Articles | Volume 13, issue 1
https://doi.org/10.5194/gi-13-85-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-13-85-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A distributed-temperature-sensing-based soil temperature profiler
Bart Schilperoort
CORRESPONDING AUTHOR
Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Netherlands eScience Center, Science Park 402, 1098 XH Amsterdam, the Netherlands
César Jiménez Rodríguez
Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Luxembourg Institute of Science and Technology, Av. des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
Bas van de Wiel
Department of Geoscience and Remote Sensing, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Miriam Coenders-Gerrits
Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Related authors
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3988, https://doi.org/10.5194/egusphere-2024-3988, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Our research highlights the need to integrate urban land surface and hydrological models to better predict and manage compound climate disasters in cities. We find that inadequate representation of water surfaces, hydraulic systems, and detailed building representations are key areas for improvement in future models. Coupled models show promise but face challenges at regional and neighbourhood scales. Interdisciplinary communication is crucial to enhance urban hydrometeorological simulations.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2974, https://doi.org/10.5194/egusphere-2024-2974, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-120, https://doi.org/10.5194/hess-2024-120, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko Framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, Recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantified deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Cynthia Maan, Marie-Claire ten Veldhuis, and Bas J. H. van de Wiel
Hydrol. Earth Syst. Sci., 27, 2341–2355, https://doi.org/10.5194/hess-27-2341-2023, https://doi.org/10.5194/hess-27-2341-2023, 2023
Short summary
Short summary
Their flexible growth provides the plants with a strong ability to adapt and develop resilience to droughts and climate change. But this adaptability is badly included in crop and climate models. To model plant development in changing environments, we need to include the survival strategies of plants. Based on experimental data, we set up a simple model for soil-moisture-driven root growth. The model performance suggests that soil moisture is a key parameter determining root growth.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-114, https://doi.org/10.5194/hess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
We compare performance of evaporation models in the Luangwa Basin located in a semi-arid and complex Miombo ecosystem in Africa. Miombo plants changes colour, drop off leaves and acquire new leaves during the dry season. In addition, the plant roots go deep in the soil and appear to access groundwater. Results show that evaporation models with structure and process that do not capture this unique plant structure and behaviour appears to have difficulties to correctly estimating evaporation.
Lívia M. P. Rosalem, Miriam Coenders-Gerritis, Jamil A. A. Anache, Seyed M. M. Sadeghi, and Edson Wendland
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-59, https://doi.org/10.5194/hess-2022-59, 2022
Manuscript not accepted for further review
Short summary
Short summary
We monitored the interception process on an undisturbed savanna forest and applied two interception models to evaluate their performance at different time scales and study their seasonal response. As results, both models performed well at a monthly scale and could represent the seasonal trends observed. However, they presented some limitations to predict the evaporative processes on a daily basis.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data, 14, 163–177, https://doi.org/10.5194/essd-14-163-2022, https://doi.org/10.5194/essd-14-163-2022, 2022
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g., UNEP, Thornthwaite) that make use of this formula. The coefficients were produced using as a benchmark the ASCE-standardized reference evapotranspiration formula (formerly FAO-56) that requires temperature, solar radiation, wind speed, and relative humidity data.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
D. Alex R. Gordon, Miriam Coenders-Gerrits, Brent A. Sellers, S. M. Moein Sadeghi, and John T. Van Stan II
Hydrol. Earth Syst. Sci., 24, 4587–4599, https://doi.org/10.5194/hess-24-4587-2020, https://doi.org/10.5194/hess-24-4587-2020, 2020
Short summary
Short summary
Where plants exist, rain must pass through canopies to reach soils. We studied how rain interacts with dogfennel – a highly problematic weed that is abundant in pastures, grasslands, rangelands, urban forests and along highways. Dogfennels evaporated large portions (approx. one-fifth) of rain and drained significant (at times > 25 %) rain (and dew) down their stems to their roots (via stemflow). This may explain how dogfennel survives and even invades managed landscapes during extended droughts.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Jochen Wenninger, Adriana Gonzalez-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, https://doi.org/10.5194/hess-24-2179-2020, 2020
Short summary
Short summary
Tropical forest ecosystems are able to export a lot of water to the atmosphere by means of evaporation. However, little is known on how their complex structure affects this water flux. This paper analyzes the contribution of three canopy layers in terms of water fluxes and stable water isotope signatures. During the dry season in 2018 the two lower canopy layers provide 20 % of measured evaporation, highlighting the importance of knowing how forest structure can affect the hydrological cycle.
