Articles | Volume 13, issue 1
https://doi.org/10.5194/gi-13-107-2024
https://doi.org/10.5194/gi-13-107-2024
Research article
 | 
30 Apr 2024
Research article |  | 30 Apr 2024

Research and application of small-diameter hydraulic fracturing in situ stress measurement system

Yimin Liu, Mian Zhang, Yixuan Li, and Huan Chen

Related subject area

System design
New ring shear deformation apparatus for three-dimensional multiphase experiments: first results
Shae McLafferty, Haley Bix, Kyle Bogatz, and Jacqueline E. Reber
Geosci. Instrum. Method. Data Syst., 12, 141–154, https://doi.org/10.5194/gi-12-141-2023,https://doi.org/10.5194/gi-12-141-2023, 2023
Short summary
Design and performance of the Hotrod melt-tip ice-drilling system
William Colgan, Christopher Shields, Pavel Talalay, Xiaopeng Fan, Austin P. Lines, Joshua Elliott, Harihar Rajaram, Kenneth Mankoff, Morten Jensen, Mira Backes, Yunchen Liu, Xianzhe Wei, Nanna B. Karlsson, Henrik Spanggård, and Allan Ø. Pedersen
Geosci. Instrum. Method. Data Syst., 12, 121–140, https://doi.org/10.5194/gi-12-121-2023,https://doi.org/10.5194/gi-12-121-2023, 2023
Short summary
Towards agricultural soil carbon monitoring, reporting, and verification through the Field Observatory Network (FiON)
Olli Nevalainen, Olli Niemitalo, Istem Fer, Antti Juntunen, Tuomas Mattila, Olli Koskela, Joni Kukkamäki, Layla Höckerstedt, Laura Mäkelä, Pieta Jarva, Laura Heimsch, Henriikka Vekuri, Liisa Kulmala, Åsa Stam, Otto Kuusela, Stephanie Gerin, Toni Viskari, Julius Vira, Jari Hyväluoma, Juha-Pekka Tuovinen, Annalea Lohila, Tuomas Laurila, Jussi Heinonsalo, Tuula Aalto, Iivari Kunttu, and Jari Liski
Geosci. Instrum. Method. Data Syst., 11, 93–109, https://doi.org/10.5194/gi-11-93-2022,https://doi.org/10.5194/gi-11-93-2022, 2022
Short summary
Development of a new centralized data acquisition system for seismic exploration
Feng Guo, Qisheng Zhang, Qimao Zhang, Wenhao Li, Yueyun Luo, Yuefeng Niu, and Shuaiqing Qiao
Geosci. Instrum. Method. Data Syst., 9, 255–266, https://doi.org/10.5194/gi-9-255-2020,https://doi.org/10.5194/gi-9-255-2020, 2020
Short summary
An autonomous low-power instrument platform for monitoring water and solid discharges in mesoscale rivers
Guillaume Nord, Yoann Michielin, Romain Biron, Michel Esteves, Guilhem Freche, Thomas Geay, Alexandre Hauet, Cédric Legoût, and Bernard Mercier
Geosci. Instrum. Method. Data Syst., 9, 41–67, https://doi.org/10.5194/gi-9-41-2020,https://doi.org/10.5194/gi-9-41-2020, 2020
Short summary

Cited articles

Amadei, B. and Stephansson, O.: Rock stress and its measurement, Chapman and Hall, London, UK, ISBN 0 412 44700 2, 1997. 
Clark, J. B.: A hydraulic process for increasing the productivity of wells, J. Petrol. Technol., 1, 1–8, https://doi.org/10.2118/949001-G, 1949. 
Fan, J., Ma, J., and Gan, W.: The integrity of Ordos block movement and the alternation of boundary activities in different directions, Sci. China Ser. D, 33, 119–128., https://doi.org/10.3969/j.issn.1674-7240.2003.z1.013, 2003. 
Geertsma, J. and De Klerk, F.: A rapid method of predicting width and extent of hydraulically induced fractures, J. Petrol. Technol., 21, 1571–1581, https://doi.org/10.2118/2458-PA, 1969. 
Haimson, B.: Hydraulic fracturing in porous and nonporous rock and its potential for determining in situ stresses at great depth, University of Minnesota, Minneapolis, 1968. 
Download
Short summary
We developed a serialized small-diameter hydraulic fracturing in situ stress measurement system, which enables series measurement of small-sized boreholes for in situ stress and has the advantage of a simple and lightweight structure, short testing time, high success rate, and low requirements for rock integrity and pressurization equipment. This system has important practical value and economic significance for accurately determining the in situ stress state of deep development areas.