Rodrigues, P. F.,
Salvador, J., Sánchez, M. F., and Silva, A.: Latin American Lidar Network
(LALINET) for aerosol research: Diagnosis on network instrumentation, J. Atmos. Sol.-Terr. Phy., 138–139, 112–120,
https://doi.org/10.1016/j.jastp.2016.01.001, 2016. a, b
Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A., Vermote,
E., Reagan, J., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak, I., and
Smirnov, A.: AERONET – A Federated Instrument Network and Data Archive for
Aerosol Characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013. a
IPCC: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, Cambridge University Press, https://doi.org/10.1017/9781009157896, 2023/ a
Johnson, F. A., Jones, R., McLean, T. P., and Pike, E. R.: Dead-Time
Corrections to Photon Counting Distributions, Phys. Rev.
Lett., 16, 589–592, https://doi.org/10.1103/PhysRevLett.16.589, 1966. a
Klett, J. D.: Lidar inversion with variable backscatter/extinction ratios,
Appl. Opt., 24, 1638–1643, https://doi.org/10.1364/AO.24.001638, 1985. a, b
Knoll, G. F.: Radiation detection and measurement, edited by: Hoboken, N. J., John Wiley, 4th edn.,
ISBN 9780470131480, 2010. a
Landulfo, E., da Silva Lopes, F. J., de Arruda Moreira, G., Marques, M. T. A.,
Osneide, M., Antuña, J. C., Arredondo, R. E., Guerrero Rascado, J. L.,
Alados-Arboledas, L., Bastidas, A., Nisperuza, D., Bedoya, A., Múnera, M.,
Alegría, D., Forno, R. N., Sánchez, M. F., Lazcano, O., Montilla-Rosero,
E., Silva, A., Jimenez, C., Quel, E., Ristori, P., Otero, L., Barbosa, H. M.,
Gouveia, D. A., and Barja, B.: ALINE/LALINET Network Status, EPJ Web
Conf., 119, 19004, https://doi.org/10.1051/epjconf/201611919004, 2016. a
Landulfo, E., Cacheffo, A., Yoshida, A. C., Gomes, A. A., da Silva Lopes,
F. J., de Arruda Moreira, G., da Silva, J. J., Andrioli, V., Pimenta, A.,
Wang, C., Xu, J., Martins, M. P. P., Batista, P., de Melo Jorge Barbosa, H.,
Gouveia, D. A., González, B. B., Zamorano, F., Quel, E., Pereira, C.,
Wolfram, E., Casasola, F. I., Orte, F., Salvador, J. O., Pallotta, J. V.,
Otero, L. A., Prieto, M., Ristori, P. R., Brusca, S., Estupiñan, J. H. R.,
Barrera, E. S., Antuña-Marrero, J. C., Forno, R., Andrade, M., Hoelzemann,
J. J., Guedes, A. G., Sousa, C. T., dos Santos Oliveira, D. C. F., de Souza
Fernandes Duarte, E., da Silva, M. P. A., and da Silva Santos, R. S.: Lidar
Observations in South America. Part II – Troposphere, in: Remote Sensing,
edited by: Hammond, A. and Keleher, P., Chap. 2, IntechOpen, Rijeka,
https://doi.org/10.5772/intechopen.95451, 2020. a, b, c
Lewis, J. R., Campbell, J. R., Welton, E. J., Stewart, S. A., and Haftings,
P. C.: Overview of MPLNET Version 3 Cloud Detection, J.
Atmos. Ocean. Tech., 33, 2113–2134,
https://doi.org/10.1175/JTECH-D-15-0190.1, 2016. a
Mather, J. M.: Atmospheric Radiation Measurement (ARM) User Facility 2020
Decadal Vision, Tech. Rep. DOE/SC-ARM-20-014, https://doi.org/10.2172/1782812,
2021. a
Nascimento, J. P., Barbosa, H. M. J., Banducci, A. L., Rizzo, L. V., Vara-Vela,
A. L., Meller, B. B., Gomes, H., Cezar, A., Franco, M. A., Ponczek, M.,
Wolff, S., Bela, M. M., and Artaxo, P.: Major Regional-Scale Production
of O3 and Secondary Organic Aerosol in Remote
Amazon Regions from the Dynamics and Photochemistry of Urban and