Ameneh Mianabadi, Miriam Coenders-Gerrits, Pooya Shirazi, Bijan Ghahraman, and Amin Alizadeh
Hydrol. Earth Syst. Sci., 23, 4983–5000, https://doi.org/10.5194/hess-23-4983-2019, https://doi.org/10.5194/hess-23-4983-2019, 2019
Short summary
Short summary
Evaporation is the biggest water consumer of the rainfall that falls on the land. Knowing its magnitude will help water resources to develop water use strategies. This study describes a model that can estimate the magnitude of evaporation on a global level. It does not use local information, only information from rainfall and vegetation patterns derived from satellites.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-344, https://doi.org/10.5194/hess-2019-344, 2019
Revised manuscript not accepted
Short summary
Short summary
Knowing the isotopic composition of water vapor in the air is a difficult task. The estimation of δ18O and δ2H has to be done carefully, because it is accompanied by a high risk of methodological errors (if it is sampled) or wrong assumptions that can lead to incorrect values (if it is modeled). The aim of this work was to compare available sampling methods for water vapor in the air and estimate their isotopic composition, comparing the results against direct measurements of the sampled air.
J. Antoon van Hooft, Stéphane Popinet, and Bas J. H. van de Wiel
Geosci. Model Dev., 11, 4727–4738, https://doi.org/10.5194/gmd-11-4727-2018, https://doi.org/10.5194/gmd-11-4727-2018, 2018
Short summary
Short summary
In this work the use of adaptive Cartesian meshes in atmospheric single-column models is explored. Results are presented for test scenarios based on the first two GEWEX ABL Study (GABLS) inter-comparison studies. Consistent with existing literature, we conclude that the method is promising and future atmospheric modelling efforts would warrant the extension of the present techniques to a three-dimensional grid.
César~Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-538, https://doi.org/10.5194/hess-2018-538, 2018
Manuscript not accepted for further review
Short summary
Short summary
The measurement of stable isotopes in water vapor has been improved with the use of laser technologies. Its direct application in the field depends on the availability of infrastructure or the budget of the project. For those cases when it is not possible, we provide an alternative method to sample the air for its later measurement. This method is based on the use of a low-cost polyethylene bag, getting stable measurements with a volume of 450 mL of air reducing the risk of sample deterioration.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Ameneh Mianabadi, Miriam Coenders-Gerrits, Pooya Shirazi, Bijan Ghahraman, and Amin Alizadeh
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-306, https://doi.org/10.5194/hess-2017-306, 2017
Manuscript not accepted for further review
Short summary
Short summary
Estimating evaporation at the global scale remains challenging, while it is utmost importance for food security, hydrological modelling, and flood or drought forecasting. In this paper we present a simple analytical model that can estimate evaporation (both transpiration and interception evaporation) just based on remotely sensed data sources. Despite its simplicity it is able to model evaporation well in comparison to complex land surface models.
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
Related subject area
Sensor
Calibrating low-cost rain gauge sensors for their applications in Internet of Things (IoT) infrastructures to densify environmental monitoring networks
Ultra-low-cost manual soil respiration chamber
Testing a novel sensor design to jointly measure cosmic-ray neutrons, muons and gamma rays for non-invasive soil moisture estimation
Development of an expendable current profiler based on modulation and demodulation
Research into using a fiber Bragg grating sensor group for three-dimensional in situ stress measurement
Signal processing for in situ detection of effective heat pulse probe spacing radius as the basis of a self-calibrating heat pulse probe
Technical note: A low-cost albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia
Proof of concept: temperature-sensing waders for environmental sciences
Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?
