Articles | Volume 6, issue 1
https://doi.org/10.5194/gi-6-39-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-6-39-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Radio-frequency interference mitigating hyperspectral L-band radiometer
Climate Research Division, Environment and Climate Change Canada,
Toronto, Ontario, M3H 5T4, Canada
Alexandre Roy
Centre d'Applications et de Recherches en
Télédétection, Université de Sherbrooke, Sherbrooke,
Québec, J1K 2R1, Canada
Frederick Solheim
Dakota Ridge Research and Development, Boulder, Colorado, 80303,
USA
Chris Derksen
Climate Research Division, Environment and Climate Change Canada,
Toronto, Ontario, M3H 5T4, Canada
Tom Watts
Department of Geography, Northumbria University, Newcastle upon
Tyne, NE1 8ST, UK
Alain Royer
Centre d'Applications et de Recherches en
Télédétection, Université de Sherbrooke, Sherbrooke,
Québec, J1K 2R1, Canada
Anne Walker
Climate Research Division, Environment and Climate Change Canada,
Toronto, Ontario, M3H 5T4, Canada
Related authors
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Libo Wang, Peter Toose, Ross Brown, and Chris Derksen
The Cryosphere, 10, 2589–2602, https://doi.org/10.5194/tc-10-2589-2016, https://doi.org/10.5194/tc-10-2589-2016, 2016
Short summary
Short summary
The conventional wisdom is that Arctic warming will result in an increase in the frequency of winter melt events. However, results in this study show little evidence of trends in winter melt frequency over 1988–2013 period. The frequency of winter melt events is strongly influenced by the selection of the start and end dates of winter period, and a fixed-window method for analyzing winter melt events is observed to generate false increasing trends from a shift in the timing of snow cover season.
Tom Watts, Nick Rutter, Peter Toose, Chris Derksen, Melody Sandells, and John Woodward
The Cryosphere, 10, 2069–2074, https://doi.org/10.5194/tc-10-2069-2016, https://doi.org/10.5194/tc-10-2069-2016, 2016
Short summary
Short summary
Ice layers in snowpacks introduce uncertainty in satellite-derived estimates of snow water equivalent, have ecological impacts on plants and animals, and change the thermal and vapour transport properties of the snowpack. Here we present a new field method for measuring the density of ice layers. The method was used in the Arctic and mid-latitudes; the mean measured ice layer density was significantly higher than values typically used in the literature.
Juliette Ortet, Arnaud Mialon, Alain Royer, Mike Schwank, Manu Holmberg, Kimmo Rautiainen, Simone Bircher-Adrot, Andreas Colliander, Yann Kerr, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3963, https://doi.org/10.5194/egusphere-2024-3963, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We propose a new method to determine the ground surface temperature under the snowpack in the Arctic area from satellite observations. The obtained ground temperatures time series were evaluated over 21 reference sites in Northern Alaska and compared with ground temperatures obtained with global models. The method is excessively promising for monitoring ground temperature below the snowpack and studying the spatiotemporal variability thanks to 15 years of observations over the whole Arctic area.
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024, https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Short summary
Parameterisations of Arctic snow processes were implemented into the multi-physics ensemble version of the snow model Crocus (embedded within the Soil, Vegetation, and Snow version 2 land surface model) and evaluated at an Arctic tundra site. Optimal combinations of parameterisations that improved the simulation of density and specific surface area featured modifications that raise wind speeds to increase compaction in surface layers, prevent snowdrift, and increase viscosity in basal layers.
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024, https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary
Short summary
Ground measurements of snow water equivalent (SWE) are vital for understanding the accuracy of large-scale estimates from satellites and climate models. We compare two types of measurements – snow courses and airborne gamma SWE estimates – and analyze how measurement type impacts the accuracy assessment of gridded SWE products. We use this analysis to produce a combined reference SWE dataset for North America, applicable for future gridded SWE product evaluations and other applications.