Forest Emissions, Environ. Sci. Technol., 56, 9924–9935,
https://doi.org/10.1021/acs.est.2c01358, 2022. a
National Academies of Sciences, Engineering, and Medicine: Thriving on Our
Changing, Planet: A Decadal Strategy for Earth Observation from
Space, National Academies Press, Washington, D.C., https://doi.org/10.17226/24938,
24938 pp., 2018. a
National Geophysical Data Center: U.S. Standard Atmosphere (1976),
Planet. Space Sci., 40, 553–554,
https://doi.org/10.1016/0032-0633(92)90203-Z, 1992. a
Newsom, R. K., Turner, D. D., Mielke, B., Clayton, M., Ferrare, R., and
Sivaraman, C.: Simultaneous analog and photon counting detection for Raman
lidar, Appl. Opt., 48, 3903, https://doi.org/10.1364/AO.48.003903, 2009. a
Pallotta, J. V., Carvalho, S., Lopez, F., Cacheffo, A., Landulfo, E., and
Barbosa, H.: Lidar Processing Pipeline (LPP), Zenodo [code],
https://doi.org/10.5281/zenodo.7982889, 2023. a
Pappalardo, G., Amodeo, A., Pandolfi, M., Wandinger, U., Ansmann, A.,
Bösenberg, J., Matthias, V., Amiridis, V., De Tomasi, F., Frioud, M.,
Larlori, M., Komguem, L., Papayannis, A., Rocadenbosch, F., and Wang, X.:
Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 3.
Raman Lidar Algorithm for Aerosol Extinction, Backscatter, and Lidar Ratio,
Appl. Opt., 43, 5370–85, https://doi.org/10.1364/AO.43.005370, 2004. a, b, c
Perrone, M. R., Lorusso, A., and Romano, S.: Diurnal and nocturnal aerosol
properties by AERONET sun-sky-lunar photometer measurements along four years,
Atmos. Res., 265, 105889,
https://doi.org/10.1016/j.atmosres.2021.105889, 2022. a
Press, W. H.: Numerical recipes: the art of scientific computing,
Cambridge University Press, Cambridge, UK, New York, 3rd edn., ISBN 0521431085, 2007. a
Reagan, J., McCormick, M., and SPinhirne, J.: Lidar sensing of aerosols and
clouds in the troposphere and stratosphere, P. IEEE, 77,
433–448, https://doi.org/10.1109/5.24129, 1989. a
Ribeiro, F. N., de Oliveira, A. P., Soares, J., de Miranda, R. M., Barlage, M.,
and Chen, F.: Effect of sea breeze propagation on the urban boundary layer of
the metropolitan region of Sao Paulo, Brazil, Atmos. Res.,
214, 174–188, https://doi.org/10.1016/j.atmosres.2018.07.015, 2018. a
Rodrigues, P. F., Landulfo, E., Gandu, A. W., and Lopes, F. J. S.: Assessment
of aerosol hygroscopic growth using an elastic LIDAR and BRAMS simulation
in urban metropolitan areas, AIP Conf. Proc., 1531, 360–363,
https://doi.org/10.1063/1.4804781, 2013. a
Román, R., Benavent-Oltra, J., Casquero-Vera, J., Lopatin, A., Cazorla, A.,
Lyamani, H., Denjean, C., Fuertes, D., Pérez-Ramírez, D., Torres, B.,
Toledano, C., Dubovik, O., Cachorro, V., de Frutos, A., Olmo, F., and
Alados-Arboledas, L.: Retrieval of aerosol profiles combining sunphotometer
and ceilometer measurements in GRASP code, Atmos. Res., 204,
161–177, https://doi.org/10.1016/j.atmosres.2018.01.021, 2018. a
Sugimoto, N. and Uno, I.: Observation of Asian dust and air-pollution aerosols
using a network of ground-based lidars (ADNet): Realtime data processing
for validation/assimilation of chemical transport models, IOP C.
Ser. Earth Env., 7, 012003,
https://doi.org/10.1088/1755-1307/7/1/012003, 2009. a
Tanaka, L. M. d. S., Satyamurty, P., and Machado, L. A. T.: Diurnal variation
of precipitation in central Amazon Basin, Int. J.