Robert Krüger, Pierre Karrasch, and Anette Eltner
Geosci. Instrum. Method. Data Syst., 13, 163–176, https://doi.org/10.5194/gi-13-163-2024, https://doi.org/10.5194/gi-13-163-2024, 2024
Short summary
Short summary
Low-cost sensors could fill gaps in existing observation networks. To ensure data quality, the quality of the factory calibration of a given sensor has to be evaluated if the sensor is used out of the box. Here, the factory calibration of a widely used low-cost rain gauge type has been tested both in the lab (66) and in the field (20). The results of the study suggest that the calibration of this particular type should at least be checked for every sensor before being used.
Bartosz M. Zawilski and Vincent Bustillo
Geosci. Instrum. Method. Data Syst., 13, 51–62, https://doi.org/10.5194/gi-13-51-2024, https://doi.org/10.5194/gi-13-51-2024, 2024
Short summary
Short summary
Manual chambers for soil respiration monitoring can be cost-effective yet rather accurate devices. The described chamber is relatively low in cost and entirely built from commercial parts, which makes it very accessible for almost everybody. Our chamber is robust, simple to operate, and very suitable for a large-scale punctual campaign and for educational purposes. Oxygen sensors bring some more insights into our soil respiration understanding.
Stefano Gianessi, Matteo Polo, Luca Stevanato, Marcello Lunardon, Till Francke, Sascha E. Oswald, Hami Said Ahmed, Arsenio Toloza, Georg Weltin, Gerd Dercon, Emil Fulajtar, Lee Heng, and Gabriele Baroni
Geosci. Instrum. Method. Data Syst., 13, 9–25, https://doi.org/10.5194/gi-13-9-2024, https://doi.org/10.5194/gi-13-9-2024, 2024
Short summary
Short summary
Soil moisture monitoring is important for many applications, from improving weather prediction to supporting agriculture practices. Our capability to measure this variable is still, however, limited. In this study, we show the tests conducted on a new soil moisture sensor at several locations. The results show that the new sensor is a valid and compact alternative to more conventional, non-invasive soil moisture sensors that can pave the way for a wide range of applications.
Keyu Zhou, Qisheng Zhang, Guangyuan Chen, Zucan Lin, Yunliang Liu, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 12, 57–69, https://doi.org/10.5194/gi-12-57-2023, https://doi.org/10.5194/gi-12-57-2023, 2023
Short summary
Short summary
The expendable current profiler (XCP) is a single-use instrument that rapidly measures currents, including the velocity, flow direction, and temperature of seawater. This study improves upon the design of the XCP to reduce the cost of the single-use devices. This has been achieved by adopting signal modulation and demodulation to transmit analog signals on an enamelled wire and digitizing the signal above the surface of the water.
Yimin Liu, Zhengyang Hou, Hao Zhou, Guiyun Gao, Lu Yang, Pu Wang, and Peng Wang
Geosci. Instrum. Method. Data Syst., 11, 59–73, https://doi.org/10.5194/gi-11-59-2022, https://doi.org/10.5194/gi-11-59-2022, 2022
Short summary
Short summary
We use technical methods of instrument development, calibration experiments, and numerical simulations to develop a new type of in situ stress sensor group using fiber Bragg grating (FBG) sensing technology, which can calculate the in situ stress state of surrounding rock mass by sensing the borehole wall strain. This sensor group lays an important theoretical and experimental foundation for the development and application of FBG hole wall strain gauge.
