Articles | Volume 14, issue 2
https://doi.org/10.5194/gi-14-193-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-14-193-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A free, open-source method for automated mapping of quantitative mineralogy from energy-dispersive X-ray spectroscopy scans of rock thin sections
Miles M. Reed
CORRESPONDING AUTHOR
Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States
Ken L. Ferrier
Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States
William O. Nachlas
Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States
Bil Schneider
Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States
Chloé Arson
Civil and Environmental Engineering, Cornell University, Ithaca, New York, United States
Tingting Xu
Hopkins Extreme Materials Institute, John Hopkins University, Baltimore, Maryland, United States
Xianda Shen
Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai, China
Department of Geotechnical Engineering, Tongji University, Shanghai, China
Nicole West
independent researcher
Related authors
No articles found.
Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, and William O. Nachlas
Atmos. Chem. Phys., 25, 7597–7617, https://doi.org/10.5194/acp-25-7597-2025, https://doi.org/10.5194/acp-25-7597-2025, 2025
Short summary
Short summary
This study analyzed particles in hailstones from Argentina to better understand hail formation and growth. A unique method was used that revealed the particles’ size, composition, and location within the hail, including a variety of particle sizes and compositions linked to local land uses, such as mountainous, agricultural, and urban areas. The findings highlight the potential impacts of natural and human-related factors on hail formation and provide a new method for studying hail globally.
Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, William O. Nachlas, and Maria L. Asar
Atmos. Meas. Tech., 17, 5561–5579, https://doi.org/10.5194/amt-17-5561-2024, https://doi.org/10.5194/amt-17-5561-2024, 2024
Short summary
Short summary
Hail is a challenging weather phenomenon to forecast due to an incomplete understanding of hailstone formation. Microscopy temperature limitations required previous studies to melt hail for analysis. This paper introduces a unique technique using a plastic cover to preserve particles in their location within the hailstone without melting. Therefore, CLSM and SEM–EDS microscopes can be used to determine individual particle sizes and their chemical composition related to hail-formation processes.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Yangquing, J., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 2016.
Aligholi, S., Lashkaripour, G. R., and Ghafoori, M: Estimating engineering properties of igneous rocks using semi-automatic petrographic analysis. Bull. Eng. Geol. Environ., 78, 2299–2314, https://doi.org/10.1007/s10064-018-1305-7, 2019.
Behrens, R., Wirth, R., and von Blanckenburg, F: Rate limitations of nano-scale weathering front advance in the slow-eroding Sri Lankan Highlands, Geochim. Cosmochim. Acta, 311, 174–197, https://doi.org/10.1016/j.gca.2021.06.003, 2021.
Berrezueta, E., Domínguez-Cuesta, M. J., and Rodríguez-Rey, Á: Semi-automated procedure of digitalization and study of rock thin section porosity applying optical image analysis tools, Comput. Geosci., 124, 14–26, https://doi.org/10.1016/j.cageo.2018.12.009, 2019.
Bjørlykke, K: Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins, Sediment. Geol., 301, 1–14, https://doi.org/10.1016/j.sedgeo.2013.12.002, 2014.
Blannin, R., Frenzel, M., Tuşa, L., Birtel, S., Ivăşcanu, P., Baker, T., and Gutzmer, J: Uncertainties in quantitative mineralogical studies using scanning electron microscope-based image analysis, Miner. Eng., 167, 106836, https://doi.org/10.1016/j.mineng.2021.106836, 2021.
Breiman, L: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Breiman, L. and Spector, P: Submodel selection and evaluation in regression: The X-random case, Int. Stat. Rev., 291–319, https://doi.org/10.2307/1403680, 1992.
Brocard, G., Willebring, J. K., and Scatena, F. N: Shaping of topography by topographically-controlled vegetation in tropical montane rainforest, PLoS One, 18, e0281835, https://doi.org/10.1371/journal.pone.0281835, 2023.
Brunsdon, C: Quantitative methods I: Reproducible research and quantitative geography, Prog. Hum. Geogr., 40, 687–696, https://doi.org/10.1177/0309132515599625, 2016.
Bürgmann, R. and Dresen, G: Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations, Annu. Rev. Earth Planet. Sci., 36, 531–567, https://doi.org/10.1146/annurev.earth.36.031207.124326, 2008.
Buss, H. L., Sak, P. B., Webb, S. M., and Brantley, S. L.: Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing, Geochim. Cosmochim. Acta, 72, 4488–4507, https://doi.org/10.1016/j.gca.2008.06.020, 2008.
