Brantut, N. and Platt, J. D.: Dynamic weakening and the depth dependence of earthquake faulting, in: Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture, Elsevier, 171–194, https://doi.org/10.1002/9781119156895.ch9, 2017.
Byerlee, J.: Friction of rocks, Pure Appl. Geophys., 116, 615–626, https://doi.org/10.1007/BF00876528, 1978.
Chen, J., Niemeijer, A. R., and Fokker, P. A.: Vaporization of fault water during seismic slip, J. Geophys. Res.-Sol. Ea., 122, 4237–4276, https://doi.org/10.1002/2016JB013824, 2017.
Chen, J., Hunfeld, L. B., Niemeijer, A. R., and Spiers, C. J.: Fault weakening during short seismic slip pulse experiments: The role of pressurized water and implications for induced earthquakes in the Groningen gas field, J. Geophys. Res.-Sol. Ea., 128, e2022JB025729, https://doi.org/10.1029/2022JB025729, 2023.
Di Toro, G., Goldsby, D. L., and Tullis, T. E.: Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427, 436–439, https://doi.org/10.1038/nature02249, 2004.
Di Toro, G., Niemeijer, A., Tripoli, A., Nielsen, S., Di Felice, F., Scarlato, P., Bistacchi, A., Smith, S. A., and Mariano, S.: From field geology to earthquake simulation: A new state-of-the-art tool to investigate rock friction during the seismic cycle (SHIVA), Rend. Lincei-Sci. Fis., 21, 95–114, https://doi.org/10.1007/s12210-010-0097-x, 2010.
Erdoğan, S. T., Forster, A. M., Stutzman, P. E., and Garboczi, E. J.: Particle-based characterization of Ottawa sand: Shape, size, mineralogy, and elastic moduli, Cement Concrete Comp., 83, 36–44, https://doi.org/10.1016/j.cemconcomp.2017.07.016, 2017.
Goldsby, D. L. and Tullis, T. E.: Low frictional strength of quartz rocks at subseismic slip rates, Geophys. Res. Lett., 29, 1844, https://doi.org/10.1029/2002GL015240, 2002.
Goldsby, D. L. and Tullis, T. E.: Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates, Science, 334, 216–218, https://doi.org/10.1126/science.1207902, 2011.
Hangx, S. J. and Brantut, N.: Micromechanics of high-pressure compaction in granular quartz aggregates, J. Geophys. Res.-Sol. Ea., 124, 6560–6580, https://doi.org/10.1029/2018JB016494, 2019.
Hunfeld, L. B., Chen, J., Niemeijer, A. R., Ma, S., and Spiers, C. J.: Seismic slip-pulse experiments simulate induced earthquake rupture in the Groningen gas field, Geophys. Res. Lett., 48, e2021GL092417, https://doi.org/10.1029/2021GL092417, 2021.
Hung, C. C., Niemeijer, A., Aretusini, S., Spagnuolo, E., Chen, J., and Hamers, M.: Dynamic weakening in sandstone-derived fault gouges during simulated small-magnitude earthquakes under variable loading and environmental conditions, Geophys. J. Int., 241, 1009–1028, https://doi.org/10.1093/gji/ggaf077, 2025.
Kohli, A. H., Goldsby, D. L., Hirth, G., and Tullis, T.: Flash weakening of serpentinite at near-seismic slip rates, J. Geophys. Res.-Sol. Ea., 116, B03211, https://doi.org/10.1029/2010JB007833, 2011.
Korkolis, E.: Rotary shear experiments on glass bead aggregates: Stick-slip statistics and parallels with natural seismicity, Doctoral dissertation, Utrecht University, ISBN: 978-90-6266-553-2, 2019.
Niemeijer, A., Di Toro, G., Griffith, W. A., Bistacchi, A., Smith, S. A., and Nielsen, S.: Inferring earthquake physics and chemistry using an integrated field and laboratory approach, J. Struct. Geol., 39, 2–36, https://doi.org/10.1016/j.jsg.2012.02.018, 2012.
Oohashi, K., Hirose, T., and Shimamoto, T.: Shear-induced graphitization of carbonaceous materials during seismic fault motion: Experiments and possible implications for fault mechanics, J. Struct. Geol., 33, 1122–1134, https://doi.org/10.1016/j.jsg.2011.01.007, 2011.
Proctor, B. P., Mitchell, T. M., Hirth, G., Goldsby, D., Zorzi, F., Platt, J. D., and Di Toro, G.: Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates, J. Geophys. Res.-Sol. Ea., 119, 8107–8131, https://doi.org/10.1002/2014JB011057, 2014.
Rice, J. R.: Heating and weakening of faults during earthquake slip, J. Geophys. Res.-Sol. Ea., 111, B05311, https://doi.org/10.1029/2005JB004006, 2006.
Saber, O.: Development and characterization of a high-speed material-testing machine, and experimental analysis of frictional flash heating and dynamic weakening in rock, Doctoral dissertation, Texas A&M University,
http://hdl.handle.net/1969.1/165820 (last access: 17 September 2025), 2017.
Spagnuolo, E., Plümper, O., Violay, M., Cavallo, A., and Di Toro, G.: Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes, Scientific Reports, 5, 16112, https://doi.org/10.1038/srep16112, 2015.
Spray, J. G.: A physical basis for the frictional melting of some rock-forming minerals, Tectonophysics, 204, 205–221, https://doi.org/10.1016/0040-1951(92)90308-S, 1992.
Tullis, T. E.: Mechanisms for friction of rock at earthquake slip rates, Treatise on Geophysics, 4, 131–152, https://doi.org/10.1016/B978-0-444-53802-4.00073-7, 2015.
Yao, L., Ma, S., Niemeijer, A. R., Shimamoto, T., and Platt, J. D.: Is frictional heating needed to cause dramatic weakening of nanoparticle gouge during seismic slip?, Geophys. Res. Lett., 43, 6852–6860, https://doi.org/10.1002/2016GL069053, 2016a.
Yao, L., Ma, S., Platt, J. D., Niemeijer, A. R., and Shimamoto, T.: The crucial role of temperature in high-velocity weakening of faults, Geology, 44, 63–66, https://doi.org/10.1130/G37310.1, 2016b.
Yao, L., Ma, S., Chen, J., Shimamoto, T., and He, H.: Flash heating and local fluid pressurization lead to rapid weakening in water-saturated fault gouges, J. Geophys. Res.-Sol. Ea., 123, 9084–9100, https://doi.org/10.1029/2018JB015620, 2018.