Nicholas J. Kinar, John W. Pomeroy, and Bing Si
Geosci. Instrum. Method. Data Syst., 9, 293–315, https://doi.org/10.5194/gi-9-293-2020, https://doi.org/10.5194/gi-9-293-2020, 2020
Short summary
Short summary
Heat pulse probes are widely used to monitor soil thermal and physical properties for agricultural and hydrological monitoring related to crop productivity, drought, snowmelt, and evapotranspiration. Changes in the effective probe spacing distance can cause measurement inaccuracy. This paper uses a novel heat pulse probe and theory to compensate for changes in effective distance, thereby enabling more accurate sensor outputs useful for forecasts and predictions of drought and flooding.
Thomas Condom, Marie Dumont, Lise Mourre, Jean Emmanuel Sicart, Antoine Rabatel, Alessandra Viani, and Alvaro Soruco
Geosci. Instrum. Method. Data Syst., 7, 169–178, https://doi.org/10.5194/gi-7-169-2018, https://doi.org/10.5194/gi-7-169-2018, 2018
Short summary
Short summary
This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors. The ratio between reflected vs. incident illuminances is called the albedo index and can be compared with actual albedo values. We demonstrate that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost.
Rolf Hut, Scott Tyler, and Tim van Emmerik
Geosci. Instrum. Method. Data Syst., 5, 45–51, https://doi.org/10.5194/gi-5-45-2016, https://doi.org/10.5194/gi-5-45-2016, 2016
Short summary
Short summary
Temperature-sensor-incorporated waders worn by the public can give scientists an additional source of information on stream water-groundwater interaction. A pair of waders was equipped with a thermistor and calibrated in the lab. Field tests in a deep polder ditch with a known localized groundwater contribution showed that the waders are capable of identifying the boil location. This can be used to decide where the most interesting places are to do more detailed and more expensive research.
Z. Liu and C. W. Higgins
Geosci. Instrum. Method. Data Syst., 4, 65–73, https://doi.org/10.5194/gi-4-65-2015, https://doi.org/10.5194/gi-4-65-2015, 2015
Short summary
Short summary
This paper discussed the effect of temperature on the accuracy of submersible strain gauge pressure transducers. The results show that rapid change of temperature introduces errors in the water level reading while the absolute temperature is also related to the sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effects in the strain gauges. Performance tests are necessary before field deployment to ensure the data quality.
Cited articles
Abu-Hamdeh, N. H.: Thermal Properties of Soils as affected by Density and Water Content, Biosyst. Eng., 86, 97–102, https://doi.org/10.1016/S1537-5110(03)00112-0, 2003. a, b
Bagheri, A. R., Laforsch, C., Greiner, A., and Agarwal, S.: Fate of So‐Called Biodegradable Polymers in Seawater and Freshwater, Global Challeng., 1, 1700048, https://doi.org/10.1002/gch2.201700048, 2017. a
Bakker, M., Caljé, R., Schaars, F., van der Made, K., and de Haas, S.: An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment, Water Resour. Res., 51, 2760–2772, https://doi.org/10.1002/2014WR016632, 2015. a
Bense, V. F., Read, T., and Verhoef, A.: Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux, Agr. Forest Meteorol., 220, 207–215, https://doi.org/10.1016/j.agrformet.2016.01.138, 2016. a