Callahan, R. P., Riebe, C. S., Sklar, L. S., Pasquet, S., Ferrier, K. L., Hahm, W. J., Grana, D., Flinchum, B., Hayes, J., and Holbrook, W. S.: Forest vulnerability to drought controlled by bedrock composition, Nat. Geosci., 15, 714–719, https://doi.org/10.1038/s41561-022-01012-2, 2022.
Callister, W. D. and Rethwisch, D. G.: Callister's Materials Science and Engineering, Global Edition, 10th Edition, John Wiley & Sons, ISBN 978-1-119-45520-2, 2019.
Chinchor, N. and Sundheim, B. M: MUC-5 evaluation metrics, in: Proceedings of the Fifth Message Understanding Conference (MUC-5), 25–27 August 1993, https://doi.org/10.3115/1072017.1072026, 1993.
Coelho, J., Valente, M. T., Milen, L., and Silva, L. L.: Is this GitHub project maintained? Measuring the level of maintenance activity of open-source projects, Inf. Software Technol., 122, 106274, https://doi.org/10.1016/j.infsof.2020.106274, 2020.
Comas, X., Wright, W., Hynek, S. A., Fletcher, R. C., and Brantley, S. L.: Understanding fracture distribution and its relation to knickpoint evolution in the Rio Icacos watershed (Luquillo Critical Zone Observatory, Puerto Rico) using landscape-scale hydrogeophysics, Earth Surf. Process. Landf., 44, 877–885, https://doi.org/10.1002/esp.4540, 2019.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Cresson, R.: A framework for remote sensing images processing using deep learning techniques, IEEE Geosci. Remote Sens. Lett., 16, 25–29, https://doi.org/10.1109/lgrs.2018.2867949, 2018.
Cresson, R.: SR4RS: A tool for super resolution of remote sensing images, J. Open Res. Softw., 10, 1, https://doi.org/10.5334/jors.369, 2022.
Cutler, A., Cutler, D. R., and Stevens, J. R.: Random forests, in: Ensemble machine learning: Methods and applications, edited by: Zhang, C. and Ma, Y., Springer, 157–175 pp., https://doi.org/10.1007/978-1-4419-9326-7_5, 2012.
Dong, H., Peacor, D. R., and Murphy, S. F.: TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile, Geochim. Cosmochim. Acta, 62, 1881–1887, https://doi.org/10.1016/s0016-7037(98)00096-9, 1998.
Elghali, A., Benzaazoua, M., Bouzahzah, H., Bussière, B., and Villarraga-Gómez, H.: Determination of the available acid-generating potential of waste rock, part I: Mineralogical approach, Appl. Geochem., 99, 31–41, https://doi.org/10.1016/j.apgeochem.2018.12.010, 2018
Fandrich, R., Gu, Y., Burrows, D., and Moeller, K.: Modern SEM-based mineral liberation analysis, Int. J. Miner. Process., 84, 310–320, https://doi.org/10.1016/j.minpro.2006.07.018, 2007.
Ferrier, K. L., Kirchner, J. W., Riebe, C. S., and Finkel, R. C.: Mineral-specific chemical weathering rates over millennial timescales: Measurements at Rio Icacos, Puerto Rico, Chem. Geol., 277, 101–114, https://doi.org/10.1016/j.chemgeo.2010.07.013, 2010.
Fletcher, R. C., Buss, H. L., and Brantley, S. L.: A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation, Earth Planet. Sci. Lett., 244, 444–457, https://doi.org/10.1016/j.epsl.2006.01.055, 2006.
GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction Software Library, Zenodo [code], https://doi.org/10.5281.zenodo.5884351, 2023.
Gillies, S., Baston, D., Amici, A., Seppi, J., Sare, R., Schut, V., and Stewart, A.: Rasterio: geospatial raster I/O for Python programmers, GitHub [code], https://github.com/rasterio/rasterio (last access: 4 May 2024), 2019.
Gillies, S., van der Wel, C., van den Bossche, J., Taves, M., Arnott, J., and Ward, B. C.: Shapely: Manipulation and analysis of geometric objects in the Cartesian plane, Zenodo [code], https://doi.org/10.5281/zenodo.5597138, 2023.
Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., and Joy, D. C.: Scanning Electron Microscopy and X-ray Microanalysis, 4th Edition, Springer, https://doi.org/10.1007/978-1-4939-6676-9, 2018.
Gonzalez, C. G. and Woods, R. E.: Digital Image Processing, 4th Edition, Pearson, https://imageprocessingplace.com/DIP-4E/dip4e_main_page.htm (last access: 22 August 2025), 2018.