Climatol., 34, 3574–3584, https://doi.org/10.1002/joc.3929, 2014. a
Vaughan, M. A., Young, S. A., Winker, D. M., Powell, K. A., Omar, A. H., Liu,
Z., Hu, Y., and Hostetler, C. A.: Fully automated analysis of space-based
lidar data: an overview of the CALIPSO retrieval algorithms and data
products, in: Laser Radar Techniques for Atmospheric Sensing, edited by:
Singh, U. N., vol. 5575, International Society for Optics and
Photonics, SPIE,, 16–30 https://doi.org/10.1117/12.572024, 2004. a
Wandinger, U., Freudenthaler, V., Baars, H., Amodeo, A., Engelmann, R., Mattis, I., Groß, S., Pappalardo, G., Giunta, A., D'Amico, G., Chaikovsky, A., Osipenko, F., Slesar, A., Nicolae, D., Belegante, L., Talianu, C., Serikov, I., Linné, H., Jansen, F., Apituley, A., Wilson, K. M., de Graaf, M., Trickl, T., Giehl, H., Adam, M., Comerón, A., Muñoz-Porcar, C., Rocadenbosch, F., Sicard, M., Tomás, S., Lange, D., Kumar, D., Pujadas, M., Molero, F., Fernández, A. J., Alados-Arboledas, L., Bravo-Aranda, J. A., Navas-Guzmán, F., Guerrero-Rascado, J. L., Granados-Muñoz, M. J., Preißler, J., Wagner, F., Gausa, M., Grigorov, I., Stoyanov, D., Iarlori, M., Rizi, V., Spinelli, N., Boselli, A., Wang, X., Lo Feudo, T., Perrone, M. R., De Tomasi, F., and Burlizzi, P.: EARLINET instrument intercomparison campaigns: overview on strategy and results, Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, 2016.
a, b
Wang, Z. and Menenti, M.: Challenges and Opportunities in Lidar Remote Sensing,
Front. Remote Sens., 2, 641723, https://doi.org/10.3389/frsen.2021.641723, 2021. a
Welton, E. J. and Campbell, J. R.: Micropulse Lidar Signals: Uncertainty
Analysis, J. Atmos. Ocean. Tech., 19, 2089–2094,
https://doi.org/10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2, 2002. a
Welton, E. J., Campbell, J. R., Spinhirne, J. D., and Scott III, V. S.: Global
monitoring of clouds and aerosols using a network of micropulse lidar
systems, in: Lidar Remote Sensing for Industry and Environment Monitoring,
edited by: Singh, U. N., Asai, K., Ogawa, T., Singh, U. N., Itabe, T., and
Sugimoto, N., Vol. 4153, International Society for Optics and
Photonics, SPIE, 151–158, https://doi.org/10.1117/12.417040, 2001. a
Whiteman, D. N., Melfi, S. H., and Ferrare, R. A.: Raman lidar system for the
measurement of water vapor and aerosols in the Earth’s atmosphere,
Appl. Opt., 31, 3068, https://doi.org/10.1364/AO.31.003068, 1992. a
Whiteman, D. N., Demoz, B., Rush, K., Schwemmer, G., Gentry, B., Di Girolamo,
P., Comer, J., Veselovskii, I., Evans, K., Melfi, S. H., Wang, Z., Cadirola,
M., Mielke, B., Venable, D., and Van Hove, T.: Raman Lidar Measurements
during the International H2O Project. Part I: Instrumentation and
Analysis Techniques, J. Atmos. Ocean. Tech., 23,
157–169, https://doi.org/10.1175/JTECH1838.1, 2006. a
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O.,
Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J.,
Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A., Hooft,
R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A.,
Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and
stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016. a
Short summary
Lidar networks coordinate efforts of different groups, providing guidelines to homogenize retrievals from different instruments. We describe an ongoing effort to develop the Lidar Processing Pipeline (LPP) collaboratively, a collection of tools developed in C/C++ to handle all the steps of a typical lidar analysis. Analysis of simulations and real lidar data showcases the LPP’s features. From this exercise, we draw a roadmap to guide future development, accommodating the needs of our community.
Lidar networks coordinate efforts of different groups, providing guidelines to homogenize...