Articles | Volume 6, issue 2
https://doi.org/10.5194/gi-6-239-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-6-239-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray flashes and associated electron beams
APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/DRF/IRFU,
Observatoire de Paris, Sorbonne Paris Cite, 10 rue Alice Domont et Leonie Duquet, 75205 Paris CEDEX 13, France
Francois Lebrun
APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/DRF/IRFU,
Observatoire de Paris, Sorbonne Paris Cite, 10 rue Alice Domont et Leonie Duquet, 75205 Paris CEDEX 13, France
CEA/DRF/IRFU/Sap, Bat. 709, Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Pierre-Louis Blelly
Universite de Toulouse, UPS-OMP, IRAP, Toulouse, France
CNRS, IRAP, 9 Av. colonel Roche, Toulouse, France
Remi Chipaux
CEA/DRF/IRFU/SEDI, CEA-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Philippe Laurent
APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/DRF/IRFU,
Observatoire de Paris, Sorbonne Paris Cite, 10 rue Alice Domont et Leonie Duquet, 75205 Paris CEDEX 13, France
CEA/DRF/IRFU/Sap, Bat. 709, Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette CEDEX, France
Jean-Andre Sauvaud
Universite de Toulouse, UPS-OMP, IRAP, Toulouse, France
CNRS, IRAP, 9 Av. colonel Roche, Toulouse, France
Lubomir Prech
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
Pierre Devoto
Universite de Toulouse, UPS-OMP, IRAP, Toulouse, France
CNRS, IRAP, 9 Av. colonel Roche, Toulouse, France
Damien Pailot
APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/DRF/IRFU,
Observatoire de Paris, Sorbonne Paris Cite, 10 rue Alice Domont et Leonie Duquet, 75205 Paris CEDEX 13, France
Jean-Pierre Baronick
APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/DRF/IRFU,
Observatoire de Paris, Sorbonne Paris Cite, 10 rue Alice Domont et Leonie Duquet, 75205 Paris CEDEX 13, France
Miles Lindsey-Clark
APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/DRF/IRFU,
Observatoire de Paris, Sorbonne Paris Cite, 10 rue Alice Domont et Leonie Duquet, 75205 Paris CEDEX 13, France
Related authors
David Sarria, Casper Rutjes, Gabriel Diniz, Alejandro Luque, Kevin M. A. Ihaddadene, Joseph R. Dwyer, Nikolai Østgaard, Alexander B. Skeltved, Ivan S. Ferreira, and Ute Ebert
Geosci. Model Dev., 11, 4515–4535, https://doi.org/10.5194/gmd-11-4515-2018, https://doi.org/10.5194/gmd-11-4515-2018, 2018
Short summary
Short summary
We evaluate three models (Geant4, REAM, GRRR) used in the field of high-energy atmospheric physics that are able to simulate relativistic runaway electron avalanches. Several models have been used by the community, but there was, up until now, no study evaluating their consistency in this context. We conclude that there are no major differences to report, and we discuss minor ones. We also provide advice on how to properly set up the general purpose code (Geant4) in this context.
Casper Rutjes, David Sarria, Alexander Broberg Skeltved, Alejandro Luque, Gabriel Diniz, Nikolai Østgaard, and Ute Ebert
Geosci. Model Dev., 9, 3961–3974, https://doi.org/10.5194/gmd-9-3961-2016, https://doi.org/10.5194/gmd-9-3961-2016, 2016
Short summary
Short summary
High energy atmospheric physics includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. It requires appropriate models for the interaction of energetic particles with the atmosphere. We benchmark general purpose and custom-made codes against each other. We focus on basic tests, namely on the evolution of particles through air in the absence of electric and magnetic fields, providing a first benchmark for present and future custom-made codes.
David Sarria, Casper Rutjes, Gabriel Diniz, Alejandro Luque, Kevin M. A. Ihaddadene, Joseph R. Dwyer, Nikolai Østgaard, Alexander B. Skeltved, Ivan S. Ferreira, and Ute Ebert
Geosci. Model Dev., 11, 4515–4535, https://doi.org/10.5194/gmd-11-4515-2018, https://doi.org/10.5194/gmd-11-4515-2018, 2018
Short summary
Short summary
We evaluate three models (Geant4, REAM, GRRR) used in the field of high-energy atmospheric physics that are able to simulate relativistic runaway electron avalanches. Several models have been used by the community, but there was, up until now, no study evaluating their consistency in this context. We conclude that there are no major differences to report, and we discuss minor ones. We also provide advice on how to properly set up the general purpose code (Geant4) in this context.
