Bounoua, L., Collatz, G. J., Los, S. O., Sellers, P. J., Dazlich, D. A., Tucker, C. J., and Randall, D. A.: Sensitivity of Climate to Changes in NDVI, J. Climate, 13, 2277–2292, https://doi.org/10.1175/1520-0442(2000)013<2277:SOCTCI>2.0.CO;2, 2000.
Broge, N. H. and Leblanc, E.: Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density, Remote Sens. Environ., 76, 156–172, https://doi.org/10.1016/S0034-4257(00)00197-8, 2001.
Carless, D., Luscombe, D. J., Gatis, N., Anderson, K., and Brazier, R. E.: Mapping landscape-scale peatland degradation using airborne lidar and multispectral data, Landscape Ecol., 34, 1329–1345, https://doi.org/10.1007/s10980-019-00844-5, 2019.
Cevik Degerli, B. and Cetin, M.: Evaluation of UTFVI index effect on climate change in terms of urbanization, Environ. Sci. Pollut. R., 30, 75273–75280, https://doi.org/10.1007/s11356-023-27613-x, 2023.
Choudhary, S. S. and Ghosh, S. K.: Surface Water Area Extraction by Using Water Indices and DFPS Method Applied to Satellites Data, Sensing and Imaging, 23, 33, https://doi.org/10.1007/s11220-022-00403-4, 2022.
Congedo, L.: Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS, Journal of Open Source Software, 6, 3172, https://doi.org/10.21105/joss.03172, 2021.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Copernicus Sentinel Data: Copernicus Data Space, Copernicus Data Space [data set],
https://dataspace.copernicus.eu/data-collections/copernicus-sentinel-data (last access: 30 May 2025), 2025.
Correia, R., Teodoro, A., and Duarte, L.: PI2GIS: processing image to geographical information systems, a learning tool for QGIS, in: SPIE Remote Sensing 2017, Earth Resources and Environmental Remote Sensing/GIS Applications VIII, Proc. SPIE 10428, 104281H, Warsaw, Poland, https://doi.org/10.1117/12.2277952, 2017.
Crippen, R. E.: Calculating the vegetation index faster, Remote Sens. Environ., 34, 71–73, https://doi.org/10.1016/0034-4257(90)90085-Z, 1990.
De Bock, A., Belmans, B., Vanlanduit, S., Blom, J., Alvarado-Alvarado, A. A., and Audenaert, A.: A review on the leaf area index (LAI) in vertical greening systems, Build. Environ., 229, 109926, https://doi.org/10.1016/j.buildenv.2022.109926, 2023.
de Dear, R., and Brager, G. S.: Developing an Adaptive Model of Thermal Comfort and Preference, ASHRAE Transactions, 104, RP-884 [report], MRL: Sydney, 1997.
De Fioravante, P., Luti, T., Cavalli, A., Giuliani, C., Dichicco, P., Marchetti, M., Chirici, G., Congedo, L., and Munafò, M.: Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification, Land, 10, 611, https://doi.org/10.3390/land10060611, 2021.
Dinçer, S.: Effects of computer literacy, motivation and self-efficacy on learning success in computer assisted instruction: Investigation of the variables with study duration, UluslararasıEğitim Programlarıve Öğretim ÇalışmalarıDergisi, 7, 147–162, https://doi.org/10.31704/ijocis.2017.009, 2017.
Esri: ArcGIS Desktop: Release 10.9. Redlands, CA: Environmental Systems Research Institute, 2025.
García, D. H.: Analysis of Urban Heat Island and Heat Waves Using Sentinel-3 Images: a Study of Andalusian Cities in Spain, Earth Syst. Environ., 6, 199–219, https://doi.org/10.1007/s41748-021-00268-9, 2022.
