Articles | Volume 5, issue 1
https://doi.org/10.5194/gi-5-253-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-5-253-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Forecasting auroras from regional and global magnetic field measurements
Kirsti Kauristie
CORRESPONDING AUTHOR
Finnish Meteorological Institute, Helsinki, Finland
Minna Myllys
University of Helsinki, Helsinki, Finland
Noora Partamies
The University Centre in Svalbard, Svalbard, Norway
Ari Viljanen
Finnish Meteorological Institute, Helsinki, Finland
Pyry Peitso
Finnish Meteorological Institute, Helsinki, Finland
Aalto University, Espoo, Finland
Liisa Juusola
Finnish Meteorological Institute, Helsinki, Finland
Shabana Ahmadzai
University of Helsinki, Helsinki, Finland
Vikramjit Singh
Aalto University, Espoo, Finland
Ralf Keil
European Space Agency, ESOC, Darmstadt, Germany
Unai Martinez
etamax space GmbH, Darmstadt, Germany
Alexej Luginin
European Space Agency, ESOC, Darmstadt, Germany
Alexi Glover
European Space Agency, ESOC, Darmstadt, Germany
Vicente Navarro
European Space Agency, ESOC, Darmstadt, Germany
Tero Raita
Sodankylä Geophysical Observatory, University of Oulu, Oulu, Finland
Related authors
Mizuki Fukizawa, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Tero Raita, and Kirsti Kauristie
Ann. Geophys., 41, 511–528, https://doi.org/10.5194/angeo-41-511-2023, https://doi.org/10.5194/angeo-41-511-2023, 2023
Short summary
Short summary
We use computed tomography to reconstruct the three-dimensional distributions of the Hall and Pedersen conductivities of pulsating auroras, a key research target for understanding the magnetosphere–ionosphere coupling process. It is suggested that the high-energy electron precipitation associated with pulsating auroras may have a greater impact on the closure of field-aligned currents in the ionosphere than has been previously reported.
Daniel K. Whiter, Noora Partamies, Björn Gustavsson, and Kirsti Kauristie
Ann. Geophys., 41, 1–12, https://doi.org/10.5194/angeo-41-1-2023, https://doi.org/10.5194/angeo-41-1-2023, 2023
Short summary
Short summary
We measured the height of green and blue aurorae using thousands of camera images recorded over a 7-year period. Both colours are typically brightest at about 114 km altitude. When they peak at higher altitudes the blue aurora is usually higher than the green aurora. This information will help other studies which need an estimate of the auroral height. We used a computer model to explain our observations and to investigate how the green aurora is produced.
Noora Partamies, Daniel Whiter, Kirsti Kauristie, and Stefano Massetti
Ann. Geophys., 40, 605–618, https://doi.org/10.5194/angeo-40-605-2022, https://doi.org/10.5194/angeo-40-605-2022, 2022
Short summary
Short summary
We investigate the local time behaviour of auroral structures and emission height. Data are collected from the Fennoscandian Lapland and Svalbard latitutes from 7 identical auroral all-sky cameras over about 1 solar cycle. The typical peak emission height of the green aurora varies from 110 km on the nightside to about 118 km in the morning over Lapland but stays systematically higher over Svalbard. During fast solar wind, nightside emission heights are 5 km lower than during slow solar wind.
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022, https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Short summary
The pulsating auroral generation mechanism has been investigated by observing precipitating electrons using rockets or satellites. However, it is difficult for such observations to distinguish temporal changes from spatial ones. In this study, we reconstructed the horizontal 2-D distribution of precipitating electrons using only auroral images. The 3-D aurora structure was also reconstructed. We found that there were both spatial and temporal changes in the precipitating electron energy.
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022, https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary
Short summary
During auroral substorms, the ionospheric electric currents change rapidly, and a large amount of energy is dissipated. We combine ionospheric current data derived from the Swarm satellite mission with the substorm database from the SuperMAG ground magnetometer network. We obtain statistics of the strength and location of the currents relative to the substorm onset. Our results show that low-earth orbit satellites give a coherent picture of the main features in the substorm current system.