Johan De Keyser, Benoit Lavraud, Lubomir Přech, Eddy Neefs, Sophie Berkenbosch, Bram Beeckman, Andrei Fedorov, Maria Federica Marcucci, Rossana De Marco, and Daniele Brienza
Ann. Geophys., 36, 1285–1302, https://doi.org/10.5194/angeo-36-1285-2018, https://doi.org/10.5194/angeo-36-1285-2018, 2018
Short summary
Short summary
This paper describes "beam tracking", a new technology for measuring velocity distributions in the solar wind with a plasma spectrometer, that allows the order of magnitude speedup in data acquisition needed for studying ion-scale turbulence. The basic idea is that the spectrometer should only sample the energy–elevation–azimuth range where the solar wind is expected to reside. The paper shows how the technique can be implemented and illustrates its performance and robustness through simulation.
Casper Rutjes, David Sarria, Alexander Broberg Skeltved, Alejandro Luque, Gabriel Diniz, Nikolai Østgaard, and Ute Ebert
Geosci. Model Dev., 9, 3961–3974, https://doi.org/10.5194/gmd-9-3961-2016, https://doi.org/10.5194/gmd-9-3961-2016, 2016
Short summary
Short summary
High energy atmospheric physics includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. It requires appropriate models for the interaction of energetic particles with the atmosphere. We benchmark general purpose and custom-made codes against each other. We focus on basic tests, namely on the evolution of particles through air in the absence of electric and magnetic fields, providing a first benchmark for present and future custom-made codes.
F. Bourriez, J.-A. Sauvaud, J.-L. Pinçon, J.-J. Berthelier, and M. Parrot
Ann. Geophys., 34, 157–164, https://doi.org/10.5194/angeo-34-157-2016, https://doi.org/10.5194/angeo-34-157-2016, 2016
Short summary
Short summary
The purpose of our paper was to provide a statistical study of one of the interactions between lightning and particles occurring above thunderstorms. In our case, the satellite DEMETER was able to measure the energy of both particles and lightning. By correlating those measurements with lightning detection, we were able to determine the position of the causative lightning. The aim of this research was mainly to prepare the next spacecraft mission, which will study thunderstorms from space.
J.-A. Sauvaud, M. Parrot, and E. Slominska
Nat. Hazards Earth Syst. Sci., 14, 1–9, https://doi.org/10.5194/nhess-14-1-2014, https://doi.org/10.5194/nhess-14-1-2014, 2014
Related subject area
Space instruments
Laboratory measurements of the performances of the Sweeping Langmuir Probe instrument aboard the PICASSO CubeSat
Creating HiRISE digital elevation models for Mars using the open-source Ames Stereo Pipeline
Multiresolution wavelet analysis applied to GRACE range-rate residuals
Mars submillimeter sensor on microsatellite: sensor feasibility study
Wind reconstruction algorithm for Viking Lander 1
One-chip analog circuits for a new type of plasma wave receiver on board space missions
The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars
Mass spectrometry of planetary exospheres at high relative velocity: direct comparison of open- and closed-source measurements
Influence of probe geometry on measurement results of non-ideal thermal conductivity sensors
Analysis of COSIMA spectra: Bayesian approach
High-frequency performance of electric field sensors aboard the RESONANCE satellite
COSIMA data analysis using multivariate techniques
CLUSTER–STAFF search coil magnetometer calibration – comparisons with FGM
In-flight calibration of double-probe electric field measurements on Cluster
In-flight calibration of the Cluster PEACE sensors
In-flight calibration of the Hot Ion Analyser on board Cluster
Background subtraction for the Cluster/CODIF plasma ion mass spectrometer
Interpretation of Cluster WBD frequency conversion mode data
Enhanced timing accuracy for Cluster data
In-flight calibration of the Cluster/CODIF sensor
Calibration of non-ideal thermal conductivity sensors
Investigating thermal properties of gas-filled planetary regoliths using a thermal probe
Sylvain Ranvier and Jean-Pierre Lebreton
Geosci. Instrum. Method. Data Syst., 12, 1–13, https://doi.org/10.5194/gi-12-1-2023, https://doi.org/10.5194/gi-12-1-2023, 2023
Short summary
Short summary
The Sweeping Langmuir Probe on board the PICASSO CubeSat was designed to measure plasma parameters. Before launch, the instrument was tested in a plasma chamber. It is shown that the traditional method to interpret the data cannot be applied directly for this type of probe, and an adaptation is proposed. It is reported how, with a reduced number of data points, the plasma parameters can still be retrieved. Finally, the effects of the contamination of the probe surface are discussed.
