Articles | Volume 13, issue 2
https://doi.org/10.5194/gi-13-373-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-13-373-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Shipborne comparison of infrared and passive microwave radiometers for sea surface temperature observations
Guisella Gacitúa
CORRESPONDING AUTHOR
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen, Denmark
Jacob Lorentsen Høyer
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen, Denmark
Sten Schmidl Søbjærg
DTU-Space, Technical University of Denmark, Elektrovej 327, 2800 Kongens Lyngby, Denmark
Hoyeon Shi
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen, Denmark
Sotirios Skarpalezos
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen, Denmark
Ioanna Karagali
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen, Denmark
Emy Alerskans
Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen, Denmark
Craig Donlon
European Space Agency/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Related authors
Elizabeth R. Thomas, Dieter Tetzner, Bradley Markle, Joel Pedro, Guisella Gacitúa, Dorothea Elisabeth Moser, and Sarah Jackson
Clim. Past, 20, 2525–2538, https://doi.org/10.5194/cp-20-2525-2024, https://doi.org/10.5194/cp-20-2525-2024, 2024
Short summary
Short summary
The chemical records contained in a 12 m firn (ice) core from Peter I Island, a remote sub-Antarctic island situated in the Pacific sector of the Southern Ocean (the Bellingshausen Sea), capture changes in snowfall and temperature (2002–2017 CE). This data-sparse region has experienced dramatic climate change in recent decades, including sea ice decline and ice loss from adjacent West Antarctic glaciers.
Elizabeth Ruth Thomas, Guisella Gacitúa, Joel B. Pedro, Amy Constance Faith King, Bradley Markle, Mariusz Potocki, and Dorothea Elisabeth Moser
The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021, https://doi.org/10.5194/tc-15-1173-2021, 2021
Short summary
Short summary
Here we present the first-ever radar and ice core data from the sub-Antarctic islands of Bouvet Island, Peter I Island, and Young Island. These islands have the potential to record past climate in one of the most data-sparse regions on earth. Despite their northerly location, surface melting is generally low, and the upper layer of the ice at most sites is undisturbed. We estimate that a 100 m ice core drilled on these islands could capture climate over the past 100–200 years.
Guisella Gacitúa, Christoph Schneider, Jorge Arigony, Inti González, Ricardo Jaña, and Gino Casassa
Earth Syst. Sci. Data, 13, 231–236, https://doi.org/10.5194/essd-13-231-2021, https://doi.org/10.5194/essd-13-231-2021, 2021
Short summary
Short summary
We performed the first successful ice thickness measurements using terrestrial ground-penetrating radar in the ablation area of Schiaparelli Glacier (Cordillera Darwin, Tierra del Fuego, Chile). Data are fundamental to understand glaciers dynamics, constrain ice dynamical modelling, and predict glacier evolution. Results show a valley-shaped bedrock below current sea level; thus further retreat of Schiaparelli Glacier will probably lead to an enlarged and strongly over-deepened proglacial lake.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Robert R. King, Matthew J. Martin, Lucile Gaultier, Jennifer Waters, Clément Ubelmann, and Craig Donlon
Ocean Sci., 20, 1657–1676, https://doi.org/10.5194/os-20-1657-2024, https://doi.org/10.5194/os-20-1657-2024, 2024
Short summary
Short summary
We use simulations of our ocean forecasting system to compare the impact of additional altimeter observations from two proposed future satellite constellations. We found that, in our system, an altimeter constellation of 12 nadir altimeters produces improved predictions of sea surface height, surface currents, temperature, and salinity compared to a constellation of 2 wide-swath altimeters.
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024, https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary
Short summary
Here, we present ASIP: a new and comprehensive deep-learning-based methodology to retrieve high-resolution sea ice concentration with accompanying well-calibrated uncertainties from satellite-based active and passive microwave observations at a pan-Arctic scale for all seasons. In a comparative study against pan-Arctic ice charts and well-established passive-microwave-based sea ice products, we show that ASIP generalizes well to the pan-Arctic region.