Johannes Norberg, Lassi Roininen, Antti Kero, Tero Raita, Thomas Ulich, Markku Markkanen, Liisa Juusola, and Kirsti Kauristie
Geosci. Instrum. Method. Data Syst., 5, 263–270, https://doi.org/10.5194/gi-5-263-2016, https://doi.org/10.5194/gi-5-263-2016, 2016
Short summary
Short summary
The Sodankylä Geophysical Observatory has been producing ionospheric tomography data since 2003. Based on these data, one solar cycle of ionospheric vertical total electron content (VTEC) estimates is constructed. The measurements are compared against the IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.
Johannes Norberg, Ilkka I. Virtanen, Lassi Roininen, Juha Vierinen, Mikko Orispää, Kirsti Kauristie, and Markku S. Lehtinen
Atmos. Meas. Tech., 9, 1859–1869, https://doi.org/10.5194/amt-9-1859-2016, https://doi.org/10.5194/amt-9-1859-2016, 2016
Short summary
Short summary
We validate 2-D ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. The method is based on Bayesian statistical inversion. We employ ionosonde measurements for the choice of the prior distribution parameters and use a sparse matrix approximation for the computations. This results in a computationally efficient tomography algorithm with clear probabilistic interpretation. We find that ionosonde measurements improve the reconstruction significantly.
K. Kauristie, M. V. Uspensky, N. G. Kleimenova, O. V. Kozyreva, M. M. J. L. Van De Kamp, S. V. Dubyagin, and S. Massetti
Ann. Geophys., 34, 379–392, https://doi.org/10.5194/angeo-34-379-2016, https://doi.org/10.5194/angeo-34-379-2016, 2016
Short summary
Short summary
This study presents some example events in which sudden changes in the auroral activity at midnight sector seem to have an impact on the intensity of morning-sector magnetic pulsations. Mechanisms which could link these two separate regions are discussed in the paper. Sudden changes in the solar wind properties and fast westward-propagating electrons are suggested to explain the coupling between midnight-sector and morning-sector phenomena.
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
M. van de Kamp, D. Pokhotelov, and K. Kauristie
Ann. Geophys., 32, 1511–1532, https://doi.org/10.5194/angeo-32-1511-2014, https://doi.org/10.5194/angeo-32-1511-2014, 2014
N. Partamies, L. Juusola, E. Tanskanen, and K. Kauristie
Ann. Geophys., 31, 349–358, https://doi.org/10.5194/angeo-31-349-2013, https://doi.org/10.5194/angeo-31-349-2013, 2013
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent Ledvina
EGUsphere, https://doi.org/10.5194/egusphere-2024-3669, https://doi.org/10.5194/egusphere-2024-3669, 2024
Short summary
Short summary
We studied the first broad band emissions, called continuum, in the dayside aurora. They are similar to STEVE with white, pale pink or mauve coloured light. But unlike STEVE, they follow the dayside aurora forming rays and other dynamic shapes. We used ground optical and radar observations and found evidence of heating and upwelling of both plasma and neutral air. This study provides new information on conditions for continuum emission, but its understanding will require further work.
Liisa Juusola, Heikki Vanhamäki, Elena Marshalko, Mikhail Kruglyakov, and Ari Viljanen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2831, https://doi.org/10.5194/egusphere-2024-2831, 2024
Short summary
Short summary
Interaction between the magnetic field of the rapidly varying electric currents in space and the conducting ground produces an electric field at the Earth's surface. This geoelectric field drives geomagnetically induced currents in technological conductor networks, which can affect the performance of critical ground infrastructure such as electric power transmission grids. We have developed a new method suitable for monitoring the geoelectric field based on ground magnetic field observations.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
EGUsphere, https://doi.org/10.5194/egusphere-2024-2174, https://doi.org/10.5194/egusphere-2024-2174, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and experienced technological disruptions during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders
Ann. Geophys., 42, 103–115, https://doi.org/10.5194/angeo-42-103-2024, https://doi.org/10.5194/angeo-42-103-2024, 2024
Short summary
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Mizuki Fukizawa, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Tero Raita, and Kirsti Kauristie
Ann. Geophys., 41, 511–528, https://doi.org/10.5194/angeo-41-511-2023, https://doi.org/10.5194/angeo-41-511-2023, 2023
Short summary
Short summary
We use computed tomography to reconstruct the three-dimensional distributions of the Hall and Pedersen conductivities of pulsating auroras, a key research target for understanding the magnetosphere–ionosphere coupling process. It is suggested that the high-energy electron precipitation associated with pulsating auroras may have a greater impact on the closure of field-aligned currents in the ionosphere than has been previously reported.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Daniel K. Whiter, Noora Partamies, Björn Gustavsson, and Kirsti Kauristie
Ann. Geophys., 41, 1–12, https://doi.org/10.5194/angeo-41-1-2023, https://doi.org/10.5194/angeo-41-1-2023, 2023
Short summary
Short summary
We measured the height of green and blue aurorae using thousands of camera images recorded over a 7-year period. Both colours are typically brightest at about 114 km altitude. When they peak at higher altitudes the blue aurora is usually higher than the green aurora. This information will help other studies which need an estimate of the auroral height. We used a computer model to explain our observations and to investigate how the green aurora is produced.