García-Fernández, A., Espin, S., Gómez-Ramírez, P., Martínez-López, E., and Navas, I.: Wildlife Sentinels for Human and Environmental Health Hazards in Ecotoxicological Risk Assessment, in: Ecotoxicological QSARs, Methods in Pharmacology and Toxicology, edited by: Roy, K., Humana, New York, NY, 77–94, https://doi.org/10.1007/978-1-0716-0150-1_4, 2020.
Gomez, E. A., Wu, D., and Passerini, K.: Computer-supported team-based learning: The impact of motivation, enjoyment and team contributions on learning outcomes, Comput. Educ., 55, 378–390, https://doi.org/10.1016/j.compedu.2010.02.003, 2010.
Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G.: A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing, J. Forestry Res., 32, 1–6, https://doi.org/10.1007/s11676-020-01155-1, 2021.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Huete, A. R.: A soil-adjusted vegetation index (SAVI), Remote Sens. Environ., 25, 295–309, https://doi.org/10.1016/0034-4257(88)90106-X, 1988.
Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., and Zhang, X.: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction, Remote Sens. Environ., 101, 366–378, https://doi.org/10.1016/j.rse.2006.01.003, 2006.
Jombo, S. and Adelabu, S. A.: Spatiotemporal Variations of Land Surface Temperature and Vegetation Coverage in Free State Province, South Africa, in: IGARSS 2022 – 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022, 2414–2417, https://doi.org/10.1109/IGARSS46834.2022.9884372, 2022.
Kaufman, Y. J.: Atmospheric effects on remote sensing of surface reflectance, NASA Goddard Space Flight Center, NTRS Document ID: 19860034741 [conference paper], 1984.
Lei, J., Wang, S., Wang, Y., and Luo, W.: Determining the planting year of navel orange trees in mountainous and hilly areas of southern China: a remote sensing based method, J. Mt. Sci., 21, 3293–3305, https://doi.org/10.1007/s11629-024-8673-1, 2024.
Liu, Y., Qian, J., and Yue, H.: Combined Sentinel-1A With Sentinel-2A to Estimate Soil Moisture in Farmland, IEEE J. Sel. Top. Appl., 14, 1292–1310, https://doi.org/10.1109/JSTARS.2020.3043628, 2021.
Naim, Md. N. H. and Kafy, A.-A.: Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: A remote sensing and statistical approach, Environmental Challenges, 4, 100107, https://doi.org/10.1016/j.envc.2021.100107, 2021.
Narine, L. L., Popescu, S., Zhou, T., Srinivasan, S., and Harbeck, K.: Mapping forest aboveground biomass with a simulated ICESat-2 vegetation canopy product and Landsat data, Ann. For. Res., 52, 69–86, https://doi.org/10.15287/afr.2018.1163, 2009.
Nie, J., Ren, H., Zheng, Y., Ghent, D., and Tansey, K.: Land Surface Temperature and Emissivity Retrieval From Nighttime Middle-Infrared and Thermal-Infrared Sentinel-3 Images, IEEE Geosci. Remote S., 18, 915–919, https://doi.org/10.1109/LGRS.2020.2986326, 2021.
Peddinti, V. S. S., Mandla, V. R., Mesapam, S., and Kancharla, S.: Selection of optimal bands of AVIRIS – NG by evaluating NDVI with Sentinel-2, Earth Sci. Inform., 14, 1285–1302, https://doi.org/10.1007/s12145-021-00662-x, 2021.
Poletaev, A. and Lisetskii, F.: Using vegetation indices to identify high chlorophyll tree cover in floodplains for carbon sequestration, E3S Web Conf., 486, 07013, https://doi.org/10.1051/e3sconf/202448607013, 2024.
Potočnik Buhvald, A., Račič, M., Immitzer, M., Oštir, K., and Veljanovski, T.: Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables, Remote Sens.-Basel, 14, 3387, https://doi.org/10.3390/rs14143387, 2022.
Ran, L., Zhang, Y., Wei, W., and Zhang, Q.: A Hyperspectral Image Classification Framework with Spatial Pixel Pair Features, Sensors-Basel, 17, 2421, https://doi.org/10.3390/s17102421, 2017.