Elizabeth R. Thomas, Dieter Tetzner, Bradley Markle, Joel Pedro, Guisella Gacitúa, Dorothea Elisabeth Moser, and Sarah Jackson
Clim. Past, 20, 2525–2538, https://doi.org/10.5194/cp-20-2525-2024, https://doi.org/10.5194/cp-20-2525-2024, 2024
Short summary
Short summary
The chemical records contained in a 12 m firn (ice) core from Peter I Island, a remote sub-Antarctic island situated in the Pacific sector of the Southern Ocean (the Bellingshausen Sea), capture changes in snowfall and temperature (2002–2017 CE). This data-sparse region has experienced dramatic climate change in recent decades, including sea ice decline and ice loss from adjacent West Antarctic glaciers.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
Daniel Hatfield, Charlotte Bay Hasager, and Ioanna Karagali
Wind Energ. Sci., 8, 621–637, https://doi.org/10.5194/wes-8-621-2023, https://doi.org/10.5194/wes-8-621-2023, 2023
Short summary
Short summary
Wind observations at heights relevant to the operation of modern offshore wind farms, i.e. 100 m and more, are required to optimize their positioning and layout. Satellite wind retrievals provide observations of the wind field over large spatial areas and extensive time periods, yet their temporal resolution is limited and they are only representative at 10 m height. Machine-learning models are applied to lift these satellite winds to higher heights, directly relevant to wind energy purposes.
Ioanna Karagali, Magnus Barfod Suhr, Ruth Mottram, Pia Nielsen-Englyst, Gorm Dybkjær, Darren Ghent, and Jacob L. Høyer
The Cryosphere, 16, 3703–3721, https://doi.org/10.5194/tc-16-3703-2022, https://doi.org/10.5194/tc-16-3703-2022, 2022
Short summary
Short summary
Ice surface temperature (IST) products were used to develop the first multi-sensor, gap-free Level 4 (L4) IST product of the Greenland Ice Sheet (GIS) for 2012, when a significant melt event occurred. For the melt season, mean IST was −15 to −1 °C, and almost the entire GIS experienced at least 1 to 5 melt days. Inclusion of the L4 IST to a surface mass budget (SMB) model improved simulated surface temperatures during the key onset of the melt season, where biases are typically large.
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022, https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Short summary
The Aeolus satellite was launched in 2018 for global wind profile measurement. After successful operation, the error characteristics of Aeolus wind products have not yet been studied over Australia. To complement earlier validation studies, we evaluated the Aeolus Level-2B11 wind product over Australia with ground-based wind profiling radar measurements and numerical weather prediction model equivalents. The results show that the Aeolus can detect winds with sufficient accuracy over Australia.
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Short summary
Pushed by winds and ocean currents, polar sea ice is on the move. We use passive microwave satellites to observe this motion. The images from their orbits are often put together into daily images before motion is measured. In our study, we measure motion from the individual orbits directly and not from the daily images. We obtain many more motion vectors, and they are more accurate. This can be used for current and future satellites, e.g. the Copernicus Imaging Microwave Radiometer (CIMR).
Malcolm McMillan, Alan Muir, and Craig Donlon
The Cryosphere, 15, 3129–3134, https://doi.org/10.5194/tc-15-3129-2021, https://doi.org/10.5194/tc-15-3129-2021, 2021
Short summary
Short summary
We evaluate the consistency of ice sheet elevation measurements made by two satellites: Sentinel-3A and Sentinel-3B. We analysed data from the unique
tandemphase of the mission, where the two satellites flew 30 s apart to provide near-instantaneous measurements of Earth's surface. Analysing these data over Antarctica, we find no significant difference between the satellites, which is important for demonstrating that they can be used interchangeably for long-term ice sheet monitoring.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Lise Kilic, Catherine Prigent, Carlos Jimenez, and Craig Donlon
Ocean Sci., 17, 455–461, https://doi.org/10.5194/os-17-455-2021, https://doi.org/10.5194/os-17-455-2021, 2021
Short summary
Short summary
The Copernicus Imaging Microwave Radiometer (CIMR) is one of the high-priority satellite missions of the Copernicus program within the European Space Agency. It is designed to respond to the European Union Arctic policy. Its channels, incidence angle, precisions, and spatial resolutions have been selected to observe the Arctic Ocean with the recommendations expressed by the user communities.
In this note, we present the sensitivity analysis that has led to the choice of the CIMR channels.
Elizabeth Ruth Thomas, Guisella Gacitúa, Joel B. Pedro, Amy Constance Faith King, Bradley Markle, Mariusz Potocki, and Dorothea Elisabeth Moser
The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021, https://doi.org/10.5194/tc-15-1173-2021, 2021
Short summary
Short summary
Here we present the first-ever radar and ice core data from the sub-Antarctic islands of Bouvet Island, Peter I Island, and Young Island. These islands have the potential to record past climate in one of the most data-sparse regions on earth. Despite their northerly location, surface melting is generally low, and the upper layer of the ice at most sites is undisturbed. We estimate that a 100 m ice core drilled on these islands could capture climate over the past 100–200 years.