Noora Partamies, Daniel Whiter, Kirsti Kauristie, and Stefano Massetti
Ann. Geophys., 40, 605–618, https://doi.org/10.5194/angeo-40-605-2022, https://doi.org/10.5194/angeo-40-605-2022, 2022
Short summary
Short summary
We investigate the local time behaviour of auroral structures and emission height. Data are collected from the Fennoscandian Lapland and Svalbard latitutes from 7 identical auroral all-sky cameras over about 1 solar cycle. The typical peak emission height of the green aurora varies from 110 km on the nightside to about 118 km in the morning over Lapland but stays systematically higher over Svalbard. During fast solar wind, nightside emission heights are 5 km lower than during slow solar wind.
Mirjam Kellinsalmi, Ari Viljanen, Liisa Juusola, and Sebastian Käki
Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, https://doi.org/10.5194/angeo-40-545-2022, 2022
Short summary
Short summary
Eruptions from the Sun can pose a hazard to Earth's power grids via, e.g., geomagnetically induced currents (GICs). We study magnetic measurements from Fennoscandia to find ways to understand and forecast GIC. We find that the direction of the time derivative of the magnetic field has a short
reset time, about 2 min. We conclude that this result gives insight on the current systems high in Earth’s atmosphere, which are the main driver behind the time derivative’s behavior and GIC formation.
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022, https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Short summary
The pulsating auroral generation mechanism has been investigated by observing precipitating electrons using rockets or satellites. However, it is difficult for such observations to distinguish temporal changes from spatial ones. In this study, we reconstructed the horizontal 2-D distribution of precipitating electrons using only auroral images. The 3-D aurora structure was also reconstructed. We found that there were both spatial and temporal changes in the precipitating electron energy.
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022, https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary
Short summary
During auroral substorms, the ionospheric electric currents change rapidly, and a large amount of energy is dissipated. We combine ionospheric current data derived from the Swarm satellite mission with the substorm database from the SuperMAG ground magnetometer network. We obtain statistics of the strength and location of the currents relative to the substorm onset. Our results show that low-earth orbit satellites give a coherent picture of the main features in the substorm current system.
Pekka T. Verronen, Antti Kero, Noora Partamies, Monika E. Szeląg, Shin-Ichiro Oyama, Yoshizumi Miyoshi, and Esa Turunen
Ann. Geophys., 39, 883–897, https://doi.org/10.5194/angeo-39-883-2021, https://doi.org/10.5194/angeo-39-883-2021, 2021
Short summary
Short summary
This paper is the first to simulate and analyse the pulsating aurorae impact on middle atmosphere on monthly/seasonal timescales. We find that pulsating aurorae have the potential to make a considerable contribution to the total energetic particle forcing and increase the impact on upper stratospheric odd nitrogen and ozone in the polar regions. Thus, it should be considered in atmospheric and climate simulations.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Emma Bland, Fasil Tesema, and Noora Partamies
Ann. Geophys., 39, 135–149, https://doi.org/10.5194/angeo-39-135-2021, https://doi.org/10.5194/angeo-39-135-2021, 2021
Short summary
Short summary
A total of 10 Super Dual Auroral Radar Network radars were used to estimate the horizontal area over which energetic electrons impact the atmosphere at 70–100 km altitude during pulsating aurorae (PsAs). The impact area varies significantly from event to event. Approximately one-third extend over 12° of magnetic latitude, while others are highly localised. Our results could be used to improve the forcing used in atmospheric/climate models to properly capture the energy contribution from PsAs.
