Articles | Volume 14, issue 2
https://doi.org/10.5194/gi-14-541-2025
https://doi.org/10.5194/gi-14-541-2025
Research article
 | 
19 Dec 2025
Research article |  | 19 Dec 2025

Tipping point analysis helps identify sensor phenomena in humidity data

Valerie N. Livina, Kate Willett, and Stephanie Bell

Viewed

Total article views: 1,125 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
950 133 42 1,125 33 39
  • HTML: 950
  • PDF: 133
  • XML: 42
  • Total: 1,125
  • BibTeX: 33
  • EndNote: 39
Views and downloads (calculated since 21 May 2025)
Cumulative views and downloads (calculated since 21 May 2025)

Viewed (geographical distribution)

Total article views: 1,125 (including HTML, PDF, and XML) Thereof 1,111 with geography defined and 14 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 09 Jan 2026
Download
Short summary
A novel approach that uses tipping point analysis for identifying instrumental changes in sensor data that may not have full description of legacy hardware. The technique helps interpret changes of pattern in the data (autocorrelations) and distinguish them from climatic and environmental effects. This is particularly important for historic datasets, where instrumental changes may be undocumented or lack metadata.
Share