Briggs, M. A., Lautz, L. K., McKenzie, J. M., Gordon, R. P., and Hare, D. K.: Using high‐resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux, Water Resour. Res., 48, W02527, https://doi.org/10.1029/2011WR011227, 2012. a
Chua, C. K., Leong, K. F., and Lim, C. S.: Rapid Prototyping: Principles and Applications, World Scientific, Singapore, ISBN 9789812381170, 2003. a
De Jong, S. A. P., Slingerland, J. D., and Van De Giesen, N. C.: Fiber optic distributed temperature sensing for the determination of air temperature, Atmos. Meas. Tech., 8, 335–339, https://doi.org/10.5194/amt-8-335-2015, 2015. a
des Tombe, B. F., Bakker, M., Schaars, F., and van der Made, K. J.: Estimating Travel Time in Bank Filtration Systems from a Numerical Model Based on DTS Measurements, Groundwater, 56, 288–299, https://doi.org/10.1111/gwat.12581, 2018. a
Dong, J., Steele‐Dunne, S. C., Ochsner, T. E., Hatch, C. E., Sayde, C., Selker, J., Tyler, S., Cosh, M. H., and van de Giesen, N.: Mapping high‐resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother, Water Resour. Res., 52, 7690–7710, https://doi.org/10.1002/2016WR019031, 2016. a, b
Eppelbaum, L., Kutasov, I., and Pilchin, A.: Applied Geothermics, in: Lecture Notes in Earth System Sciences, Springer, Berlin, Heidelberg, ISBN 978-3-642-34022-2, https://doi.org/10.1007/978-3-642-34023-9, 2014. a
Farah, S., Anderson, D. G., and Langer, R.: Physical and mechanical properties of PLA, and their functions in widespread applications – A comprehensive review, Adv. Drug Deliv. Rev., 107, 367–392, https://doi.org/10.1016/j.addr.2016.06.012, 2016. a
Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids, Math. Comput., 51, 699–699, https://doi.org/10.1090/S0025-5718-1988-0935077-0, 1988. a
He, H., Dyck, M. F., Horton, R., Li, M., Jin, H., and Si, B.: Distributed Temperature Sensing for Soil Physical Measurements and Its Similarity to Heat Pulse Method, Adv. Agron., 148, 173–230, https://doi.org/10.1016/bs.agron.2017.11.003, 2018. a
Heusinkveld, B. G., Jacobs, A. F., Holtslag, A. A., and Berkowicz, S. M.: Surface energy balance closure in an arid region: Role of soil heat flux, Agr. Forest Meteorol., 122, 21–37, https://doi.org/10.1016/j.agrformet.2003.09.005, 2004. a, b
Heusinkveld, V. W., Antoon van Hooft, J., Schilperoort, B., Baas, P., ten Veldhuis, M.-c., and van de Wiel, B. J.: Towards a physics-based understanding of fruit frost protection using wind machines, Agr.Forest Meteorol., 282–283, 107868, https://doi.org/10.1016/j.agrformet.2019.107868, 2020. a
Hilgersom, K., van Emmerik, T., Solcerova, A., Berghuijs, W., Selker, J., and van de Giesen, N.: Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing, Geosci. Instrum. Method. Data Syst., 5, 151–162, https://doi.org/10.5194/gi-5-151-2016, 2016. a, b
Holtslag, A. A. M. and De Bruin, H. A. R.: Applied Modeling of the Nighttime Surface Energy Balance over Land, J. Appl. Meteorol., 27, 689–704, https://doi.org/10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2, 1988. a
Izett, J. G., Schilperoort, B., Coenders-Gerrits, M., Baas, P., Bosveld, F. C., and van de Wiel, B. J. H.: Missed Fog?, Bound.-Lay. Meteorol., 173, 289–309, https://doi.org/10.1007/s10546-019-00462-3, 2019. a
Jansen, J., Stive, P. M., van de Giesen, N., Tyler, S., Steele-Dunne, S. C., and Williamson, L.: Estimating soil heat flux using Distributed Temperature Sensing, GRACE, Remote Sensing and Ground-based Methods in Multi-Scale Hydrology, 140–144, ISBN 978-1-907161-18-6, https://iahs.info/uploads/dms/16743.28-140-144-343-10-Jansen.pdf (last access: 15 April 2024), 2011. a