Guisella Gacitúa, Christoph Schneider, Jorge Arigony, Inti González, Ricardo Jaña, and Gino Casassa
Earth Syst. Sci. Data, 13, 231–236, https://doi.org/10.5194/essd-13-231-2021, https://doi.org/10.5194/essd-13-231-2021, 2021
Short summary
Short summary
We performed the first successful ice thickness measurements using terrestrial ground-penetrating radar in the ablation area of Schiaparelli Glacier (Cordillera Darwin, Tierra del Fuego, Chile). Data are fundamental to understand glaciers dynamics, constrain ice dynamical modelling, and predict glacier evolution. Results show a valley-shaped bedrock below current sea level; thus further retreat of Schiaparelli Glacier will probably lead to an enlarged and strongly over-deepened proglacial lake.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Louis Marié, Fabrice Collard, Frédéric Nouguier, Lucia Pineau-Guillou, Danièle Hauser, François Boy, Stéphane Méric, Peter Sutherland, Charles Peureux, Goulven Monnier, Bertrand Chapron, Adrien Martin, Pierre Dubois, Craig Donlon, Tania Casal, and Fabrice Ardhuin
Ocean Sci., 16, 1399–1429, https://doi.org/10.5194/os-16-1399-2020, https://doi.org/10.5194/os-16-1399-2020, 2020
Short summary
Short summary
With present-day techniques, ocean surface currents are poorly known near the Equator and globally for spatial scales under 200 km and timescales under 30 d. Wide-swath radar Doppler measurements are an alternative technique. Such direct surface current measurements are, however, affected by platform motions and waves. These contributions are analyzed in data collected during the DRIFT4SKIM airborne and in situ experiment, demonstrating the possibility of measuring currents from space globally.
Hoyeon Shi, Byung-Ju Sohn, Gorm Dybkjær, Rasmus Tage Tonboe, and Sang-Moo Lee
The Cryosphere, 14, 3761–3783, https://doi.org/10.5194/tc-14-3761-2020, https://doi.org/10.5194/tc-14-3761-2020, 2020
Short summary
Short summary
To estimate sea ice thickness from satellite freeboard measurements, snow depth information has been required; however, the snow depth estimate has been considered largely uncertain. We propose a new method to estimate sea ice thickness and snow depth simultaneously from freeboards by imposing a thermodynamic constraint. Obtained ice thicknesses and snow depths were consistent with airborne measurements, suggesting that uncertainty of ice thickness caused by uncertain snow depth can be reduced.
Guillaume Dodet, Jean-François Piolle, Yves Quilfen, Saleh Abdalla, Mickaël Accensi, Fabrice Ardhuin, Ellis Ash, Jean-Raymond Bidlot, Christine Gommenginger, Gwendal Marechal, Marcello Passaro, Graham Quartly, Justin Stopa, Ben Timmermans, Ian Young, Paolo Cipollini, and Craig Donlon
Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, https://doi.org/10.5194/essd-12-1929-2020, 2020
Short summary
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Charlotte B. Hasager, Andrea N. Hahmann, Tobias Ahsbahs, Ioanna Karagali, Tija Sile, Merete Badger, and Jakob Mann
Wind Energ. Sci., 5, 375–390, https://doi.org/10.5194/wes-5-375-2020, https://doi.org/10.5194/wes-5-375-2020, 2020
Short summary
Short summary
Europe's offshore wind resource mapping is part of the New European Wind Atlas (NEWA) international consortium effort. This study presents the results of analysis of synthetic aperture radar (SAR) ocean wind maps based on Envisat and Sentinel-1 with a brief description of the wind retrieval process and Advanced Scatterometer (ASCAT) ocean wind maps. Furthermore, the Weather Research and Forecasting (WRF) offshore wind atlas of NEWA is presented.