Adam J. Hepburn, Tom Holt, Bryn Hubbard, and Felix Ng
Geosci. Instrum. Method. Data Syst., 8, 293–313, https://doi.org/10.5194/gi-8-293-2019, https://doi.org/10.5194/gi-8-293-2019, 2019
Short summary
Short summary
Currently, there exist thousands of unprocessed stereo pairs of satellite imagery which can be used to create models of the surface of Mars. This paper sets out a new open–source and free to use pipeline for creating these models. Our pipeline produces models of comparable quality to the limited number released to date but remains free to use and easily implemented by researchers, who may not necessarily have prior experience of DEM creation.
Saniya Behzadpour, Torsten Mayer-Gürr, Jakob Flury, Beate Klinger, and Sujata Goswami
Geosci. Instrum. Method. Data Syst., 8, 197–207, https://doi.org/10.5194/gi-8-197-2019, https://doi.org/10.5194/gi-8-197-2019, 2019
Short summary
Short summary
In this paper, we present an approach to represent underlying errors in measurements and physical models in the temporal gravity field determination using GRACE observations. This study provides an opportunity to improve the error model and the accuracy of the GRACE parameter estimation, as well as its successor GRACE Follow-On.
Richard Larsson, Yasuko Kasai, Takeshi Kuroda, Shigeru Sato, Takayoshi Yamada, Hiroyuki Maezawa, Yutaka Hasegawa, Toshiyuki Nishibori, Shinichi Nakasuka, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 7, 331–341, https://doi.org/10.5194/gi-7-331-2018, https://doi.org/10.5194/gi-7-331-2018, 2018
Short summary
Short summary
We are planning a Mars mission. The mission will carry an instrument capable of measuring and mapping molecular oxygen and water in the Martian atmosphere, as well as the temperature, wind, and magnetic field. Water and oxygen are vital parts of the Martian atmospheric chemistry and must be better understood. Using computer simulation results, the paper gives a description of how the measurements will work, some problems we expect to encounter, and the sensitivity of the measurements.
Tuomas Kynkäänniemi, Osku Kemppinen, Ari-Matti Harri, and Walter Schmidt
Geosci. Instrum. Method. Data Syst., 6, 217–229, https://doi.org/10.5194/gi-6-217-2017, https://doi.org/10.5194/gi-6-217-2017, 2017
Short summary
Short summary
The new wind reconstruction algorithm developed in this article extends the amount of available sols from the Viking Lander 1 (VL1) mission from 350 to 2245. The reconstruction of wind measurement data enables the study of both short-term phenomena, such as daily variations in wind conditions or dust devils, and long-term phenomena, such as the seasonal variations in Martian tides.
Takahiro Zushi, Hirotsugu Kojima, and Hiroshi Yamakawa
Geosci. Instrum. Method. Data Syst., 6, 159–167, https://doi.org/10.5194/gi-6-159-2017, https://doi.org/10.5194/gi-6-159-2017, 2017
Short summary
Short summary
Plasma waves are important observational targets for scientific missions investigating space plasma phenomena. Conventional plasma wave receivers have the disadvantages of a large size and a narrow dynamic range. We proposes a new receiver that overcomes the disadvantages of conventional receivers. The analog section of the new receiver was realized using application-specific integrated circuit (ASIC) technology in order to reduce the size, and an ASIC chip was successfully developed.
Ari-Matti Harri, Konstantin Pichkadze, Lev Zeleny, Luis Vazquez, Walter Schmidt, Sergey Alexashkin, Oleg Korablev, Hector Guerrero, Jyri Heilimo, Mikhail Uspensky, Valery Finchenko, Vyacheslav Linkin, Ignacio Arruego, Maria Genzer, Alexander Lipatov, Jouni Polkko, Mark Paton, Hannu Savijärvi, Harri Haukka, Tero Siili, Vladimir Khovanskov, Boris Ostesko, Andrey Poroshin, Marina Diaz-Michelena, Timo Siikonen, Matti Palin, Viktor Vorontsov, Alexander Polyakov, Francisco Valero, Osku Kemppinen, Jussi Leinonen, and Pilar Romero
Geosci. Instrum. Method. Data Syst., 6, 103–124, https://doi.org/10.5194/gi-6-103-2017, https://doi.org/10.5194/gi-6-103-2017, 2017
Short summary
Short summary
Investigations of Mars – its atmosphere, surface and interior – require simultaneous, distributed in situ measurements. We have developed an innovative prototype of the Mars Network Lander (MNL), a small lander/penetrator with a 20 % payload mass fraction. MNL features an innovative Entry, Descent and Landing System to increase reliability and reduce the system mass. It is ideally suited for piggy-backing on spacecraft, for network missions and pathfinders for high-value landed missions.