Moene, A. F. and van Dam, J. C.: Transport in the Atmosphere-Vegetation-Soil Continuum, Cambridge University Press, ISBN 9780521195683, https://doi.org/10.1017/CBO9781139043137, 2014. a, b
Ochsner, T. E., Horton, R., and Ren, T.: A New Perspective on Soil Thermal Properties, Soil Sci. Soc. Am. J., 65, 1641–1647, https://doi.org/10.2136/sssaj2001.1641, 2001. a
Rigid.ink: PETG data shet, Tech. rep., rigid.ink, Wetherby, UK, http://devel.lulzbot.com/filament/Rigid_Ink/PETG DATA SHEET.pdf (last access: 15 April 2024), 2017. a
Saito, K., Iwahana, G., Ikawa, H., Nagano, H., and Busey, R. C.: Links between annual surface temperature variation and land cover heterogeneity for a boreal forest as characterized by continuous, fibre-optic DTS monitoring, Geosci. Instrum. Method. Data Syst., 7, 223–234, https://doi.org/10.5194/gi-7-223-2018, 2018. a, b
Sayde, C., Gregory, C., Gil-Rodriguez, M., Tufillaro, N., Tyler, S., van de Giesen, N., English, M., Cuenca, R., and Selker, J. S.: Feasibility of soil moisture monitoring with heated fiber optics, Water Resour. Res., 46, W06201, https://doi.org/10.1029/2009WR007846, 2010. a, b
Schilperoort, B.: DTS-based 3D printing design for a soil temperature profiler, Zenodo [data set], https://doi.org/10.5281/zenodo.10984607, 2021. a
Schilperoort, B.: Heat Exchange in a Conifer Canopy: A Deep Look using Fiber Optic Sensors, Doctoral dissertation, Delft University of Technology, Delft, https://doi.org/10.4233/uuid:6d18abba-a418-4870-ab19-c195364b654b, 2022. a
Schilperoort, B. and Jiménez-Rodríguez, C. D.: Soil temperature profiles, measured using a coil-shaped fiber-optic distributed temperature sensor, Zenodo [data set], https://doi.org/10.5281/zenodo.8108401, 2023. a
Schilperoort, B., Coenders-Gerrits, M., Jiménez Rodríguez, C., van der Tol, C., van de Wiel, B., and Savenije, H.: Decoupling of a Douglas fir canopy: a look into the subcanopy with continuous vertical temperature profiles, Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, 2020. a
Selker, J. S., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., Van De Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B.: Distributed fiber-optic temperature sensing for hydrologic systems, Water Resour. Res., 42, 1–8, https://doi.org/10.1029/2006WR005326, 2006. a
Shehata, M., Heitman, J., Ishak, J., and Sayde, C.: High‐Resolution Measurement of Soil Thermal Properties and Moisture Content Using a Novel Heated Fiber Optics Approach, Water Resour. Res., 56, e2019WR025204, https://doi.org/10.1029/2019WR025204, 2020. a
Simon, N., Bour, O., Lavenant, N., Porel, G., Nauleau, B., Pouladi, B., Longuevergne, L., and Crave, A.: Numerical and Experimental Validation of the Applicability of Active‐DTS Experiments to Estimate Thermal Conductivity and Groundwater Flux in Porous Media, Water Resour. Res., 57, e2020WR028078, https://doi.org/10.1029/2020WR028078, 2021. a
Steele-Dunne, S. C., Rutten, M. M., Krzeminska, D. M., Hausner, M., Tyler, S. W., Selker, J., Bogaard, T. A., and Van De Giesen, N. C.: Feasibility of soil moisture estimation using passive distributed temperature sensing, Water Resour. Res., 46, 1–12, https://doi.org/10.1029/2009WR008272, 2010. a, b, c
Striegl, A. M. and Loheide II, S. P.: Heated Distributed Temperature Sensing for Field Scale Soil Moisture Monitoring, Ground Water, 50, 340–347, https://doi.org/10.1111/j.1745-6584.2012.00928.x, 2012. a