Maciej Miernecki, Lars Kaleschke, Nina Maaß, Stefan Hendricks, and Sten Schmidl Søbjærg
The Cryosphere, 14, 461–476, https://doi.org/10.5194/tc-14-461-2020, https://doi.org/10.5194/tc-14-461-2020, 2020
Thomas Holding, Ian G. Ashton, Jamie D. Shutler, Peter E. Land, Philip D. Nightingale, Andrew P. Rees, Ian Brown, Jean-Francois Piolle, Annette Kock, Hermann W. Bange, David K. Woolf, Lonneke Goddijn-Murphy, Ryan Pereira, Frederic Paul, Fanny Girard-Ardhuin, Bertrand Chapron, Gregor Rehder, Fabrice Ardhuin, and Craig J. Donlon
Ocean Sci., 15, 1707–1728, https://doi.org/10.5194/os-15-1707-2019, https://doi.org/10.5194/os-15-1707-2019, 2019
Short summary
Short summary
FluxEngine is an open-source software toolbox designed to allow for the easy and accurate calculation of air–sea gas fluxes. This article describes new functionality and capabilities, which include the ability to calculate fluxes for nitrous oxide and methane, optimisation for running FluxEngine on a stand-alone desktop computer, and extensive new features to support the in situ measurement community. Four research case studies are used to demonstrate these new features.
Anne Braakmann-Folgmann and Craig Donlon
The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, https://doi.org/10.5194/tc-13-2421-2019, 2019
Short summary
Short summary
Snow on sea ice is a fundamental climate variable. We propose a novel approach to estimate snow depth on sea ice from satellite microwave radiometer measurements at several frequencies using neural networks (NNs). We evaluate our results with airborne snow depth measurements and compare them to three other established snow depth algorithms. We show that our NN results agree better with the airborne data than the other algorithms. This is also advantageous for sea ice thickness calculation.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, and Gorm Dybkjær
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-126, https://doi.org/10.5194/tc-2019-126, 2019
Revised manuscript not accepted
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic, ice covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite derived T2m product covers clear sky snow and ice surfaces in the Arctic for the period 2000–2009.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus Tonboe, Gorm Dybkjær, and Emy Alerskans
The Cryosphere, 13, 1005–1024, https://doi.org/10.5194/tc-13-1005-2019, https://doi.org/10.5194/tc-13-1005-2019, 2019
Short summary
Short summary
The paper facilitates the construction of a satellite-derived 2 m air temperature (T2m) product for Arctic snow/ice areas. The relationship between skin temperature (Tskin) and T2m is analysed using weather stations. The main factors influencing the relationship are seasonal variations, wind speed and clouds. A clear-sky bias is estimated to assess the effect of cloud-limited satellite observations. The results are valuable when validating satellite Tskin or estimating T2m from satellite Tskin.
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018, https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Short summary
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
Rasmus T. Tonboe, Steinar Eastwood, Thomas Lavergne, Atle M. Sørensen, Nicholas Rathmann, Gorm Dybkjær, Leif Toudal Pedersen, Jacob L. Høyer, and Stefan Kern
The Cryosphere, 10, 2275–2290, https://doi.org/10.5194/tc-10-2275-2016, https://doi.org/10.5194/tc-10-2275-2016, 2016
Short summary
Short summary
The EUMETSAT sea ice climate record (ESICR) is based on the Nimbus 7 SMMR (1978–1987), the SSM/I (1987–2009), and the SSMIS (2003–today) microwave radiometer data. It uses a combination of two sea ice concentration algorithms with dynamical tie points, explicit atmospheric correction using numerical weather prediction data for error reduction and it comes with spatially and temporally varying uncertainty estimates describing the residual uncertainties.
L. M. Goddijn-Murphy, D. K. Woolf, P. E. Land, J. D. Shutler, and C. Donlon
Ocean Sci., 11, 519–541, https://doi.org/10.5194/os-11-519-2015, https://doi.org/10.5194/os-11-519-2015, 2015
Short summary
Short summary
We describe the OceanFlux Greenhouse Gases methodology for creating an ocean surface CO2 climatology. In situ measurements valid for instantaneous sea surface temperature (SST) were recomputed using a more consistent and averaged SST. The results were normalised to year 2010, averaged by month, and interpolated onto a global 1°×1° grid. The 12 monthly distributions of ocean surface CO2 (see supplement) can be used in air-sea gas flux calculations together with climatologies of other variables.
