Articles | Volume 5, issue 2
https://doi.org/10.5194/gi-5-383-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.Influence of probe geometry on measurement results of non-ideal thermal conductivity sensors
Related authors
Related subject area
Space instruments
Laboratory measurements of the performances of the Sweeping Langmuir Probe instrument aboard the PICASSO CubeSat
Creating HiRISE digital elevation models for Mars using the open-source Ames Stereo Pipeline
Multiresolution wavelet analysis applied to GRACE range-rate residuals
Mars submillimeter sensor on microsatellite: sensor feasibility study
TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray flashes and associated electron beams
Geosci. Instrum. Method. Data Syst., 12, 1–13,
2023Geosci. Instrum. Method. Data Syst., 8, 293–313,
2019Geosci. Instrum. Method. Data Syst., 8, 197–207,
2019Geosci. Instrum. Method. Data Syst., 7, 331–341,
2018Geosci. Instrum. Method. Data Syst., 6, 239–256,
2017Cited articles
Abramowitz, M. and Stegun, I. A.: Handbook of mathematical functions with formulas, graphs and mathematical tables, US Department of Commerce, National Bureau of Standards, 1964.
Agilent: Agilent 34970A/34972A data acquisition/switch unit users's guide, Agilent Technologies, 2012.
Blackwell, J.: Transient heat flow problems in cylindrical symmetry, Ph.D. thesis, University of Western Ontario, London, Canada, 1952.
Blackwell, J.: A transient-flow method for determination of thermal constants of insulating materials in bulk, Part 1 – Theory, J. Appl. Phys., 25, 137–144, https://doi.org/10.1063/1.1721592, 1954.
Carslaw, H. S. and Jaeger, J. C.: Conduction of heat in solids, 2nd Edn., Oxford University Press, 510 pp., 1959.