Haorui Sun, Yiwen Fang, Steven Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3213, https://doi.org/10.5194/egusphere-2024-3213, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The European Space Agency's Snow Climate Change Initiative (Snow CCI) developed a high-quality snow cover extent and snow water equivalent (SWE) Climate Data Record. However, gaps exist in complex terrain due to challenges in using passive microwave sensing and in-situ measurements. This study presents a methodology to fill the mountain SWE gap using Snow CCI Snow Cover Fraction within a Bayesian SWE reanalysis framework, with potential applications in untested regions and with other sensors.
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024, https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Short summary
We look at three commonly used snow depth datasets that are produced through a combination of snow modelling and historical measurements (reanalysis). When compared with each other, these datasets have differences that arise for various reasons. We show that a simple snow model can be used to examine these inconsistencies and highlight issues. This method indicates that one of the complex datasets should be excluded from further studies.
Julien Meloche, Nicolas R. Leroux, Benoit Montpetit, Vincent Vionnet, and Chris Derksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3169, https://doi.org/10.5194/egusphere-2024-3169, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Measuring the snow mass from radar measurements is possible with information on the snow and a radar model to link the measurements to snow. A key variable in a retrieval is the number of snow layers, with more layer yielding richer information but at increased computational cost. Here, we show the capabilities of a new method to simplify a complex snowpack, while preserving the scattering behavior of the snowpack and conserving the mass.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
EGUsphere, https://doi.org/10.5194/egusphere-2023-3014, https://doi.org/10.5194/egusphere-2023-3014, 2024
Short summary
Short summary
We evaluate and rank 23 products that estimate historical snow amounts. The evaluation uses new a set of ground measurements with improved spatial coverage enabling evaluation across both mountain and non-mountain regions. Performance measures vary tremendously across the products: while most perform reasonably in non-mountain regions, accurate representation of snow amounts in mountain regions and of historical trends is much more variable.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Konstantin Muzalevskiy, Zdenek Ruzicka, Alexandre Roy, Michael Loranty, and Alexander Vasiliev
The Cryosphere, 17, 4155–4164, https://doi.org/10.5194/tc-17-4155-2023, https://doi.org/10.5194/tc-17-4155-2023, 2023
Short summary
Short summary
A new all-weather method for determining the frozen/thawed (FT) state of soils in the Arctic region based on satellite data was proposed. The method is based on multifrequency measurement of brightness temperatures by the SMAP and GCOM-W1/AMSR2 satellites. The created method was tested at sites in Canada, Finland, Russia, and the USA, based on climatic weather station data. The proposed method identifies the FT state of Arctic soils with better accuracy than existing methods.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Bo Qu, Alexandre Roy, Joe R. Melton, Jennifer L. Baltzer, Youngryel Ryu, Matteo Detto, and Oliver Sonnentag
EGUsphere, https://doi.org/10.5194/egusphere-2023-1167, https://doi.org/10.5194/egusphere-2023-1167, 2023
Preprint archived
Short summary
Short summary
Accurately simulating photosynthesis and evapotranspiration challenges terrestrial biosphere models across North America’s boreal biome, in part due to uncertain representation of the maximum rate of photosynthetic carboxylation (Vcmax). This study used forest stand scale observations in an optimization framework to improve Vcmax values for representative vegetation types. Several stand characteristics well explained spatial Vcmax variability and were useful to improve boreal forest modelling.
Chris Derksen and Lawrence Mudryk
The Cryosphere, 17, 1431–1443, https://doi.org/10.5194/tc-17-1431-2023, https://doi.org/10.5194/tc-17-1431-2023, 2023
Short summary
Short summary
We examine Arctic snow cover trends through the lens of climate assessments. We determine the sensitivity of change in snow cover extent to year-over-year increases in time series length, reference period, the use of a statistical methodology to improve inter-dataset agreement, version changes in snow products, and snow product ensemble size. By identifying the sensitivity to the range of choices available to investigators, we increase confidence in reported Arctic snow extent changes.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021, https://doi.org/10.5194/tc-15-5079-2021, 2021
Short summary
Short summary
Dense spatially distributed networks of autonomous instruments for continuously measuring the amount of snow on the ground are needed for operational water resource and flood management and the monitoring of northern climate change. Four new-generation non-invasive sensors are compared. A review of their advantages, drawbacks and accuracy is discussed. This performance analysis is intended to help researchers and decision-makers choose the one system that is best suited to their needs.