Stefan Meyer, Marek Tulej, and Peter Wurz
Geosci. Instrum. Method. Data Syst., 6, 1–8, https://doi.org/10.5194/gi-6-1-2017, https://doi.org/10.5194/gi-6-1-2017, 2017
Short summary
Short summary
We developed a prototype of the Neutral Gas and Ion Mass spectrometer (NIM) of the Particle Environment Package (PEP) for the JUICE mission of ESA. NIM will be used to measure the chemical composition of the exospheres of the icy Jovian moons. The NIM prototype was successfully tested under realistic conditions and we find that the closed source behaves as expected within the JUICE mission phase velocities. No additional fragmentation of the species recorded with the closed source is observed.
Patrick Tiefenbacher, Norbert I. Kömle, Wolfgang Macher, and Günter Kargl
Geosci. Instrum. Method. Data Syst., 5, 383–401, https://doi.org/10.5194/gi-5-383-2016, https://doi.org/10.5194/gi-5-383-2016, 2016
H. J. Lehto, B. Zaprudin, K. M. Lehto, T. Lönnberg, J. Silén, J. Rynö, H. Krüger, M. Hilchenbach, and J. Kissel
Geosci. Instrum. Method. Data Syst., 4, 139–148, https://doi.org/10.5194/gi-4-139-2015, https://doi.org/10.5194/gi-4-139-2015, 2015
M. Sampl, W. Macher, C. Gruber, T. Oswald, M. Kapper, H. O. Rucker, and M. Mogilevsky
Geosci. Instrum. Method. Data Syst., 4, 81–88, https://doi.org/10.5194/gi-4-81-2015, https://doi.org/10.5194/gi-4-81-2015, 2015
Short summary
Short summary
We present the high-frequency properties of the eight electric field sensors as proposed to be launched on the spacecraft “RESONANCE” in the near future. Due to the close proximity of the conducting spacecraft body, the sensors (antennas) have complex receiving features and need to be well understood for an optimal mission and spacecraft design. In particular techniques like wave polarization analysis and incident direction finding depend crucially on the presented antenna characteristics.
J. Silén, H. Cottin, M. Hilchenbach, J. Kissel, H. Lehto, S. Siljeström, and K. Varmuza
Geosci. Instrum. Method. Data Syst., 4, 45–56, https://doi.org/10.5194/gi-4-45-2015, https://doi.org/10.5194/gi-4-45-2015, 2015
Short summary
Short summary
COSIMA, an advanced TOF-SIMS instrument measuring the mass spectrum of dust grains collected at comet P67 by the ROSETTA spacecraft, is predicted to encounter complex mixtures of minerals and organic compounds. To extract information from this data set, we have developed a multivariate technique tested on laboratory measurements made by an identical instrument under controlled conditions. We have shown that minerals can be identified and separated with high level of confidence.