I. Karagali and J. L. Høyer
Ocean Sci., 10, 745–758, https://doi.org/10.5194/os-10-745-2014, https://doi.org/10.5194/os-10-745-2014, 2014
P. E. Land, J. D. Shutler, R. D. Cowling, D. K. Woolf, P. Walker, H. S. Findlay, R. C. Upstill-Goddard, and C. J. Donlon
Biogeosciences, 10, 8109–8128, https://doi.org/10.5194/bg-10-8109-2013, https://doi.org/10.5194/bg-10-8109-2013, 2013
Related subject area
Sensing
3D-printed Ag–AgCl electrodes for laboratory measurements of self-potential
Response time correction of slow-response sensor data by deconvolution of the growth-law equation
Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying
Using near-surface atmospheric measurements as a proxy for quantifying field-scale soil gas flux
A novel permanent gauge-cam station for surface-flow observations on the Tiber River
Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing
The surface temperatures of Earth: steps towards integrated understanding of variability and change
Thomas S. L. Rowan, Vilelmini A. Karantoni, Adrian P. Butler, and Matthew D. Jackson
Geosci. Instrum. Method. Data Syst., 12, 259–270, https://doi.org/10.5194/gi-12-259-2023, https://doi.org/10.5194/gi-12-259-2023, 2023
Short summary
Short summary
This paper presents a design for a 3D-printed rechargeable electrode that measures self-potential (SP) in different types of laboratory experiments. It is small, cheap, robust, and stable, and it offers the same performance as custom-machined laboratory standards. The use of 3D printing technology makes the electrode more versatile and cost-effective than traditional laboratory standards. Examples of its use under both low and high pressure have been included, as have 3D-printable designs.
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Loughlin E. Tuck, Claire Samson, Jeremy Laliberté, and Michael Cunningham
Geosci. Instrum. Method. Data Syst., 10, 101–112, https://doi.org/10.5194/gi-10-101-2021, https://doi.org/10.5194/gi-10-101-2021, 2021
Short summary
Short summary
This paper presents a novel method for locating magnetic interference sources on unmanned aircraft systems (UAS) destined for aeromagnetic surveys. The technique is demonstrated in an indoor laboratory, whereas most magnetic mapping has previously been done outdoors, and is performed on four different types of UAS with their motors engaged. Sources are discussed on each UAS platform but can also be used as a point of reference for typical components that cause interference.
Andrew Barkwith, Stan E. Beaubien, Thomas Barlow, Karen Kirk, Thomas R. Lister, Maria C. Tartarello, and Helen Taylor-Curran
Geosci. Instrum. Method. Data Syst., 9, 483–490, https://doi.org/10.5194/gi-9-483-2020, https://doi.org/10.5194/gi-9-483-2020, 2020
Short summary
Short summary
Soil gas flux describes the movement of various gases either to or from the ground. Identifying changes in soil gas flux can lead to a better understanding and detection of leakage from carbon capture and storage (CCS) schemes, diffuse degassing in volcanic and geothermal areas, and greenhouse gas emissions. Traditional chamber-based techniques may require weeks of fieldwork to assess a site. We present a new method to speed up the assessment of diffuse leakage.
Flavia Tauro, Andrea Petroselli, Maurizio Porfiri, Lorenzo Giandomenico, Guido Bernardi, Francesco Mele, Domenico Spina, and Salvatore Grimaldi
Geosci. Instrum. Method. Data Syst., 5, 241–251, https://doi.org/10.5194/gi-5-241-2016, https://doi.org/10.5194/gi-5-241-2016, 2016
Short summary
Short summary
Flow monitoring of riverine environments is crucial for hydrology and hydraulic engineering practice. In this paper, we describe a novel permanent gauge-cam station for large-scale and continuous observation of surface flows, based on remote acquisition and calibration of video data. In a feasibility study, we demonstrate that accurate surface-flow velocity estimations can be obtained by analyzing experimental images via particle tracking velocimetry.
Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen
Geosci. Instrum. Method. Data Syst., 5, 151–162, https://doi.org/10.5194/gi-5-151-2016, https://doi.org/10.5194/gi-5-151-2016, 2016
Short summary
Short summary
Fibre optic distributed temperature sensing allows one to measure temperature patterns along a fibre optic cable with resolutions down to 25 cm. In geosciences, we sometimes wrap the cable to a coil to measure temperature at even smaller scales. We show that coils with narrow bends affect the measured temperatures. This also holds for the object to which the coil is attached, when heated by solar radiation. We therefore recommend the necessity to carefully design such distributed temperature probes.