Alex Mavrovic, Renato Pardo Lara, Aaron Berg, François Demontoux, Alain Royer, and Alexandre Roy
Hydrol. Earth Syst. Sci., 25, 1117–1131, https://doi.org/10.5194/hess-25-1117-2021, https://doi.org/10.5194/hess-25-1117-2021, 2021
Short summary
Short summary
This paper presents a new probe that measures soil microwave permittivity in the frequency range of satellite L-band sensors. The probe capacities will allow for validation and calibration of the models used to estimate landscape physical properties from raw microwave satellite datasets. Our results show important discrepancies between model estimates and instrument measurements that will need to be addressed.
Nataniel M. Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, https://doi.org/10.5194/bg-18-739-2021, 2021
Short summary
Short summary
Microwave radiation coming from Earth's land surface is affected by both soil moisture and the water in plants that cover the soil. We measured such radiation with a sensor elevated above a forest canopy while repeatedly measuring the amount of water stored in trees at the same location. Changes in the microwave signal over time were closely related to tree water storage changes. Satellites with similar sensors could thus be used to monitor how trees in an entire region respond to drought.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Lawrence Mudryk, María Santolaria-Otín, Gerhard Krinner, Martin Ménégoz, Chris Derksen, Claire Brutel-Vuilmet, Mike Brady, and Richard Essery
The Cryosphere, 14, 2495–2514, https://doi.org/10.5194/tc-14-2495-2020, https://doi.org/10.5194/tc-14-2495-2020, 2020
Short summary
Short summary
We analyze how well updated state-of-the-art climate models reproduce observed historical snow cover extent and snow mass and how they project that these quantities will change up to the year 2100. Overall the updated models better represent historical snow extent than previous models, and they simulate stronger historical trends in snow extent and snow mass. They project that spring snow extent will decrease by 8 % for each degree Celsius that the global surface air temperature increases.
Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Ross Brown, Richard Kelly, and Marco Tedesco
The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, https://doi.org/10.5194/tc-14-1579-2020, 2020
Short summary
Short summary
Existing stand-alone passive microwave SWE products have markedly different climatological SWE patterns compared to reanalysis-based datasets. The AMSR-E SWE has low spatial and temporal correlations with the four reanalysis-based products evaluated and GlobSnow and perform poorly in comparisons with snow transect data from Finland, Russia, and Canada. There is better agreement with in situ data when multiple SWE products, excluding the stand-alone passive microwave SWE products, are combined.
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Michael Prince, Alexandre Roy, Ludovic Brucker, Alain Royer, Youngwook Kim, and Tianjie Zhao
Earth Syst. Sci. Data, 10, 2055–2067, https://doi.org/10.5194/essd-10-2055-2018, https://doi.org/10.5194/essd-10-2055-2018, 2018
Short summary
Short summary
This paper presents the weekly polar-gridded Aquarius passive L-band surface freeze–thaw product (FT-AP) distributed on the EASE-Grid 2.0 with a resolution of 36 km. To evaluate the product, we compared it with the resampled 37 GHz FT Earth Science Data Record during the overlapping period between 2011 and 2014. The FT-AP ensures, with the SMAP mission that is still in operation, an L-band passive FT monitoring continuum with NASA’s space-borne radiometers, for a period beginning in August 2011.
Fanny Larue, Alain Royer, Danielle De Sève, Alexandre Roy, and Emmanuel Cosme
Hydrol. Earth Syst. Sci., 22, 5711–5734, https://doi.org/10.5194/hess-22-5711-2018, https://doi.org/10.5194/hess-22-5711-2018, 2018
Short summary
Short summary
A data assimilation scheme was developed to improve snow water equivalent (SWE) simulations by updating meteorological forcings and snowpack states using passive microwave satellite observations. A chain of models was first calibrated to simulate satellite observations over northeastern Canada. The assimilation was then validated over 12 stations where daily SWE measurements were acquired during 4 winters (2012–2016). The overall SWE bias is reduced by 68 % compared to original SWE simulations.