Roßberg, T. and Schmitt, M.: A Globally Applicable Method for NDVI Estimation from Sentinel-1 SAR Backscatter Using a Deep Neural Network and the SEN12TP Dataset, PFG– Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 91, 171–188, https://doi.org/10.1007/s41064-023-00238-y, 2023.
Rouse, W. and Haas, R. H.: Monitoring Vegetation Systems in the Great Plains with Erts NASA NTRS,
https://ntrs.nasa.gov/citations/19740022614 (last access: 30 May 2025), 1974.
Sebbah, B., Yazidi Alaoui, O., Wahbi, M., Maâtouk, M., and Ben Achhab, N.: QGIS-Landsat Indices plugin (Q-LIP): Tool for environmental indices computing using Landsat data, Environ. Modell. Softw., 137, 104972, https://doi.org/10.1016/j.envsoft.2021.104972, 2021.
Segarra, J., Buchaillot, M., Araus, J., and Kefauver, S.: Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications, Agronomy, 10, 641, https://doi.org/10.3390/agronomy10050641, 2020.
Sharma, R., Pradhan, L., Kumari, M., and Bhattacharya, P.: Assessing urban heat islands and thermal comfort in Noida City using geospatial technology, Urban Climate, 35, 100751, https://doi.org/10.1016/j.uclim.2020.100751, 2021.
Sung, Y.-T., Chang, K.-E., and Liu, T.-C.: The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis, Comput. Educ., 94, 252–275, https://doi.org/10.1016/j.compedu.2015.11.008, 2016.
Tanre, D., Holben, B. N., and Kaufman, Y. J.: Atmospheric correction algorithm for NOAA-AVHRR products: theory and application, IEEE T. Geosci. Remote, 30, 231–248, https://doi.org/10.1109/36.134074, 1992.
Thom, E. C.: The Discomfort Index, Weatherwise, 12, 57–61, https://doi.org/10.1080/00431672.1959.9926960, 1959.
Tucker, C. J.: Asymptotic nature of grass canopy spectral reflectance, Appl. Optics, 16, 1151–1156, https://doi.org/10.1364/AO.16.001151, 1977.
Vijayalakshmi, D., Jeevitha, R., Gowsiga, S., Vinitha, A., and Soumya, R.: Evaluation of chlorophyll index as indicators to screen sorghum genotypes for drought stress tolerance, Cereal Res. Commun., 52, 1511–1525, https://doi.org/10.1007/s42976-024-00494-7, 2024.
Wachendorf, M., Fricke, T., and Möckel, T.: Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands, Grass Forage Sci., 73, 1–14, https://doi.org/10.1111/gfs.12312, 2018.
Weng, Q., Lu, D., and Schubring, J.: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies, Remote Sens. Environ., 89, 467–483, https://doi.org/10.1016/j.rse.2003.11.005, 2004.
Wulandari, F., Anika Marhayani, D., Setyowati, R., Anitra, R., Sulistri, E., and Mursidi, A.: The Effectiveness of Study Online in Higher Education, in: Proceedings of the 6th International Conference on Information and Education Innovations (ICIEI 2021), Belgrade, Serbia, 16–18 April 2021, 41–45, Association for Computing Machinery, New York, NY, USA, https://doi.org/10.1145/3470716.3470724, 2021.
Xiao, X., Braswell, B., Zhang, Q., Boles, S., Frolking, S., and Moore, B.: Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia, Remote Sens. Environ., 84, 385–392, https://doi.org/10.1016/S0034-4257(02)00129-3, 2003.
Zakzouk, M., El-Magd, I. A., Ali, E. M., Abdulaziz, A. M., Rehman, A., and Saba, T.: Novel oil spill indices for sentinel-2 imagery: A case study of natural seepage in Qaruh Island, Kuwait, MethodsX, 12, 102520, https://doi.org/10.1016/j.mex.2023.102520, 2024.