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321, https://doi.org/10.5194/gi-2-305-2013, https://doi.org/10.5194/gi-2-305-2013, 2013
Cited articles
Alappattu, D. P., Wang, Q., Yamaguchi, R., Lind, R. J., Reynolds, M., and Christman, A. J.: Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies, J. Geophys. Res.-Oceans, 122, 6470–6481, https://doi.org/10.1002/2017JC012688, 2017. a
Alerskans, E., Høyer, J. L., Gentemann, C. L., Pedersen, L. T., Nielsen-Englyst, P., and Donlon, C.: Construction of a climate data record of sea surface temperature from passive microwave measurements, Remote Sens. Environ., 236, 111485, https://doi.org/10.1016/j.rse.2019.111485, 2020. a, b, c
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and Zemp, M.: The concept of essential climate variables in support of climate research, applications, and policy, B. Am. Meteorol. Soc., 95, 1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014. a
Castro, S. L., Wick, G. A., Jackson, D. L., and Emery, W. J.: Error characterization of infrared and microwave satellite sea surface temperature products for merging and analysis, J. Geophys. Res.-Oceans, 113, 03010, https://doi.org/10.1029/2006JC003829, 2008. a
Dickson, B., Meincke, J., and Rhines, P.: Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate: A General Introduction, Springer, ISBN 978-1-4020-6774-7, 2008. a
Donlon, C., Robinson, I., Casey, K. S., Vazquez-Cuervo, J., Armstrong, E., Arino, O., Gentemann, C., May, D., LeBorgne, P., Piolle, J., Barton, I., Beggs, H., Poulter, D. J. S., Merchant, C., Bingham, A., Heinz, S., Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D., Mutlow, C., Reynolds, RW., Kawamura, H. and Rayner, N.: The global ocean data assimilation experiment high-resolution sea surface temperature pilot project, B. Am. Meteorol. Soc., 88, 1197–1214, 2007. a
Donlon, C., Robinson, I. S., Reynolds, M., Wimmer, W., Fisher, G., Edwards, R., and Nightingale, T. J.: An infrared sea surface temperature autonomous radiometer (ISAR) for deployment aboard volunteer observing ships (VOS), J. Atmos. Ocean. Tech., 25, 93–113, https://doi.org/10.1175/2007JTECHO505.1, 2008. a, b
Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M. H., Féménias, P., Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos, C., Nieke, J., Rebhan, H., Seitz, B., Stroede, J., and Sciarra, R.: The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission, Remote Sens. Environ., 120, 37–57, https://doi.org/10.1016/j.rse.2011.07.024, 2012. a
Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I. J., Ward, B., and Murray, M. J.: Toward improved validation of satellite sea surface skin temperature measurements for climate research, J. Climate, 15, 353–369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002. a, b, c, d
Donlon, C. J., Minnett, P. J., Fox, N., and Wimmer, W.: Strategies for the Laboratory and Field Deployment of Ship-Borne Fiducial Reference Thermal Infrared Radiometers in Support of Satellite-Derived Sea Surface Temperature Climate Data Records, in: Optical Radiometry for Ocean Climate Measurements, edited by: Zibordi, G., Donlon, C., and Parr, A., Chap. 5.2, 557–603, Academic Press, https://doi.org/10.1016/B978-0-12-417011-7.00018-0, 2014a. a
Donlon, C. J., Minnett, P. J., Jessup, A., Barton, I., Emery, W., Hook, S., Wimmer, W., Nightingale, T. J., and Zappa, C.: Chapter 3.2 – Ship-Borne Thermal Infrared Radiometer Systems, in: Optical Radiometry for Ocean Climate Measurements, edited by: Zibordi, G., Donlon, C. J., and Parr, A. C., vol. 47 of Experimental Methods in the Physical Sciences, 305–404, Academic Press, https://doi.org/10.1016/B978-0-12-417011-7.00011-8, 2014b. a, b, c
Embury, O., Merchant, C. J., and Corlett, G. K.: A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: Initial validation, accounting for skin and diurnal variability effects, Remote Sens. Environ., 116, 62–78, 2012. a
Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., and Edson, J. B.: Cool-skin and warm-layer effect on sea surface temperature, J. Geophys. Res., 101, 1295–1308, 1996. a