Alex Mavrovic, Alexandre Roy, Alain Royer, Bilal Filali, François Boone, Christoforos Pappas, and Oliver Sonnentag
Geosci. Instrum. Method. Data Syst., 7, 195–208, https://doi.org/10.5194/gi-7-195-2018, https://doi.org/10.5194/gi-7-195-2018, 2018
Short summary
Short summary
To improve microwave satellite and airborne observation products in forest environments, a precise and reliable estimation of the permittivity of trees is required. We developed a probe suitable to measure the permittivity of tree trunks at L band in the field. The system is easily transportable in the field, low energy consuming, operational at low temperatures and weatherproof. The permittivity of seven tree species in both frozen and thawed states was measured, showing important contrast.
Paul J. Kushner, Lawrence R. Mudryk, William Merryfield, Jaison T. Ambadan, Aaron Berg, Adéline Bichet, Ross Brown, Chris Derksen, Stephen J. Déry, Arlan Dirkson, Greg Flato, Christopher G. Fletcher, John C. Fyfe, Nathan Gillett, Christian Haas, Stephen Howell, Frédéric Laliberté, Kelly McCusker, Michael Sigmond, Reinel Sospedra-Alfonso, Neil F. Tandon, Chad Thackeray, Bruno Tremblay, and Francis W. Zwiers
The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, https://doi.org/10.5194/tc-12-1137-2018, 2018
Short summary
Short summary
Here, the Canadian research network CanSISE uses state-of-the-art observations of snow and sea ice to assess how Canada's climate model and climate prediction systems capture variability in snow, sea ice, and related climate parameters. We find that the system performs well, accounting for observational uncertainty (especially for snow), model uncertainty, and chaotic climate variability. Even for variables like sea ice, where improvement is needed, useful prediction tools can be developed.
Lawrence R. Mudryk, Chris Derksen, Stephen Howell, Fred Laliberté, Chad Thackeray, Reinel Sospedra-Alfonso, Vincent Vionnet, Paul J. Kushner, and Ross Brown
The Cryosphere, 12, 1157–1176, https://doi.org/10.5194/tc-12-1157-2018, https://doi.org/10.5194/tc-12-1157-2018, 2018
Short summary
Short summary
This paper presents changes in both snow and sea ice that have occurred over Canada during the recent past and shows climate model estimates for future changes expected to occur by the year 2050. The historical changes of snow and sea ice are generally coherent and consistent with the regional history of temperature and precipitation changes. It is expected that snow and sea ice will continue to decrease in the future, declining by an additional 15–30 % from present day values by the year 2050.
Yann Blanchard, Alain Royer, Norman T. O'Neill, David D. Turner, and Edwin W. Eloranta
Atmos. Meas. Tech., 10, 2129–2147, https://doi.org/10.5194/amt-10-2129-2017, https://doi.org/10.5194/amt-10-2129-2017, 2017
Short summary
Short summary
Multiband thermal measurements of zenith sky radiance were used in a retrieval algorithm, to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. The retrieval technique was validated using a synergy lidar and radar data. Inversions were performed across three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of thin ice clouds.
Libo Wang, Peter Toose, Ross Brown, and Chris Derksen
The Cryosphere, 10, 2589–2602, https://doi.org/10.5194/tc-10-2589-2016, https://doi.org/10.5194/tc-10-2589-2016, 2016
Short summary
Short summary
The conventional wisdom is that Arctic warming will result in an increase in the frequency of winter melt events. However, results in this study show little evidence of trends in winter melt frequency over 1988–2013 period. The frequency of winter melt events is strongly influenced by the selection of the start and end dates of winter period, and a fixed-window method for analyzing winter melt events is observed to generate false increasing trends from a shift in the timing of snow cover season.
