Articles | Volume 4, issue 1
https://doi.org/10.5194/gi-4-111-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.Real-time setup to measure radon emission during rock deformation: implications for geochemical surveillance
Related authors
Related subject area
Spectrometers
Radiometric flight results from the HyperSpectral Imager for Climate Science (HySICS)
Brewer spectrometer total ozone column measurements in Sodankylä
Alkali element background reduction in laser ICP-MS
Geosci. Instrum. Method. Data Syst., 6, 169–191,
2017Geosci. Instrum. Method. Data Syst., 5, 229–239,
2016Geosci. Instrum. Method. Data Syst., 4, 75–80,
2015Cited articles
Banerjee, K. S., Basu, A., Guin, R., and Sengupta, D.: Radon (222Rn) level variations on a regional scale from the Singhbhum Shear Zone, India: A comparative evaluation between influence of basement U-activity and porosity, Radiat. Phys. Chem., 80, 614–619, 2011.
Brace, W. F., Paulding Jr., B. W., and Scholz, C. H.: Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., 71, 3939–3953, 1966.
Che, C., Glotch, T. D., Bish, D. L., Michalski, J. R., and Xu, W.: Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals, J. Geophys. Res., 116, E05007, https://doi.org/10.1029/2010JE003740, 2011.
Cox, E. M., Cuff, E. K., and Thomas, M. D.: Variations of ground radon concentrations with activity of Kilauea volcano, Hawaii, Nature, 288, 74–76, 1980.
Hauksson, E.: Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis, J. Geophys. Res., 86, 9397–9410, 1981.