P. Robert, N. Cornilleau-Wehrlin, R. Piberne, Y. de Conchy, C. Lacombe, V. Bouzid, B. Grison, D. Alison, and P. Canu
Geosci. Instrum. Method. Data Syst., 3, 153–177, https://doi.org/10.5194/gi-3-153-2014, https://doi.org/10.5194/gi-3-153-2014, 2014
Y. V. Khotyaintsev, P.-A. Lindqvist, C. M. Cully, A. I. Eriksson, and M. André
Geosci. Instrum. Method. Data Syst., 3, 143–151, https://doi.org/10.5194/gi-3-143-2014, https://doi.org/10.5194/gi-3-143-2014, 2014
N. Doss, A. N. Fazakerley, B. Mihaljčić, A. D. Lahiff, R. J. Wilson, D. Kataria, I. Rozum, G. Watson, and Y. Bogdanova
Geosci. Instrum. Method. Data Syst., 3, 59–70, https://doi.org/10.5194/gi-3-59-2014, https://doi.org/10.5194/gi-3-59-2014, 2014
A. Blagau, I. Dandouras, A. Barthe, S. Brunato, G. Facskó, and V. Constantinescu
Geosci. Instrum. Method. Data Syst., 3, 49–58, https://doi.org/10.5194/gi-3-49-2014, https://doi.org/10.5194/gi-3-49-2014, 2014
C. G. Mouikis, L. M. Kistler, G. Wang, and Y. Liu
Geosci. Instrum. Method. Data Syst., 3, 41–48, https://doi.org/10.5194/gi-3-41-2014, https://doi.org/10.5194/gi-3-41-2014, 2014
J. S. Pickett, I. W. Christopher, and D. L. Kirchner
Geosci. Instrum. Method. Data Syst., 3, 21–27, https://doi.org/10.5194/gi-3-21-2014, https://doi.org/10.5194/gi-3-21-2014, 2014
K. H. Yearby, S. N. Walker, and M. A. Balikhin
Geosci. Instrum. Method. Data Syst., 2, 323–328, https://doi.org/10.5194/gi-2-323-2013, https://doi.org/10.5194/gi-2-323-2013, 2013
L. M. Kistler, C. G. Mouikis, and K. J. Genestreti
Geosci. Instrum. Method. Data Syst., 2, 225–235, https://doi.org/10.5194/gi-2-225-2013, https://doi.org/10.5194/gi-2-225-2013, 2013
N. I. Kömle, W. Macher, G. Kargl, and M. S. Bentley
Geosci. Instrum. Method. Data Syst., 2, 151–156, https://doi.org/10.5194/gi-2-151-2013, https://doi.org/10.5194/gi-2-151-2013, 2013
M. D. Paton, A.-M. Harri, T. Mäkinen, and S. F. Green
Geosci. Instrum. Method. Data Syst., 1, 7–21, https://doi.org/10.5194/gi-1-7-2012, https://doi.org/10.5194/gi-1-7-2012, 2012
Cited articles
Agostinelli, S., Allison, J., Amako, K. et al.: GEANT4: A simulation toolkit, Nucl. Instrum. Methods, A506, 250–303, https://doi.org/10.1016/S0168-9002(03)01368-8, 2003.
Allison, J., Amako, K., Apostolakis, J. et al.: Geant4 developments and applications, IEEE T. Nucl. Sci., 53, 270–278, https://doi.org/10.1109/TNS.2006.869826, 2006.
Briggs, M. S., Fishman, G. J., Connaughton, V., Bhat, P. N., Paciesas, W. S., Preece, R. D., Wilson-Hodge, C., Chaplin, V. L., Kippen, R. M., von Kienlin, A., Meegan, C. A., Bissaldi, E., Dwyer, J. R., Smith, D. M., Holzworth, R. H., Grove, J. E., and Chekhtman, A.: First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor, J. Geophys. Res.-Space, 115, A07323, https://doi.org/10.1029/2009JA015242, 2010.
Briggs, M. S., Connaughton, V., Wilson-Hodge, C., Preece, R. D., Fishman, G. J., Kippen, R. M., Bhat, P. N., Paciesas, W. S., Chaplin, V. L., Meegan, C. A., von Kienlin, A., Greiner, J., Dwyer, J. R., and Smith, D. M.: Electron-positron beams from terrestrial lightning observed with Fermi GBM, Geophys. Res. Lett., 38, L02808, https://doi.org/10.1029/2010GL046259, 2011.
Briggs, M. S., Xiong, S., Connaughton, V., Tierney, D., Fitzpatrick, G., Foley, S., Grove, J. E., Chekhtman, A., Gibby, M., Fishman, G. J., McBreen, S., Chaplin, V. L., Guiriec, S., Layden, E., Bhat, P. N., Hughes, M., Greiner, J., Kienlin, A., Kippen, R. M., Meegan, C. A., Paciesas, W. S., Preece, R. D., Wilson-Hodge, C., Holzworth, R. H., and Hutchins, M. L.: Terrestrial gamma-ray flashes in the Fermi era: Improved observations and analysis methods, J. Geophys. Res.-Space, 118, 3805–3830, https://doi.org/10.1002/jgra.50205, 2013.
Cecil, D. J., Buechler, D. E., and Blakeslee, R. J.: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description, Atmos. Res., 135–136, 404–414, https://doi.org/10.1016/j.atmosres.2012.06.028, 2014.