Tom Watts, Nick Rutter, Peter Toose, Chris Derksen, Melody Sandells, and John Woodward
The Cryosphere, 10, 2069–2074, https://doi.org/10.5194/tc-10-2069-2016, https://doi.org/10.5194/tc-10-2069-2016, 2016
Short summary
Short summary
Ice layers in snowpacks introduce uncertainty in satellite-derived estimates of snow water equivalent, have ecological impacts on plants and animals, and change the thermal and vapour transport properties of the snowpack. Here we present a new field method for measuring the density of ice layers. The method was used in the Arctic and mid-latitudes; the mean measured ice layer density was significantly higher than values typically used in the literature.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Henna-Reetta Hannula, Juha Lemmetyinen, Anna Kontu, Chris Derksen, and Jouni Pulliainen
Geosci. Instrum. Method. Data Syst., 5, 347–363, https://doi.org/10.5194/gi-5-347-2016, https://doi.org/10.5194/gi-5-347-2016, 2016
Short summary
Short summary
The paper described an extensive in situ data set of bulk snow depth, snow water equivalent, and snow density collected as a support of SnowSAR-2 airborne campaign in northern Finland. The spatial and temporal variability of these snow properties was analyzed in different land cover types. The success of the chosen measurement protocol to provide an accurate reference for the simultaneous SAR data products was analyzed in the context of spatial scale, sample size, and uncertainty.
Stephen E. L. Howell, Frédéric Laliberté, Ron Kwok, Chris Derksen, and Joshua King
The Cryosphere, 10, 1463–1475, https://doi.org/10.5194/tc-10-1463-2016, https://doi.org/10.5194/tc-10-1463-2016, 2016
Short summary
Short summary
The Canadian Ice Service record of observed landfast ice and snow thickness represents one of the longest in the Arctic that spans over 5 decades. We analyze this record to report on long-term trends and variability of ice and snow thickness within the Canadian Arctic Archipelago (CAA). Results indicate a thinning of ice at several sites in the CAA. State-of-the-art climate models still have difficultly capturing observed ice thickness values in the CAA and should be used with caution.
Alexandre Roy, Alain Royer, Olivier St-Jean-Rondeau, Benoit Montpetit, Ghislain Picard, Alex Mavrovic, Nicolas Marchand, and Alexandre Langlois
The Cryosphere, 10, 623–638, https://doi.org/10.5194/tc-10-623-2016, https://doi.org/10.5194/tc-10-623-2016, 2016
C. Papasodoro, E. Berthier, A. Royer, C. Zdanowicz, and A. Langlois
The Cryosphere, 9, 1535–1550, https://doi.org/10.5194/tc-9-1535-2015, https://doi.org/10.5194/tc-9-1535-2015, 2015
Short summary
Short summary
Located at the far south (~62.5° N) of the Canadian Arctic, Grinnell and Terra Nivea Ice Caps are good climate proxies in this scarce data region. Multiple data sets (in situ, airborne and spaceborne) reveal changes in area, elevation and mass over the past 62 years. Ice wastage sharply accelerated during the last decade for both ice caps, as illustrated by the strongly negative mass balance of Terra Nivea over 2007-2014 (-1.77 ± 0.36 m a-1 w.e.). Possible climatic drivers are also discussed.