GCOM-W: GCOM-W/AMSR2 L2 Sea Surface Temperature Product, https://doi.org/10.57746/EO.01gs73b0qqn52pqrxsqrjpcbbj, 2012. a
Gentemann, C. L. and Hilburn, K. A.: In situ validation of sea surface temperatures from the GCOM-W1 AMSR2 RSS calibrated brightness temperatures, J. Geophys. Res.-Oceans, 120, 2813–2825, https://doi.org/10.1002/2014JC010574, 2015. a
Gentemann, C. L. and Minnett, P. J.: Radiometric measurements of ocean surface thermal variability, J. Geophys. Res.-Oceans, 113, C08017, https://doi.org/10.1029/2007JC004540, 2008. a
Gentemann, C. L., Donlon, C. J., Stuart-Menteth, A., and Wentz, F. J.: Diurnal signals in satellite sea surface temperature measurements, Geophys. Res. Lett., 30, 1140, https://doi.org/10.1029/2002GL016291, 2003. a
Gentemann, C. L., Minnett, P. J., and Ward, B.: Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming, J. Geophys. Res.-Oceans, 114, C07017, https://doi.org/10.1029/2008JC004825, 2009. a
Gentemann, C. L., Meissner, T., and Wentz, F. J.: Accuracy of satellite sea surface temperatures at 7 and 11 GHz, IEEE T. Geosci. Remote, 48, 1009–1018, https://doi.org/10.1109/TGRS.2009.2030322, 2010. a
Gladkova, I., Ignatov, A., Shahriar, F., Kihai, Y., Hillger, D., and Petrenko, B.: Improved VIIRS and MODIS SST Imagery, Remote Sensing, 8, 79, https://doi.org/10.3390/rs8010079, 2016. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Høyer, J. L., Skarpalezos, S., and Sten, S.: Protocols for Radiometer Deployments, Tech. rep., ESA, https://ships4sst.org/sites/default/files/documents/FRM4SST-PRD-DMI-001_Issue-1.pdf, (last access: 26 September 2024), 2021a. a
Jiménez, C., Tenerelli, J., Prigent, C., Kilic, L., Lavergne, T., Skarpalezos, S., Høyer, J. L., Reul, N., and Donlon, C.: Ocean and Sea Ice Retrievals From an End-To-End Simulation of the Copernicus Imaging Microwave Radiometer (CIMR) 1.4–36.5 GHz Measurements, J. Geophys. Res.-Oceans, 126, e2021JC017610, https://doi.org/10.1029/2021JC017610, 2021. a
Le Menn, M., Poli, P., David, A., Sagot, J., Lucas, M., O'Carroll, A., Belbeoch, M., and Herklotz, K.: Development of surface drifting buoys for fiducial reference measurements of sea-surface temperature, Frontiers in Marine Science, 6, 578, https://doi.org/10.3389/fmars.2019.00578, 2019. a
Mai, M., Zhang, B., Li, X., Hwang, P. A., and Zhang, J. A.: Application of AMSR-E and AMSR2 low-frequency channel brightness temperature data for hurricane wind retrievals, IEEE T. Geosci. Remote, 54, 4501–4512, 2016. a
Masuda, K., Takashima, T., and Takayama, Y.: Emissivity of pure and sea waters for the model sea surface in the infrared window regions, Remote Sens. Environ., 24, 313–329, https://doi.org/10.1016/0034-4257(88)90032-6, 1988. a, b
Meissner, T. and Wentz, F. J.: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles, IEEE T. Geosci. Remote, 50, 3004–3026, https://doi.org/10.1109/TGRS.2011.2179662, 2012. a
Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., and Donlon, C.: Satellite-based time-series of sea-surface temperature since 1981 for climate applications, Scientific Data, 6, 1–18, https://doi.org/10.1038/s41597-019-0236-x, 2019. a
Minnett, P. J., Alvera-Azcárate, A., Chin, T. M., Corlett, G. K., Gentemann, C. L., Karagali, I., Li, X., Marsouin, A., Marullo, S., Maturi, E., Santoleri, R., Saux Picart, S., Steele, M., and Vazquez-Cuervo, J.: Half a century of satellite remote sensing of sea-surface temperature, Remote Sens. Environ., 233, 111366, https://doi.org/10.1016/j.rse.2019.111366, 2019. a
Nielsen-Englyst, P., Høyer, J. L., Pedersen, L. T., Gentemann, C. L., Alerskans, E., Block, T., and Donlon, C.: Optimal estimation of sea surface temperature from AMSR-E, Remote Sensing, 10, 229, https://doi.org/10.3390/rs10020229, 2018. a, b
Nielsen-Englyst, P., Høyer, J. L., Alerskans, E., Pedersen, L. T., and Donlon, C.: Impact of channel selection on SST retrievals from passive microwave observations, Remote Sens. Environ., 254, 112252, https://doi.org/10.1016/j.rse.2020.112252, 2021. a, b, c, d