Noora Partamies, Fasil Tesema, Emma Bland, Erkka Heino, Hilde Nesse Tyssøy, and Erlend Kallelid
Ann. Geophys., 39, 69–83, https://doi.org/10.5194/angeo-39-69-2021, https://doi.org/10.5194/angeo-39-69-2021, 2021
Short summary
Short summary
About 200 nights of substorm activity have been analysed for their magnetic disturbance magnitude and the level of cosmic radio noise absorption. We show that substorms with a single expansion phase have limited lifetimes and spatial extents. Starting from magnetically quiet conditions, the strongest absorption occurs after 1 to 2 nights of substorm activity. This prolonged activity is thus required to accelerate particles to energies, which may affect the atmospheric chemistry.
Fasil Tesema, Noora Partamies, Hilde Nesse Tyssøy, and Derek McKay
Ann. Geophys., 38, 1191–1202, https://doi.org/10.5194/angeo-38-1191-2020, https://doi.org/10.5194/angeo-38-1191-2020, 2020
Short summary
Short summary
In this study, we present the ionization level from EISCAT radar experiments and cosmic noise absorption level
from KAIRA riometer observations during pulsating auroras. We found thick layers of ionization that reach down
to 70 km (harder precipitation) and higher cosmic noise absorption during patchy pulsating aurora than
during amorphous pulsating and patchy auroras.
Liisa Juusola, Heikki Vanhamäki, Ari Viljanen, and Maxim Smirnov
Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020, https://doi.org/10.5194/angeo-38-983-2020, 2020
Short summary
Short summary
Rapid variations of the magnetic field measured on the ground can be used to estimate space weather risks to power grids, but forecasting the variations remains a challenge. We show that part of this problem stems from the fact that, in addition to electric currents in space, the magnetic field variations are strongly affected by underground electric currents. We suggest that separating the measured field into its space and underground parts could improve our understanding of space weather.
Xiaochen Gou, Lei Li, Yiteng Zhang, Bin Zhou, Yongyong Feng, Bingjun Cheng, Tero Raita, Ji Liu, Zeren Zhima, and Xuhui Shen
Ann. Geophys., 38, 775–787, https://doi.org/10.5194/angeo-38-775-2020, https://doi.org/10.5194/angeo-38-775-2020, 2020
Short summary
Short summary
The CSES observed ionospheric Pc1 waves near the wave injection regions in conjugate hemispheres during the recovery phase of the geomagnetic storm on 27 August 2018. The Pc1s were found to be Alfvén waves with mixed polarisation propagating along background magnetic lines in the ionosphere. We suggest that the possible sources of Pc1 are EMIC waves generated near the plasmapause by the outward expansion of the plasmasphere into the ring current during the recovery phase of geomagnetic storms.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
Noora Partamies, James M. Weygand, and Liisa Juusola
Ann. Geophys., 35, 1069–1083, https://doi.org/10.5194/angeo-35-1069-2017, https://doi.org/10.5194/angeo-35-1069-2017, 2017
Short summary
Short summary
Large-scale undulations of the diffuse aurora boundary, auroral omega bands, have been studied based on 438 omega-like structures identified over Fennoscandian Lapland from 1996 to 2007. The omegas mainly occurred in the post-magnetic midnight sector, in the region between oppositely directed ionospheric field-aligned currents, and during substorm recovery phases. The omega bands were observed during substorms, which were more intense than the average substorm in the same region.
Fred Sigernes, Pål Gunnar Ellingsen, Noora Partamies, Mikko Syrjäsuo, Pål Brekke, Silje Eriksen Holmen, Arne Danielsen, Bernt Olsen, Xiangcai Chen, Margit Dyrland, Lisa Baddeley, Dag Arne Lorentzen, Marcus Aleksander Krogtoft, Torstein Dragland, Hans Mortensson, Lisbeth Smistad, Craig J. Heinselman, and Shadia Habbal
Geosci. Instrum. Method. Data Syst., 6, 9–14, https://doi.org/10.5194/gi-6-9-2017, https://doi.org/10.5194/gi-6-9-2017, 2017
Short summary
Short summary
The total solar eclipse event on Svalbard on 20 March 2015 gave us a unique opportunity to image the upper parts of the Sun's atmosphere. A novel image accumulation filter technique is presented that is capable of distinguishing features such as loops, spicules, plumes, and prominences from intense and blurry video recordings of the chromosphere.