G. Picard, A. Royer, L. Arnaud, and M. Fily
The Cryosphere, 8, 1105–1119, https://doi.org/10.5194/tc-8-1105-2014, https://doi.org/10.5194/tc-8-1105-2014, 2014
S. E. L. Howell, T. Wohlleben, A. Komarov, L. Pizzolato, and C. Derksen
The Cryosphere, 7, 1753–1768, https://doi.org/10.5194/tc-7-1753-2013, https://doi.org/10.5194/tc-7-1753-2013, 2013
G. Picard, L. Brucker, A. Roy, F. Dupont, M. Fily, A. Royer, and C. Harlow
Geosci. Model Dev., 6, 1061–1078, https://doi.org/10.5194/gmd-6-1061-2013, https://doi.org/10.5194/gmd-6-1061-2013, 2013
A. Roy, A. Royer, B. Montpetit, P. A. Bartlett, and A. Langlois
The Cryosphere, 7, 961–975, https://doi.org/10.5194/tc-7-961-2013, https://doi.org/10.5194/tc-7-961-2013, 2013
Related subject area
Microwave
Dielectric characterization of vegetation at L band using an open-ended coaxial probe
Time series analysis of ground-based microwave measurements at K- and V-bands to detect temporal changes in water vapor and temperature profiles
Application of ground-penetrating radar technique to evaluate the waterfront location in hardened concrete
Alex Mavrovic, Alexandre Roy, Alain Royer, Bilal Filali, François Boone, Christoforos Pappas, and Oliver Sonnentag
Geosci. Instrum. Method. Data Syst., 7, 195–208, https://doi.org/10.5194/gi-7-195-2018, https://doi.org/10.5194/gi-7-195-2018, 2018
Short summary
Short summary
To improve microwave satellite and airborne observation products in forest environments, a precise and reliable estimation of the permittivity of trees is required. We developed a probe suitable to measure the permittivity of tree trunks at L band in the field. The system is easily transportable in the field, low energy consuming, operational at low temperatures and weatherproof. The permittivity of seven tree species in both frozen and thawed states was measured, showing important contrast.
Sibananda Panda, Swaroop Sahoo, and Govindan Pandithurai
Geosci. Instrum. Method. Data Syst., 6, 15–26, https://doi.org/10.5194/gi-6-15-2017, https://doi.org/10.5194/gi-6-15-2017, 2017
Short summary
Short summary
The focus of the paper is estimating profiles of water vapor and temperature with high accuracy from microwave radiometer measurements, performed for the month of August 2011 as part of the Integrated Ground Campaign during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX-IGOC). To improve the accuracy of retrieved profiles Bayesian optimal estimation has been used along with optimized background data set.
Isabel Rodríguez-Abad, Gilles Klysz, Rosa Martínez-Sala, Jean Paul Balayssac, and Jesús Mené-Aparicio
Geosci. Instrum. Method. Data Syst., 5, 567–574, https://doi.org/10.5194/gi-5-567-2016, https://doi.org/10.5194/gi-5-567-2016, 2016
Short summary
Short summary
When assessing concrete structures durability, the study of the water penetration is critical, because almost all deterioration reactions require the presence of water. Due to the nondestructive nature of ground-penetrating radar (GPR) technique, the objective of this study is, firstly, to assess water penetration depths in concrete from GPR wave parameters. Secondly, a procedure was developed to be able to determine, from GPR signals, the location of waterfront depths.
Cited articles
Anterrieu, E. and Khazâal, A.: One year of RFI detection and quantification with L1a signals provided by SMOS reference radiometers, Int. Geosci. Remote Sens., 2245–2248, 2011.
Aksoy, M. and Johnson, J. T.: A study of SMOS RFI over North America, Int. Geosci. Remote Sens., 10, 515–519, 2013.
Delwart, S. Bouzinac, C., Wursteisen, P., Berger, M., Drinkwater, M., Martin-Neira, M., and Kerr, Y.: SMOS Validation and the COSMOS campaigns, Int. Geosci. Remote Sens., 46, 695–704, 2008.
Delahaye, J.-Y., Golé, P., and Waldteufel, P.: Calibration error of L-band sky-looking ground-based radiometers, Radio Sci., 37, 11-1–11-11, 2002.
Entekhabi, D., Yueh, S., O'Neill, P. E., Wood, E. F., Njoku, E. G., Entin, J. K., and Kellogg, K. H.: The NASA Soil Moisture Active Passive (SMAP) Mission Status and Early Results, Geophys. Res. Abstr., EGU2015-5973, EGU General Assembly 2015, Vienna, Austria, 2015.
Fanise, P., Pardé, M., Zribi, M., Dechambre, M., and Caudoux, C.: Analysis of RFI identification and mitigation in CAROLS radiometer data using a hardware spectrum analyser, Sensors, 11, 3037–3050. 2011.