Njoku, E.: Passive microwave remote sensing of the earth from space – A review, P. IEEE, 70, 728–750, https://doi.org/10.1109/PROC.1982.12380, 1982. a, b
O’Carroll, A. G., Armstrong, E. M., Beggs, H. M., Bouali, M., Casey, K. S., Corlett, G. K., Dash, P., Donlon, C. J., Gentemann, C. L., Høyer, J. L., Ignatov, A., Kabobah, K., Kachi, M., Kurihara, Y., Karagali, I., Maturi, E., Merchant, C. J., Marullo, S., Minnett, P. J., Pennybacker, M., Ramakrishnan, B., Ramsankaran, R., Santoleri, R., Sunder, S., Saux, P. S., Vázquez-Cuervo, J., and Wimmer, W.: Observational needs of sea surface temperature, Frontiers in Marine Science, 6, 420, https://doi.org/10.3389/fmars.2019.00420, 2019. a, b
Ponsoni, L., Ribergaard, M. H., Nielsen-Englyst, P., Wulf, T., Buus-Hinkler, J., Kreiner, M. B., and Rasmussen, T. A. S.: Greenlandic sea ice products with a focus on an updated operational forecast system, Frontiers in Marine Science, 10, 138, https://doi.org/10.3389/fmars.2023.979782, 2023. a
Prigent, C., Aires, F., Bernardo, F., Orlhac, J.-C., Goutoule, J.-M., Roquet, H., and Donlon, C.: Analysis of the potential and limitations of microwave radiometry for the retrieval of sea surface temperature: Definition of MICROWAT, a new mission concept, J. Geophys. Res.-Oceans, 118, 3074–3086, 2013. a
Søbjærg, S. S., Kristensen, S. S., Balling, J. E., and Skou, N.: The airborne EMIRAD L-band radiometer system, Geoscience and Remote Sensing (igarss), IEEE International Symposium, Melbourne, Australia, 21–26 July 2013, 1900–1903, https://doi.org/10.1109/IGARSS.2013.6723175, 2013. a
Søbjærg, S. S., Balling, J. E., and Skou, N.: Performance assessment of an LNA used as active cold load, in: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4742–4745, https://doi.org/10.1109/IGARSS.2015.7326889, 2015. a
Theocharous, E., Usadi, E., and Fox, N.: CEOS comparison of IR brightness temperature measurements in support of satellite validation. Part I: Laboratory and Ocean surface temperature comparison of radiation thermometers, Tech. rep., NPL Report, OP 3, http://eprintspublications.npl.co.uk/id/eprint/4744 (last access: 9 December 2024), 2010. a
Theocharous, E., Fox, N. P., Barker-Snook, I., Niclòs, R., Garcia Santos, V., Minnett, P. J., Göttsche, F. M., Poutier, L., Morgan, N., Nightingale, T., Wimmer, W., Høyer, J., Zhang, K., Yang, M., Guan, L., Arbelo, M., and Donlon, C. J.: The 2016 CEOS infrared radiometer comparison: Part II: Laboratory comparison of radiation thermometers, J. Atmos. Ocean. Tech., 36, 1079–1092, https://doi.org/10.1175/JTECH-D-18-0032.1, 2019. a
Thépaut, J.-N., Dee, D., Engelen, R., and Pinty, B.: The Copernicus programme and its climate change service, in: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018, 1591–1593, https://doi.org/10.1109/IGARSS.2018.8518067, 2018. a
Wentz, F. J. and Meissner, T.: Algorithm theoretical basis document (ATBD): AMSR ocean algorithm (version 2), RSS Tech. Proposal 121599A-1, Remote Sensing Systems, Santa Rosa, CA, https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-amsr-ocean.pdf (last access: 9 December 2024), 2000. a, b, c, d, e
Wimmer, W. and Robinson, I. S.: The ISAR instrument uncertainty model, J. Atmos. Ocean. Tech., 33, 2415–2433, https://doi.org/10.1175/JTECH-D-16-0096.1, 2016. a, b, c
Wurl, O., Landing, W. M., Mustaffa, N. I. H., Ribas-Ribas, M., Witte, C. R., and Zappa, C. J.: The Ocean's Skin Layer in the Tropics, J. Geophys. Res.-Oceans, 124, 59–74, https://doi.org/10.1029/2018JC014021, 2019. a, b
Short summary
In spring 2021, a study compared sea surface temperature (SST) measurements from thermal infrared (IR) and passive microwave (PMW) radiometers on a ferry between Denmark and Iceland. The goal was to reduce atmospheric effects and directly compare IR and PMW measurements. A method was developed to convert PMW data to match IR data, with uncertainties analysed in the process. The findings provide insights to improve SST inter-comparisons and enhance the synergy between IR and PMW observations.
In spring 2021, a study compared sea surface temperature (SST) measurements from thermal...