Taylor, C.: Finite Difference Coefficients Calculator, https://web.media.mit.edu/~crtaylor/calculator.html (last access: 15 April 2024), 2016. a
Tiktak, A. and Bouten, W.: Soil water dynamics and long-term water balances of a Douglas fir stand in the Netherlands, J. Hydrol., 156, 265–283, https://doi.org/10.1016/0022-1694(94)90081-7, 1994. a
van der Linden, S. J. A., Kruis, M. T., Hartogensis, O. K., Moene, A. F., Bosveld, F. C., and van de Wiel, B. J. H.: Heat Transfer Through Grass: A Diffusive Approach, Bound.-Lay. Meteorol., 184, 251–276, https://doi.org/10.1007/s10546-022-00708-7, 2022. a, b
van der Tol, C.: Validation of remote sensing of bare soil ground heat flux, Remote Sens. Environ., 121, 275–286, https://doi.org/10.1016/j.rse.2012.02.009, 2012. a
Van de Wiel, B. J. H., Moene, A. F., Hartogensis, O. K., De Bruin, H. A. R., and Holtslag, A. A. M.: Intermittent Turbulence in the Stable Boundary Layer over Land. Part III: A Classification for Observations during CASES-99, J. Atmos. Sci., 60, 2509–2522, https://doi.org/10.1175/1520-0469(2003)060<2509:ITITSB>2.0.CO;2, 2003. a, b
van Ramshorst, J. G. V., Coenders-Gerrits, M., Schilperoort, B., van de Wiel, B. J. H., Izett, J. G., Selker, J. S., Higgins, C. W., Savenije, H. H. G., and van de Giesen, N. C.: Revisiting wind speed measurements using actively heated fiber optics: a wind tunnel study, Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, 2020. a
van Wijk, W. and de Vries, D.: Periodic temperature variations in a homogeneous soil, in: Physics of plant environment, North-Holland Publ. Co., Amsterdam, 102–143, https://doi.org/10.1002/qj.49709038628, 1963. a
Verhoef, A.: Remote estimation of thermal inertia and soil heat flux for bare soil, Agr. Forest Meteorol., 123, 221–236, https://doi.org/10.1016/j.agrformet.2003.11.005, 2004. a
Vogt, T., Schneider, P., Hahn-Woernle, L., and Cirpka, O. A.: Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling, J. Hydrol., 380, 154–164, https://doi.org/10.1016/j.jhydrol.2009.10.033, 2010. a
Vuik, C., van Beek, P., Vermolen, F., and van Kan, J.: Numerical methods for ordinary differential equations, VSSD, Delft, ISBN 9781281744555, 2007. a
Wu, R., Martin, V., McKenzie, J., Broda, S., Bussière, B., Aubertin, M., and Kurylyk, B. L.: Laboratory-scale assessment of a capillary barrier using fibre optic distributed temperature sensing (FO-DTS), Can. Geotech. J., 57, 115–126, https://doi.org/10.1139/cgj-2018-0283, 2020. a, b
Wu, R., Lamontagne-Hallé, P., and McKenzie, J. M.: Uncertainties in Measuring Soil Moisture Content with Actively Heated Fiber-Optic Distributed Temperature Sensing, Sensors, 21, 3723, https://doi.org/10.3390/s21113723, 2021. a
Xie, X., Lu, Y., Ren, T., and Horton, R.: Soil temperature estimation with the harmonic method is affected by thermal diffusivity parameterization, Geoderma, 353, 97–103, https://doi.org/10.1016/j.geoderma.2019.06.029, 2019. a
Short summary
Heat storage in the soil is difficult to measure due to vertical heterogeneity. To improve measurements, we designed a 3D-printed probe that uses fiber-optic distributed temperature sensing to measure a vertical profile of soil temperature. We validated the temperature measurements against standard instrumentation. With the high-resolution data we were able to determine the thermal diffusivity of the soil at a resolution of 2.5 cm, which is much higher compared to traditional methods.
Heat storage in the soil is difficult to measure due to vertical heterogeneity. To improve...