Forte, G. F., Tarongi, J. M., and Camps, A.: Hardware implementation of a wavelet-based radio frequency interference mitigation algorithm for microwave radiometers, Int. Geosci. Remote Sens., 2241–2244, 2011.
Hallikainen, M., Kainulainen, J., Seppanen, J., Hakkarainen, A., and Rautiainen, K.: Studies of radio frequency interference at L-band using an airborne 2-D interferometric radiometer, Int. Geosci. Remote Sen., 2490–2491, 2010.
Guner, B., Johnson, J. T., and Niamsuwan, N.: Time and frequency blanking for radio-frequency interference mitigation in microwave radiometry, IEEE T. Geosci. Remote, 45, 3672–3679, 2007.
ITU: No. 5.340 of Radio Regulations (RR) of the International Telecommunications Union – Radiocommunications sector (ITU-R), Article 5, Radio Regulations, Vol. 1, Edition of 2012, available at: https://www.itu.int/pub/R-REG-RR-2012 (last access: 11 October 2016), 2012.
Kaleschke, L., Tian-Kunze, X., Maaß, N., Mäkynen, M., and Drusch, M.: Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period, Geophys. Res. Lett., 39, L05501, https://doi.org/10.1029/2012GL050916, 2012.
Kaleschke, L., Tian-Kunze, X., Maaß, N., Beitsch, A., Wernecke, A., Miernecki, M., Müller, G., Fock, B. H., Gierisch, A. M., Schlünzen, K. H., and Pohlmann, T.: SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone, Remote Sens. Environ., 180, 264–273, 2016.
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F. O., Boutin, J., Escorihuela, M. J., Font, J., Reul, N., Gruhier, C., and Juglea, S. E.: The SMOS mission: New tool for monitoring key elements of the global water cycle, IEEE Proc., 98, 666–687, 2010.
Khazâal, A., Cabot, F., Anterrieu, E., and Soldo, Y.: A kurtosis-based approach to detect RFI in SMOS image reconstruction data processor, IEEE T. Geosci. Remote Sens., 52, 7038–7047, 2014.
Lagerloef, G., de Charon, A., and Lindstrom, E.: Ocean salinity and the Aquarius/SAC-D mission: A new frontier in ocean remote sensing, Mar. Technol. Soc. J., 47, 26–30, 2013.
Lemmetyinen, J., Schwank, M., Rautiainen, K., Parkkinen, T., Mätzler, C., Wiesmann, A., Wegmüller, U., Derksen, C., Toose, P., Roy, A., and Pulliainen, J.: Snow density and ground permittivity retrieved from L-Band radiometry: application to experimental data, Remote Sens. Environ., 180, 377–391, 2016.
Le Vine, D. M.: ESTAR experience with RFI at L-band and implications for future passive microwave remote sensing from space, Int. Geosci. Remote Sens., 2, 847–849, 2002.
Le Vine, D. M., Abraham, S., Kerr, Y., Wilson, W. J., and Skou, N.: Comparison of Model Prediction With Measurements of Galactic Background Noise at L-Band, IEEE T. Geosci. Remote, 43, 2018–2023, 2005.
Le Vine, D. M., de Matthaeis, P., Ruf, C. S., and Chen, D. D.: Aquarius RFI detection and mitigation algorithm: Assessment and examples, IEEE T. Geosci. Remote, 52, 4574–4584, 2014.
Misra, S., Mohammed, P. N., Güner, B., Ruf, C. S., Piepmeier, J. R., and Johnson, J. T.: Microwave radiometer radio-frequency interference detection algorithms: A comparative study, IEEE T. Geosci. Remote, 47, 3742–3754, 2009.
Misra, S., Johnson, J., Aksoy, M., Peng, J., Bradley, D., O'Dwyer, I., Padmanabhan, S., Dawson, D., Chazanoff, S., Latham, B., and Gaier, T.: SMAP RFI mitigation algorithm performance characterization using airborne high-rate direct-sampled SMAPVEX 2012 data, Int. Geosci. Remote Sens., 41–44, 2013.
