Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.182 IF 1.182
  • IF 5-year value: 1.437 IF 5-year
    1.437
  • CiteScore value: 3.0 CiteScore
    3.0
  • SNIP value: 0.686 SNIP 0.686
  • IPP value: 1.36 IPP 1.36
  • SJR value: 0.538 SJR 0.538
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 11 Scimago H
    index 11
  • h5-index value: 13 h5-index 13
GI | Articles | Volume 8, issue 1
Geosci. Instrum. Method. Data Syst., 8, 63–76, 2019
https://doi.org/10.5194/gi-8-63-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Instrum. Method. Data Syst., 8, 63–76, 2019
https://doi.org/10.5194/gi-8-63-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Feb 2019

Research article | 12 Feb 2019

Advanced calibration of magnetometers on spin-stabilized spacecraft based on parameter decoupling

Ferdinand Plaschke et al.

Data sets

THEMIS mission data including FGM and ESA data THEMIS http://themis.ssl.berkeley.edu/data/themis

Publications Copernicus
Download
Short summary
Raw output of spacecraft magnetometers has to be converted into meaningful units and coordinate systems before it is usable for scientific applications. This conversion is defined by 12 calibration parameters, 8 of which are more easily determined in flight if the spacecraft is spinning. We present theory and advanced algorithms to determine these eight parameters. They take into account the physical magnetometer and spacecraft behavior, making them superior to previously published algorithms.
Raw output of spacecraft magnetometers has to be converted into meaningful units and coordinate...
Citation