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
Tuomas Savolainen, Daniel Keith Whiter, and Noora Partamies
Geosci. Instrum. Method. Data Syst., 5, 305–314, https://doi.org/10.5194/gi-5-305-2016, https://doi.org/10.5194/gi-5-305-2016, 2016
Short summary
Short summary
In this paper we describe a new method for recognition of digits in seven-segment displays. The method is used for adding date and time information to a dataset consisting of about 7 million auroral all-sky images taken during the time period of 1973–1997 at camera stations centred around Sodankylä observatory in Northern Finland. In each image there is a clock display for the date and time together with the reflection of the whole night sky through a spherical mirror.
Johannes Norberg, Lassi Roininen, Antti Kero, Tero Raita, Thomas Ulich, Markku Markkanen, Liisa Juusola, and Kirsti Kauristie
Geosci. Instrum. Method. Data Syst., 5, 263–270, https://doi.org/10.5194/gi-5-263-2016, https://doi.org/10.5194/gi-5-263-2016, 2016
Short summary
Short summary
The Sodankylä Geophysical Observatory has been producing ionospheric tomography data since 2003. Based on these data, one solar cycle of ionospheric vertical total electron content (VTEC) estimates is constructed. The measurements are compared against the IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.
Peter Wintoft, Ari Viljanen, and Magnus Wik
Ann. Geophys., 34, 485–491, https://doi.org/10.5194/angeo-34-485-2016, https://doi.org/10.5194/angeo-34-485-2016, 2016
Short summary
Short summary
Extreme value analysis has been applied to 1-minute-resolution magnetic fields and computed electric fields over Europe. We find that on average the largest disturbances of the fields are observed close to the auroral oval, as expected. However, the analysis indicates that as we move south from Scandinavia to northern continental Europe the distribution becomes more extreme. This could be due to that strong storms regularly occur at high latitudes, while the extreme storms push the oval south.
Johannes Norberg, Ilkka I. Virtanen, Lassi Roininen, Juha Vierinen, Mikko Orispää, Kirsti Kauristie, and Markku S. Lehtinen
Atmos. Meas. Tech., 9, 1859–1869, https://doi.org/10.5194/amt-9-1859-2016, https://doi.org/10.5194/amt-9-1859-2016, 2016
Short summary
Short summary
We validate 2-D ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. The method is based on Bayesian statistical inversion. We employ ionosonde measurements for the choice of the prior distribution parameters and use a sparse matrix approximation for the computations. This results in a computationally efficient tomography algorithm with clear probabilistic interpretation. We find that ionosonde measurements improve the reconstruction significantly.
K. Kauristie, M. V. Uspensky, N. G. Kleimenova, O. V. Kozyreva, M. M. J. L. Van De Kamp, S. V. Dubyagin, and S. Massetti
Ann. Geophys., 34, 379–392, https://doi.org/10.5194/angeo-34-379-2016, https://doi.org/10.5194/angeo-34-379-2016, 2016
Short summary
Short summary
This study presents some example events in which sudden changes in the auroral activity at midnight sector seem to have an impact on the intensity of morning-sector magnetic pulsations. Mechanisms which could link these two separate regions are discussed in the paper. Sudden changes in the solar wind properties and fast westward-propagating electrons are suggested to explain the coupling between midnight-sector and morning-sector phenomena.
M. Myllys, E. Kilpua, and T. Pulkkinen
Ann. Geophys., 33, 845–855, https://doi.org/10.5194/angeo-33-845-2015, https://doi.org/10.5194/angeo-33-845-2015, 2015
M. Myllys, N. Partamies, and L. Juusola
Ann. Geophys., 33, 573–581, https://doi.org/10.5194/angeo-33-573-2015, https://doi.org/10.5194/angeo-33-573-2015, 2015
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
M. van de Kamp, D. Pokhotelov, and K. Kauristie
Ann. Geophys., 32, 1511–1532, https://doi.org/10.5194/angeo-32-1511-2014, https://doi.org/10.5194/angeo-32-1511-2014, 2014
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
B. J. Jackel, C. Unick, M. T. Syrjäsuo, N. Partamies, J. A. Wild, E. E. Woodfield, I. McWhirter, E. Kendall, and E. Spanswick
Geosci. Instrum. Method. Data Syst., 3, 71–94, https://doi.org/10.5194/gi-3-71-2014, https://doi.org/10.5194/gi-3-71-2014, 2014
D. K. Whiter, B. Gustavsson, N. Partamies, and L. Sangalli
Geosci. Instrum. Method. Data Syst., 2, 131–144, https://doi.org/10.5194/gi-2-131-2013, https://doi.org/10.5194/gi-2-131-2013, 2013
N. Partamies, L. Juusola, E. Tanskanen, and K. Kauristie
Ann. Geophys., 31, 349–358, https://doi.org/10.5194/angeo-31-349-2013, https://doi.org/10.5194/angeo-31-349-2013, 2013
Related subject area
Data archive
Weather model verification using Sodankylä mast measurements
Markku Kangas, Laura Rontu, Carl Fortelius, Mika Aurela, and Antti Poikonen
Geosci. Instrum. Method. Data Syst., 5, 75–84, https://doi.org/10.5194/gi-5-75-2016, https://doi.org/10.5194/gi-5-75-2016, 2016
Short summary
Short summary
Sodankylä, in the heart of the Arctic Research Centre of the Finnish Meteorological Institute in northern Finland with temperatures ranging from −50 to +30 °C, provides a challenging location for numerical weather forecasting (NWP) models. In this article, the use of measurements performed in Sodankylä for near-real time online verification of NWP models is described. A more specific case study of three different radiation schemes, applicable in NWP model HARMONIE-AROME, is also presented.
Cited articles
Amm, O., Donovan, E. F., Frey, H., Lester, M., Nakamura, R., Wild, J. A., Aikio, A., Dunlop, M., Kauristie, K., Marchaudon, A., McCrea, I. W., Opgenoorth, H.-J., and Strømme, A.: Coordinated studies of the geospace environment using Cluster, satellite and ground-based data: an interim review, Ann. Geophys., 23, 2129–2170, https://doi.org/10.5194/angeo-23-2129-2005, 2005.
Bala, R. and Reiff, P.: Validating the Rice neural network and the Wing Kp real-time models, Space Weather, 12, 417–425, https://doi.org/10.1002/2014SW001075, 2014.
Bartels, J., Heck, N. H., and Johnston, H. F.: The three-hour range index measuring geomagnetic activity, J. Geophys. Res., 44, 411–454, https://doi.org/10.1029/TE044i004p00411, 1939.
Finnish Meteorological Institute and University of Oulu: The AurorasNow! Service, Sodankylä Geophysical Observatory, http://aurora.fmi.fi, last access: June 2016a.
Finnish Meteorological Institute, University of Oulu, University of Tromsö, Institute of Geophysics of the Polish Academy of Sciences, Polar Geophysical Institute (Russia), Swedish Institute of Space Physics, Geological Survey of Sweden, University of Tartu, Estonian Meteorological and Hydrological Institute, and National Institute of Astrophysics (Italy): http://space.fmi.fi/MIRACLE, last access: June 2016b.
Fukunishi, H., Toya, T., Koike, K., Kuwashima, M., and Kwamura, M.: Classification of hydromagnetic emissions based on frequency time spectra, J. Geophys. Res., 86, 9029–9039, 1981.
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm? J. Geophys. Res., 99, 5771–5792, 1994.
Johnsen, M. G.: Real-time determination and monitoring of the auroral electrojet boundaries, J. Space Weather Space Clim., 3, A28, https://doi.org/10.1051/swsc/2013050, 2013.
Lilensten, J., Sanahuja, B., and Messerotti, M.: A European definition for Space Weather, in Developing the scientific basis for monitoring, modelling and predicting Space Weather, edited by: Lilensten, J., Belehaki, A., Messerotti, M., Vainio, R., Watermann, J., and Poedts, S., Office for Official Publications of the European Communities, Luxembourg, 302–305, 2008.
Mälkki, A., Kauristie, K., and Viljanen, A.: Auroras Now!, Final Report, Volume I, Finnish Meteorological Institute, Helsinki, 86 pp., 2006.
Nevanlinna, H. and Pulkkinen, T. I.: Auroral observations in Finland: Results from all-sky cameras, 1973–1997, J. Geophys. Res., 106, 8109–8118, https://doi.org/10.1029/1999JA000362, 2001.
NOAA – The US National Oceanic and Atmospheric Administration: OVATION auroral forecast, http://www.swpc.noaa.gov/products/aurora-30-minute-forecast, last access: June 2016.
NOAA – The US National Oceanic and Atmospheric Administration: Space Weather Prediction Center, http://www.swpc.noaa.gov/ (last access: June 2016), 2016a.
NOAA – The US National Oceanic and Atmospheric Administration: Archive of alerts and warnings before 2015, NOAA Space Weather Prediction Center, http://legacy-www.swpc.noaa.gov/alerts/archive.html (last access: June 2016), 2016b.
Partamies, N., Juusola, L., Whiter, D., and Kauristie, K.: Substorm evolution of auroral structures, J. Geophys. Res., 120, 5958–5972, 2015.
Pulkkinen, A., Klimas, A., Vassiliadis, D., and Uritsky, V.: Role of stochastic fluctuations in the magnetosphere-ionosphere system: A stochastic model for the AE index variations, J. Geophys. Res., 111, A10218, https://doi.org/10.1029/2006JA011661, 2006.
Pulkkinen, T. I., Tanskanen, E. I., Viljanen, A., Partamies, N., and Kauristie, K.: Auroral electrojets during deep solar minimum at the end of solar cycle 23, J. Geophys. Res., 116, A04207, https://doi.org/10.1029/2010JA016098, 2011.
Rao, J., Partamies, N., Amariutei, O., Syrjäsuo, M., and van Sande, K. E. A.: Automatic Auroral Detection in Color All-Sky Camera Images, IEEE J. Select. Top. Appl. Earth Obs. Rem. S., 7, 4717–4725, https://doi.org/10.1109/JSTARS.2014.2321433, 2014.
Royal Observatory of Belgium: Solar Influences Data Center service in Belgia, http://sidc.oma.be/, last access: June 2016.
Seppinen, I. and Pellinen, R.: The history of Finnish Space Activities, Explorations, Studies in modern science and technology from the International Academy of the History of Science, Beauchesne Editeur, Paris, France, 203 pp., 2009.
Sigernes, F., Dyrland, M., Brekke, P., Chernouss, S., Lorentzen, D., Oksavik, K., and Deehr, C.: Two methods to forecast auroral display, J. Space Weather Space Clim. 1, A03, https://doi.org/10.1051/swsc/2011003, 2011.
Sigernes, F., Dyrland, M., Brekke, P., Chernouss, S., Lorentzen, D., Oksavik, K., and Deehr, C.: The Auroral forecast service at Kjell Henriksen Observatory (Svalbard, Norway), http://kho.unis.no, last access: June 2016.
Starkov, G. V.: Mathematical model of the auroral boundaries, Geomag. Aeron., 34, 331–336, 1994.
Sucksdorff, C., Bösinger, T., Kangas, J., Mursula, K., Nygren T., Kauristie, K., and Koskinen, H.: Geophysics in Finland in the Twentieth Century, Geophysica, 37, 309–355, 2001.
Syrjäsuo, M. and Partamies, N.: Numeric features for detection aurora, IEEE Geosci. Remote Sens. Lett., 99, 1–4, https://doi.org/10.1109/LGRS.2011.2163616, 2011.
Ursa Astronomical Association: Finland, http://www.taivaanvahti.fi/observations/browse/list/1120892/observation_start_time, last access: June 2016.
Wing, S., Johnson, J. R., Jen, J., Meng, C.-I., Sibeck, D. G., Bechtold, K., Freeman, J., Costello, K., Balikhin, M., and Takahashi, K.: Kp forecast models, J. Geophys. Res., 110, A04203, https://doi.org/10.1029/2004JA010500, 2005.
Zhang, Y. and Paxton, L. J.: An empirical Kp-dependent global auroral model based on TIMED/GUVI data, J. Atmos. Sol.-Terr. Phys., 70, 1231–1242, 2008.
Short summary
We use the connection between auroras and geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. RAF is based on statistical relationships between alerts by the NOAA Space Weather Prediction Center and magnetic time derivatives measured by five MIRACLE magnetometer stations located in the surroundings of the Sodankylä research station. As an improvement to previous similar services RAF yields knowledge on typical auroral storm durations at different latitudes.
We use the connection between auroras and geomagnetic field variations in a concept for a...