O'Haver, T.: Software for peak finding and measurement, in: A Pragmatic Introduction to Signal Processing with application in scientific measurement, 1–142, available at: https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing.pdf (last access: 3 November 2016), 2016.
Oliva, R., Daganzo, E., Richaume, P., Kerr, Y., Cabot, F., Soldo, Y., Anterrieu, E., Reul, N., Gutierrez, A., Barbosa, J., and Lopes, G.: Status of Radio Frequency Interference (RFI) in the 1400–1427 MHz passive band based on six years of SMOS mission, Remote Sens. Environ., 180, 64–75, 2016
Pardé, M., Zribi, M., Fanise, P., and Dechambre, M.: Analysis of RFI issue using the CAROLS L-band experiment, IEEE T. Geosci. Remote, 49, 1063–1070, 2011.
Pellarin, T., Mialon, A., Biron, R., Coulaud, C., Gibon, F., Ferr, Y., Lafaysse, M., Mercier, B., Morin, S., Redor, I., Schwank, M., and Völksch, I.: Three years of L-band brightness temperature measurements in a mountainous area: Topography, vegetation and snowmelt issues, Remote Sens. Environ., 180, 85–98, 2016.
Piepmeier, J. R., Johnson, J. T., Mohammed, P. N., Bradley, D., Ruf, C., Aksoy, M., Garcia, R., Hudson, D., Miles, L., and Wong, M.: Radio-frequency interference mitigation for the soil moisture active passive microwave radiometer, IEEE T. Geosci. Remote, 52, 761–775, 2014.
Rautiainen, K., Kainulainen, J., Auer, T., Pihlflyckt, J., Kettunen, J., and Hallikainen, M. T.: Helsinki University of Technology L-band airborne synthetic aperture radiometer, IEEE T. Geosci. Remote, 46, 717–726, 2008.
Rautiainen, K., Lemmetyinen, J., Schwank, M., Kontu, A., Ménard, C. B., Mätzler, C., Drusch, M., Wiesmann, A., Ikonen, J., and Pulliainen, J.: Detection of soil freezing from L-band passive microwave observations, Remote Sens. Environ., 147, 206–218, 2014.
Rautiainen, K., Parkkinen, T., Lemmetyinen, J., Schwank, M., Wiesmann, A., Ikonen, J., Derksen, C., Davydov, S., Davydova, A., Boike, J., and Langer, M.: SMOS prototype algorithm for detecting autumn soil freezing, Remote Sens. Environ., 180, 346–360, 2016.
Roy, A., Royer, A., Derksen, C., Brucker, L., Langlois, A., Mialon, A., and Kerr, Y. H.: Evaluation of Spaceborne L-Band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada, IEEE J. Sel. Top. Appl., 8, 4442–4459, 2015.
Roy, A., Toose, P., Williamson, M., Rowlandson, T., Derksen, C., Royer, A., Berg, A., Lemmetyinen, J., and Arnold, L.: Response of L-Band brightness temperature to freeze/thaw and snow dynamics in a prairie environment, Remote Sens. Environ., 191, 67–80, 2017.
Schwank, M., Mätzler, C., Wiesmann, A., Wegmüller, U., Pulliainen, J., Lemmetyinen, J., and Drusch, M.: Snow density and ground permittivity retrieved from L-band radiometry: A synthetic analysis, IEEE J. Sel. Top. Appl., 8, 3833–3845, 2015.
Skou, N., Misra, S., Balling, J. E., Kristensen, S. S., and Sobjaerg, S. S.: L-band RFI as experienced during airborne campaigns in preparation for SMOS, IEEE T. Geosci. Remote, 48, 1398–1407, 2010.
Short summary
Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers used for monitoring essential climate variables. A 385-channel hyperspectral L-band radiometer system was designed with the means to quantify the strength and type of RFI. The compact design makes it ideal for mounting on both surface and airborne platforms to be used for calibrating and validating measurement from spaceborne sensors.
Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal...