Articles | Volume 14, issue 2
https://doi.org/10.5194/gi-14-459-2025
https://doi.org/10.5194/gi-14-459-2025
Research article
 | 
10 Dec 2025
Research article |  | 10 Dec 2025

Ice borehole thermometry: sensor placement using greedy optimal sampling

Kshema Shaju, Thomas Laepple, Nora Hirsch, and Peter Zaspel

Related authors

The colors of proxy noise
Mara Y. McPartland, Thomas Münch, Andrew M. Dolman, Raphaël Hébert, and Thomas Laepple
Clim. Past, 21, 1917–1931, https://doi.org/10.5194/cp-21-1917-2025,https://doi.org/10.5194/cp-21-1917-2025, 2025
Short summary
Microscale Alkenone Heterogeneity and Replicability of Ultra-High-Resolution Temperature Records from Marine Sediments
Jannis Viola, Lars Woermer, Kai-Uwe Hinrichs, and Thomas Laepple
EGUsphere, https://doi.org/10.5194/egusphere-2025-5089,https://doi.org/10.5194/egusphere-2025-5089, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
The impact of measurement precision on the resolvable resolution of ice core water isotope reconstructions
Fyntan Shaw, Thomas Münch, Vasileios Gkinis, and Thomas Laepple
The Cryosphere, 19, 4913–4928, https://doi.org/10.5194/tc-19-4913-2025,https://doi.org/10.5194/tc-19-4913-2025, 2025
Short summary
LegacyVegetation: Northern Hemisphere reconstruction of past plant cover and total tree cover from pollen archives of the last 14 kyr
Laura Schild, Peter Ewald, Chenzhi Li, Raphaël Hébert, Thomas Laepple, and Ulrike Herzschuh
Earth Syst. Sci. Data, 17, 2007–2033, https://doi.org/10.5194/essd-17-2007-2025,https://doi.org/10.5194/essd-17-2007-2025, 2025
Short summary
Assessment of continuous flow analysis (CFA) for high-precision profiles of water isotopes in snow cores
Rémi Dallmayr, Hannah Meyer, Vasileios Gkinis, Thomas Laepple, Melanie Behrens, Frank Wilhelms, and Maria Hörhold
The Cryosphere, 19, 1067–1083, https://doi.org/10.5194/tc-19-1067-2025,https://doi.org/10.5194/tc-19-1067-2025, 2025
Short summary

Cited articles

Andersson, T. R., Bruinsma, W. P., Markou, S., Requeima, J., Coca-Castro, A., Vaughan, A., Ellis, A.-L., Lazzara, M. A., Jones, D., Hosking, S., and Turner, R. E.: Environmental sensor placement with convolutional Gaussian neural processes, Environmental Data Science, 2, e32, https://doi.org/10.1017/eds.2023.22, 2023. a
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, Journal of Geophysical Research: Earth Surface, 115, https://doi.org/10.1029/2009JF001306, 2010. a
Bartos, M. and Kerkez, B.: Observability-Based Sensor Placement Improves Contaminant Tracing in River Networks, Water Resources Research, 57, https://doi.org/10.1029/2020WR029551, 2021. a
Beltrami, H.: Earth's Long-Term Memory, Science, 297, 206–207, https://doi.org/10.1126/science.1074027, 2002. a
Beltrami, H., Matharoo, G. S., and Smerdon, J. E.: Impact of borehole depths on reconstructed estimates of ground surface temperature histories and energy storage, Journal of Geophysical Research: Earth Surface, 120, 763–778, https://doi.org/10.1002/2014JF003382, 2015. a
Download
Short summary
We present a method to optimize the number and placement of temperature sensors in the borehole for borehole thermometry. Based on heat transfer model simulations, a greedy algorithm chooses sensor locations that minimize sampling errors. Applications in Antarctic and Greenland boreholes show this method outperforms traditional linear and exponential spacing, reducing errors up to tenfold. This approach offers an efficient, cost-effective solution to improve subsurface temperature monitoring.
Share