Goodfellow, B. W. and Hilley, G. E.: Climatic and lithological controls on the structure and thickness of granitic weathering zones, Earth Planet. Sci. Lett., 600, 117890, https://doi.org/10.1016/j.epsl.2022.117890, 2022.
Goodfellow, B. W., Hilley, G. E., Webb, S. M., Sklar, L. S., Moon, S., and Olson, C. A.: The chemical, mechanical, and hydrological evolution of weathering granitoid, J. Geophys. Res.-Earth Surf., 121, 1410–1435, https://doi.org/10.1002/2016jf003822, 2016.
Gottlieb, P., Wilkie, G., Sutherland, D., Ho-Tun, E., Suthers, S., Perera, K., Jenkins, B., Spencer, S., Butcher, A., and Rayner, J.: Using quantitative electron microscopy for process mineralogy applications, JOM, 52, 24–25, https://doi.org/10.1007/s11837-000-0126-9, 2000.
Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., and Cresson, R.: Orfeo ToolBox: Open source processing of remote sensing images, Open Geospatial Data, Softw. Stand, 2, 1–8, https://doi.org/10.1186/s40965-017-0031-6, 2017.
Gu, Y.: Automated scanning electron microscope based mineral liberation analysis, J. Miner. Mat. Character. Eng., 2, 33–41, https://doi.org/10.4236/jmmce.2003.2100333-41, 2003.
Guo, L., Chehata, N., Mallet, C., and Boukir, S.: Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests, ISPRS J. Photogramm. Remote Sens., 66, 56–66, https://doi.org/10.1016/j.isprsjprs.2010.08.007, 2011.
Han, S., L?hr, S. C., Abbott, A. N., Baldermann, A., Farkaš, J., McMahon, W., Miliken, K., Rafiei, M., Wheeler, C., and Owen, M.: Earth system science applications of next-generation SEM-EDS automated mineral mapping, Front. Earth Sci., 10, 956912, https://doi.org/10.3389/feart.2022.956912, 2022.
Harlov, D. E., Hansen, E. C., and Bigler, C.: Petrologic evidence for K-feldspar metasomatism in granulite facies rocks, Chem. Geol., 151, 373–386, https://doi.org/10.1016/s0009-2541(98)00090-4, 1998.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., and Cournapeau, D.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Hazen, R. M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J. M., McCoy, T. J., and Yang, H.: Mineral evolution, Am. Mineral., 93, 1693–1720, https://doi.org/10.2138/am.2008.2955, 2008.
He, H. and Garcia, E. A. Learning from imbalanced data, IEEE T. Knowl. Data Eng., 21, 1263–1284, https://doi.org/10.1109/TKDE.2008.239, 2009.
Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nat. Rev. Earth Environ., 1, 284–299, https://doi.org/10.1038/s43017-020-0058-6, 2020.
Hrstka, T., Gottlieb, P., Skala, R., Breiter, K., and Motl, D.: Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA), J. Geosci., 63, 47–63, https://doi.org/10.3190/jgeosci.250, 2018.
Hupp, B. N. and Donovan, J. J.: Quantitative mineralogy for facies definition in the Marcellus Shale (Appalachian Basin, USA) using XRD-XRF integration, Sediment. Geol., 371, 16–31, https://doi.org/10.1016/j.sedgeo.2018.04.007
Jordahl, K., Van den Bossche, J., Wasserman, J., McBride, J., Gerard, J., Fleischmann, M., Tratner, J., Perry, M., Snow, A., Bartos, M., Wilson, J., Wasser, L., Farmer, C., Cochran, M., Hjelle, G., Culbertson., L., Badaracco, A., Journois, M., and Greenhall, A.: geopandas/geopandas: v0.12.1, Zenodo [code], https://doi.org/10.5281/zenodo.7262879, 2022.
Keulen, N., Malkki, S. N., and Graham, S.: Automated quantitative mineralogy applied to metamorphic rocks, Minerals, 10, 47, https://doi.org/10.3390/min10010047, 2020.
Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E. G., and Schwartz, S.: XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry, Comput. Geosci., 62, 227–240, https://doi.org/10.1016/j.cageo.2013.08.010, 2014.
Le Maitre, R. W.: Classification and nomenclature, in: Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, edited by: Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., and Bateman, P., Cambridge University Press, https://doi.org/10.1017/CBO9780511535581, 2002.
Li, C., Wang, D., and Kong, L.: Application of machine learning techniques in mineral classification for scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) images, J. Pet. Sci. Eng., 200, 108178, https://doi.org/10.1016/j.petrol.2020.108178, 2021.
Li, L., Lee, P. K. K., Tsui, Y., Tham, L. G., and Tang, C. A.: Failure process of granite, Int. J. Geomech., 3, 84–98, https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(84), 2003.
Mahabadi, O. K., Randall, N. X., Zong, Z., and Grasselli, G.: A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity, Geophys. Res. Lett., 39, L01303, https://doi.org/10.1029/2011gl050411, 2012.
Malac, M., Calzada, J. A. M., Salomons, M., Homeniuk, D., Price, P., Cloutier, M., Hayashida, M., Vick, D., Chen, S., Yakubu, S., Wen, D., Leeson, M., Kamal, M., Pitters, J. Kim, J., Wang, X., Adkin-Kaya, O., and Egerton, R.: NanoMi: An open source electron microscope hardware and software platform, Micron, 163, 103362, https://doi.org/10.1016/j.micron.2022.103362, 2022.
Marra, W. A., van de Grint, L., Alberti, K., and Karssenberg, D.: Using GIS in an Earth Sciences field course for quantitative exploration, data management and digital mapping, J. Geogr. Higher Educ., 41, 213–229, https://doi.org/10.1080/03098265.2017.1291587, 2017.
Maxwell, A. E., Warner, T. A., and Fang, F.: Implementation of machine-learning classification in remote sensing: An applied review, Int. J. Remote Sens., 39, 2784–2817, https://doi.org/10.1080/01431161.2018.1433343, 2018.
McInerney, D. and Kempeneers, P.: Virtual Rasters and Raster Calculations. in: Open Source Geospatial Tools: Applications in Earth Observation, Earth Systems Data and Models, Springer, https://doi.org/10.1007/978-3-319-01824-9_11, 2015.
Murphy, S. F., Brantley, S. L., Blum, A. E., White, A. F., and Dong, H.: Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: II. Rate and mechanism of biotite weathering, Geochim. Cosmochim. Acta, 62, 227–243, https://doi.org/10.1016/s0016-7037(97)00336-0, 1998.
Newbury, D. E. and Ritchie, N. W.: Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD), J. Anal. At. Spectrom., 28, 973–988, https://doi.org/10.1039/c3ja50026h, 2013.
Nikonow, W. and Rammlmair, D.: Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer, Geosci. Instrum. Method. Data Syst., 6, 429–437, https://doi.org/10.5194/gi-6-429-2017, 2017.
Nikonow, W., Rammlmair, D., Meima, J. A., and Schodlok, M. C.: Advanced mineral characterization and petrographic analysis by µ-EDXRF, LIBS, HSI and hyperspectral data merging, Mineral. Petrol., 113, 417–431, https://doi.org/10.1007/s00710-019-00657-z, 2019.
Orlando, J., Comas, X., Hynek, S. A., Buss, H. L., and Brantley, S. L.: Architecture of the deep critical zone in the Río Icacos watershed (Luquillo Critical Zone Observatory, Puerto Rico) inferred from drilling and ground penetrating radar (GPR), Earth Surf. Processes Landforms, 41, 1826–1840, https://doi.org/10.1002/esp.3948, 2016.
Ortolano, G., Zappalà, L., and Mazzoleni, P.: X-Ray Map Analyser: A new ArcGIS® based tool for the quantitative statistical data handling of X-ray maps (Geo-and material-science applications), Comput. Geosci., 72, 49–64, https://doi.org/10.1016/j.cageo.2014.07.006, 2014.
Ortolano, G., Visalli, R., Godard, G., and Cirrincione, R.: Quantitative X-ray Map Analyser (Q-XRMA): A new GIS-based statistical approach to Mineral Image Analysis, Comput. Geosci., 115, 56–65, https://doi.org/10.1016/j.cageo.2018.03.001, 2018.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Pretenhoffer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, https://doi.org/10.48550/arxiv.1201.0490, 2011.
Perkins, D.: Mineralogy, Open Educational Resources, University of North Dakota, https://doi.org/10.31356/oers025, 2020.
Pirrie, D. and Rollinson, G. K.: Unlocking the applications of automated mineral analysis, Geol. Today, 27, 226–235, https://doi.org/10.1111/j.1365-2451.2011.00818.x, 2011.
Přikryl, R.: Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations, Eng. Geol., 87, 149–162, https://doi.org/10.1016/j.enggeo.2006.05.011, 2006.
Probst, P., Wright, M. N., and Boulesteix, A. L.: Hyperparameters and tuning strategies for random forest, Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery, 9, e1301, https://doi.org/10.1002/widm.1301, 2019.
Rafiei, M., Lóhr, S., Baldermann, A., Webster, R., and Kong, C.: Quantitative petrographic differentiation of detrital vs diagenetic clay minerals in marine sedimentary sequences: Implications for the rise of biotic soils, Precambrian Res., 350, 105948, https://doi.org/10.1016/j.precamres.2020.105948, 2020.
Ramachandran, R., Bugbee, K., and Murphy, K: From open data to open science, Earth Space Sci., 8, e2020EA001562, https://doi.org/10.1029/2020EA001562, 2021.
Raza, A. and Capretz, L. F.: Contributors preference in open source software usability: An empirical study, arXiv [preprint], https://doi.org/10.48550/arXiv.1507.06882, 24 July 2015.
Reed, M. M., Ferrier, K. L., Nachlas, W. O., Schneider, B., Arson, C., Xu, T., Shen, X., and West, N.: Supplement to “A free, open-source method for automated mapping of quantitative mineralogy from energy-dispersive X-ray spectroscopy scans of rock thin sections”, Zenodo [code, data set], https://doi.org/10.5281/zenodo.10912628, 2024.
Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance, Geochim. Cosmochim. Acta, 67, 4411–4427, https://doi.org/10.1016/s0016-7037(03)00382-x, 2003.
Schulz, B., Sandmann, D., and Gilbricht, S.: SEM-based automated mineralogy and its application in geo-and material sciences, Minerals, 10, 1004, https://doi.org/10.3390/min10111004, 2020.
Shen, X., Arson, C., Ferrier, K. L., West, N., and Dai, S.: Mineral weathering and bedrock weakening: Modeling microscale bedrock damage under biotite weathering, J. Geophys. Res.-Earth Surf., 124, 2623–2646, https://doi.org/10.1029/2019jf005068, 2019.
Speer, J. A.: Micas in igneous rocks, Rev. Mineral. Geochem., 13, 299–356, 1984.
Stallard, R. F. and Murphy, S. F.: Water quality and mass transport in four watersheds in eastern Puerto Rico. Water quality and landscape processes of four watersheds in eastern Puerto Rico. US Geol. Surv. Prof. Pap., 1789, 113–152, https://doi.org/10.3133/pp1789E, 2012.
Sutherland, D. N. and Gottlieb, P. Application of automated quantitative mineralogy in mineral processing, Miner. Eng., 4, 753–762, https://doi.org/10.1016/0892-6875(91)90063-2, 1991.
Tapponnier, P. and Brace, W. F.: Development of stress-induced microcracks in Westerly granite, Int. J. Rock. Mech. Min., 13, 103–112, https://doi.org/10.1016/0148-9062(76)91937-9, 1976.
Tarquini, S. and Favalli, M.: A microscopic information system (MIS) for petrographic analysis, Comput. Geosci., 36, 665–674, https://doi.org/10.1016/j.cageo.2009.09.017, 2010.
Ündül, Ö.: Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks, Eng. Geol., 210, 10–22, https://doi.org/10.1016/j.enggeo.2016.06.001, 2016.
Wahrhaftig, C.: Stepped topography of the southern Sierra Nevada, California, Geol. Soc. Am. Bull., 76, 1165–1190, https://doi.org/10.1130/0016-7606(1965)76[1165:stotss]2.0.co;2, 1965.
White, A. F., Blum, A. E., Schulz, M. S., Vivit, D. V., Stonestrom, D. A., Larsen, M., Murphy, S., and Eberl, D.: Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes, Geochim. Cosmochim. Acta, 62, 209–226, https://doi.org/10.1016/s0016-7037(97)00335-9, 1998.
Xu, T., Shen, X., Reed, M., West, N., Ferrier, K. L., and Arson, C.: Anisotropy and microcrack propagation induced by weathering, regional stresses and topographic stresses, J. Geophys. Res.-Solid Earth, 127, e2022JB024518, https://doi.org/10.1029/2022JB024518, 2022.
Short summary
We constructed an easy-to-use, open-source method for mapping minerals in rock thin sections. We implemented the method within the geographical information system QGIS and the Orfeo ToolBox plugin using random forest image classification on scanning electron microscope data. We applied the method to 14 rock thin sections. Mineral abundance estimates from our method compare favorably to previously published estimates, and 96 % spatially and categorically agree with manually derived mineral maps.
We constructed an easy-to-use, open-source method for mapping minerals in rock thin sections. We...