Cocco, V., Longo, F., and Tavani, M.: Simulation of the AGILE gamma-ray imaging detector performance: Part II, Nucl. Instrum. Meth. A, 486, 623–638, https://doi.org/10.1016/S0168-9002(01)02160-X, 2002.
Cohen, M. B., Inan, U. S., Said, R. K., Briggs, M. S., Fishman, G. J., Connaughton, V., and Cummer, S. A.: A lightning discharge producing a beam of relativistic electrons into space, Geophys. Res. Lett., 37, 1944-8007, https://doi.org/10.1029/2010GL044481, 2010.
Dwyer, J. R., Grefenstette, B. W., and Smith, D. M.: High-energy electron beams launched into space by thunderstorms, Geophys. Res. Lett., 35, L02815, https://doi.org/10.1029/2007GL032430, 2008.
Dwyer, J. R., Smith, D. M., and Cummer, S. A.: High-energy atmospheric physics: Terrestrial gamma-ray flashes and related phenomena, Space Sci. Res., 173, 133–196, https://doi.org/10.1007/s11214-012-9894-0, 2012.
Fishman, G. J., Bhat, P. N., Mallozzi, R., Horack, J. M., Koshut, T., Kouveliotou, C., Pendleton, G. N., Meegan, C. A., Wilson, R. B., Paciesas, W. S., Goodman, S. J., and Christian, H. J.: Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin, Science, 264, 1313–1316, https://doi.org/10.1126/science.264.5163.1313, 1994.
Fitzpatrick, G., Cramer, E., McBreen, S., Briggs, M. S., Foley, S., Tierney, D., Chaplin, V. L., Connaughton, V., Stanbro, M., Xiong, S., Dwyer, J., Fishman, G. J., Roberts, O. J., and von Kienlin, A.: Compton scattering in terrestrial gamma-ray flashes detected with the Fermi gamma-ray burst monitor, Phys. Rev. D, 90, 043008, https://doi.org/10.1103/PhysRevD.90.043008, 2014.
Gjesteland, T., Østgaard, N., Connell, P. H., Stadsnes, J., and Fishman, G. J.: Effects of dead time losses on terrestrial gamma ray flash measurements with the Burst and Transient Source Experiment, J. Geophys. Res.-Space, 115, A00E21, https://doi.org/10.1029/2009JA014578, 2010.
Gjesteland, T., Østgaard, N., Collier, A. B., Carlson, B. E., Eyles, C., and Smith, D. M.: A new method reveals more TGFs in the RHESSI data, Geophys. Res. Lett., 39, L05102, https://doi.org/10.1029/2012GL050899, 2012.
Grefenstette, B. W., Smith, D. M., Dwyer, J. R., and Fishman, G. J.: Time evolution of terrestrial gamma ray flashes, Geophys. Res. Lett., 35, L06802, https://doi.org/10.1029/2007GL032922, 2008.
Inan, U. S., Piddyachiy, D., Peter, W. B., Sauvaud, J. A., and Parrot, M.: DEMETER satellite observations of lightning-induced electron precipitation, Geophys. Res. Lett., 34, L07103, https://doi.org/10.1029/2006GL029238, 2007.
Kippen, R. M., Hoover, A. S., Wallace, M. S., Pendleton, G. N., Meegan, C. A., Fishman, G. J., Wilson-Hodge, C. A., Kouveliotou, C., Lichti, G. G., von Kienlin, A., Steinle, H., Diehl, R., Greiner, J., Preece, R. D., Connaughton, V., Briggs, M. S., Paciesas, W. S., and Bhat, P. N.: Instrument Response Modeling and Simulation for the GLAST Burst Monitor, in: The First GLAST Symposium, edited by: Ritz, S., Michelson, P., and Meegan, C. A., vol. 921 of American Institute of Physics Conference Series, American Institute of Physics (AIP), Stanford, California, USA, 590–591, https://doi.org/10.1063/1.2757466, 2007.
Labanti, C., Marisaldi, M., Fuschino, F., Galli, M., Argan, A., Bulgarelli, A., Di Cocco, G., Gianotti, F., Tavani, M., and Trifoglio, M.: Design and construction of the Mini-Calorimeter of the AGILE satellite, Nucl. Instrum. Methods Phys. Res. A, 598, 470–479, https://doi.org/10.1016/j.nima.2008.09.021, 2009.
Lefeuvre, F., Blanc, E., and Pinçon, J. L.: TARANIS – a satellite project dedicated to the physics of TLEs and TGFs, in: American Institute of Physics Conference Series, vol. 1118 of American Institute of Physics Conference Series, American Institute of Physics (AIP), Corte, France, 3–7, https://doi.org/10.1063/1.3137711, 2009.
Lewis, H. W.: A robust method for tropopause altitude identification using GPS radio occultation data, Geophys. Res. Lett., 36, L12808, https://doi.org/10.1029/2009GL039231, 2009.
Lin, R. P., Dennis, B. R., Hurford, G. J., Smith, D. M., Zehnder, A., Harvey, P. R., Curtis, D. W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H. F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R. D., Malone, D., Landis, D., Barrington-Leigh, C. P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I. S., Shirey, K., Tolbert, A. K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R. C., Holman, G. D., Crannell, C., Kosugi, T., Emslie, A. G., Vilmer, N., Brown, J. C., Johns-Krull, C., Aschwanden, M., Metcalf, T., and Conway, A.: The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Sol. Phys., 210, 3–32, https://doi.org/10.1023/A:1022428818870, 2002.
Longo, F., Cocco, V., and Tavani, M.: Simulation of the AGILE gamma-ray imaging detector performance: part I, Nucl. Instrum. Meth. A, 486, 610–622, https://doi.org/10.1016/S0168-9002(01)02159-3, 2002.
Mailyan, B. G., Briggs, M. S., Cramer, E. S., Fitzpatrick, G., Roberts, O. J., Stanbro, M., Connaughton, V., McBreen, S., Bhat, P. N., and Dwyer, J. R.: The spectroscopy of individual terrestrial gamma-ray flashes: Constraining the source properties, J. Geophys. Res.-Space, 121, 11346–11363, https://doi.org/10.1002/2016JA022702, 2016JA022702, 2016.
Marisaldi, M., Fuschino, F., Tavani, M., Dietrich, S., Price, C., Galli, M., Pittori, C., Verrecchia, F., Mereghetti, S., Cattaneo, P. W., Colafrancesco, S., Argan, A., Labanti, C., Longo, F., Del Monte, E., Barbiellini, G., Giuliani, A., Bulgarelli, A., Campana, R., Chen, A., Gianotti, F., Giommi, P., Lazzarotto, F., Morselli, A., Rapisarda, M., Rappoldi, A., Trifoglio, M., Trois, A., and Vercellone, S.: Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30 MeV, J. Geophys. Res.-Space, 119, 1337–1355, https://doi.org/10.1002/2013JA019301, 2014.
Marisaldi, M., Argan, A., Ursi, A., Gjesteland, T., Fuschino, F., Labanti, C., Galli, M., Tavani, M., Pittori, C., Verrecchia, F., D'Amico, F., Østgaard, N., Mereghetti, S., Campana, R., Cattaneo, P., Bulgarelli, A., Colafrancesco, S., Dietrich, S., Longo, F., Gianotti, F., Giommi, P., Rappoldi, A., Trifoglio, M., and Trois, A.: Enhanced detection of terrestrial gamma-ray flashes by AGILE, Geophys. Res. Lett., 42, 9481–9487, https://doi.org/10.1002/2015GL066100, 2015.
Marisaldi, M., Smith, D. M., Brandt, S., Briggs, M. S., Budtz-Jørgensen, C., Campana, R., Carlson, B. E., Celestin, S., Connaughton, V., Cummer, S. A., Dwyer, J. R., Fishman, G. J., Fullekrug, M., Fuschino, F., Gjesteland, T., Neubert, T., Østgaard, N., and Tavani, M.: High-energy radiation from thunderstorms and lightning with LOFT, ArXiv e-prints, 2015.
Meegan, C., Lichti, G., Bhat, P. N., Bissaldi, E., Briggs, M. S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A. S., van der Horst, A. J., von Kienlin, A., Kippen, R. M., Kouveliotou, C., McBreen, S., Paciesas, W. S., Preece, R., Steinle, H., Wallace, M. S., Wilson, R. B., and Wilson-Hodge, C.: The Fermi gamma-ray burst Monitor, Astrophys. J., 702, 791–804, https://doi.org/10.1088/0004-637X/702/1/791, 2009.
Neubert, T., Kuvvetli, I., Budtz-Jørgensen, C., Østgaard, N., Reglero, V., and Arnold, N.: The atmosphere-space interactions monitor (ASIM) for the international space station, in: Proceedings of the ILWS Workshop, edited by: Gopalswamy, N., and Bhattacharyya, A., Goa, India, 448–451, 2006.
Nisi, R. S., Østgaard, N., Gjesteland, T., and Collier, A. B.: An altitude and distance correction to the source fluence distribution of TGFs, J. Geophys. Res.-Space, 119, 8698–8704, https://doi.org/10.1002/2014JA019817, 2014.
Ostgaard, N., Gjesteland, T., Hansen, R. S., Collier, A. B., and Carlson, B.: The true fluence distribution of terrestrial gamma flashes at satellite altitude, J. Geophys. Res.-Space, 117, 2156-2202, https://doi.org/10.1029/2011JA017365, 2012.
Ostgaard, N., Albrecthsen, K. H., Gjesteland, T., and Collier, A.: A new population of terrestrial gamma-ray flashes in the RHESSI data, Geophys. Res. Lett., 42, 10937–10942, https://doi.org/10.1002/2015GL067064, 2015.
Sarria, D., Blelly, P.-L., and Forme, F.: MC-PEPTITA: a Monte Carlo model for photon, electron and positron tracking in terrestrial atmosphere, Application for a terrestrial gamma-ray flash, J. Geophys. Res.-Space, 120, 3970–3986, 2014JA020695, https://doi.org/10.1002/2014JA020695, 2015.
Sarria, D., Blelly, P.-L., Briggs, M. S., and Forme, F.: Studying the time histogram of a terrestrial electron beam detected from the opposite hemisphere of its associated TGF, J. Geophys. Res.-Space, 121, 4698–4704, https://doi.org/10.1002/2015JA021881, 2016.
Smith, D. M., Lin, R. P., Turin, P., Curtis, D. W., Primbsch, J. H., Campbell, R. D., Abiad, R., Schroeder, P., Cork, C. P., Hull, E. L., Landis, D. A., Madden, N. W., Malone, D., Pehl, R. H., Raudorf, T., Sangsingkeow, P., Boyle, R., Banks, I. S., Shirey, K., and Schwartz, R.: The RHESSI spectrometer, Sol. Phys., 210, 33–60, https://doi.org/10.1023/A:1022400716414, 2002.
Smith, D. M., Lopez, L. I., Lin, R. P., and Barrington-Leigh, C. P.: Terrestrial gamma-ray flashes observed up to 20 MeV, Science, 307, 1085–1088, https://doi.org/10.1126/science.1107466, 2005.
Smith, D. M., Grefenstette, B. W., Splitt, M., Lazarus, S. M., Rassoul, H. K., Coleman, L. M., Dwyer, J. R., Lay, E. H., Holzworth, R. H., Cohen, M. B., Said, R., Inan, U. S., Chronis, T. G., and Takahashi, Y.: The anomalous terrestrial gamma-ray flash of 17 January 2004, AGU Fall Meeting Abstracts, American Geophysical Union, American Geophysical Union Fall Metting, San Francisco, California, USA, p. A1040, 2006.
Surkov, V. V. and Hayakawa, M.: Underlying mechanisms of transient luminous events: a review, Ann. Geophys., 30, 1185-1212, https://doi.org/10.5194/angeo-30-1185-2012, 2012.
Tavani, M., Barbiellini, G., Argan, A. et al.: The AGILE Mission, Astron. Astrophys., 502, 995–1013, https://doi.org/10.1051/0004-6361/200810527, 2009.
Ursi, A., Guidorzi, C., Marisaldi, M., Sarria, D., and Frontera, F.: Terrestrial gamma-ray flashes in the BeppoSAX data archive, J. Atmos. Sol.-Terr. Phy., 156, 50–56, https://doi.org/10.1016/j.jastp.2017.02.014, 2017.
Voss, H. D., Imhof, W. L., Walt, M., Mobilia, J., Gaines, E. E., Reagan, J. B., Inan, U. S., Helliwell, R. A., Carpenter, D. L., and Katsufrakis, J. P.: Lightning-induced electron precipitation, Nature, 312, 740–742, https://doi.org/10.1038/312740a0, 1984.
Short summary
The TARANIS spacecraft will be launched at the end of 2018. It is one of the first dedicated to the study of terrestrial gamma-ray flashes (TGF) and associated electrons (TEB), produced by thunderstorms. We present two of the six instruments on board the TARANIS spacecraft: a gamma-ray and energetic electron detector (XGRE) and an electron detector (IDEE). We compare them to other instruments that have already detected TGF and TEB, and use them to estimate the detection rate of TARANIS.
The TARANIS spacecraft will be launched at the end of 2018. It is one of the first dedicated to...