Articles | Volume 2, issue 1
https://doi.org/10.5194/gi-2-97-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-2-97-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A new permanent multi-parameter monitoring network in Central Asian high mountains – from measurements to data bases
T. Schöne
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
K. Unger-Shayesteh
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
V. Rudenko
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
H. Thoss
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
H.-U. Wetzel
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
A. Gafurov
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
J. Illigner
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
A. Zubovich
Central-Asian Institute of Applied Geosciences (CAIAG), Bishkek, Kyrgyzstan
Related authors
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021, https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Short summary
The regional research network Water in Central Asia (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPSs) in Central Asia, and they are operated by German and Central Asian institutes and national hydrometeorological services. They provide up to 10 years of raw meteorological and hydrological data, especially in remote areas with extreme climate conditions, for applications in climate and water monitoring in Central Asia.
Maren Bender, Thomas Mann, Paolo Stocchi, Dominik Kneer, Tilo Schöne, Julia Illigner, Jamaluddin Jompa, and Alessio Rovere
Clim. Past, 16, 1187–1205, https://doi.org/10.5194/cp-16-1187-2020, https://doi.org/10.5194/cp-16-1187-2020, 2020
Short summary
Short summary
This paper presents 24 new sea-level index points in the Spermonde Archipelago, Indonesia, and the reconstruction of the local Holocene relative sea-level history in combination with glacial isostasic adjustment models. We further show the importance of surveying the height of living coral microatolls as modern analogs to the fossil ones. Other interesting aspects are the potential subsidence of one of the densely populated islands, and we present eight samples that are dated to the Common Era.
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021, https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Short summary
The regional research network Water in Central Asia (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPSs) in Central Asia, and they are operated by German and Central Asian institutes and national hydrometeorological services. They provide up to 10 years of raw meteorological and hydrological data, especially in remote areas with extreme climate conditions, for applications in climate and water monitoring in Central Asia.
Maren Bender, Thomas Mann, Paolo Stocchi, Dominik Kneer, Tilo Schöne, Julia Illigner, Jamaluddin Jompa, and Alessio Rovere
Clim. Past, 16, 1187–1205, https://doi.org/10.5194/cp-16-1187-2020, https://doi.org/10.5194/cp-16-1187-2020, 2020
Short summary
Short summary
This paper presents 24 new sea-level index points in the Spermonde Archipelago, Indonesia, and the reconstruction of the local Holocene relative sea-level history in combination with glacial isostasic adjustment models. We further show the importance of surveying the height of living coral microatolls as modern analogs to the fossil ones. Other interesting aspects are the potential subsidence of one of the densely populated islands, and we present eight samples that are dated to the Common Era.
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Related subject area
Network
Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia
Designing optimal greenhouse gas observing networks that consider performance and cost
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
D. D. Lucas, C. Yver Kwok, P. Cameron-Smith, H. Graven, D. Bergmann, T. P. Guilderson, R. Weiss, and R. Keeling
Geosci. Instrum. Method. Data Syst., 4, 121–137, https://doi.org/10.5194/gi-4-121-2015, https://doi.org/10.5194/gi-4-121-2015, 2015
Short summary
Short summary
Multiobjective optimization is used to design Pareto optimal greenhouse gas (GHG) observing networks. A prototype GHG network is designed to optimize scientific performance and measurement costs. The Pareto frontier is convex, showing the trade-offs between performance and cost and the diminishing returns in trading one for the other. Other objectives and constraints that are important in the design of practical GHG monitoring networks can be incorporated into our method.
Cited articles
Anderson, P. S.: A method for rescaling humidity sensors at temperatures well below freezing, J. Atmos. Ocean. Technol., 11, 1388–1391, 1994.
Angermann, M., Guenther, M., and Wendlandt, K.: Communication architecture of an early warning system, Nat. Hazards Earth Syst. Sci., 10, 2215–2228, https://doi.org/10.5194/nhess-10-2215-2010, 2010.
ARGOS: Argos User's manual, available at: http://www.argos-system.org/files/pmedia/public/r363_9_argos_manual_en.pdf (last access: 8 March 2013), 2011.
Bender, M., Dick, G., Wickert, J., Schmidt, T., Song, S., Gendt, G., Ge, M., and Rothacher, M.: Validation of GPS slant delays using water vapour radiometers and weather models, Meteorologische Z., 17, 807–812, 2008.
Box, J. E., Anderson, P. S., and Van den Broeke, M. R.: Lessons to be learned, in: Automatic weather stations on glaciers – Lessons to be learned and Extended abstracts from the Workshop, edited by: Oerlemans, J. and Tijm-Reijmer, C. H., 28–31 March 2004, Pontresina (Switzerland), 9–28, Institute for Marine and Atmospheric Research, Utrecht University, 2004.
Chard, J. and Bugbee, B.: Electronic measurement of barometric pressure: A Comparison of Omega Model EWS-BP-A, Setra Model 276, Setra Model 278, Vaisala Model PTB101B, and Apogee Instruments Model BPS, Uta State University, available at: http://www.usu.edu/cpl/PDF/BarometricPressureSensors061108.pdf (last access: 18 December 2012), 2006.
Chu, X., Kobialka, T., Durnota, B., and Buyya, R.: Open Sensor Web Architecture: Core Services, in: Proceedings of the 4th International Conference on Intelligent Sensing and Information Processing, Bangalore, India, ICISIP 2006, IEEE Press, Piscataway, New Jersey, USA, ISB 1-244-611-0, 98–103, available at: ttp://www.gridbus.org/papers/ICISIP2006-SensorWeb.pdf (last access: 20 December 2010), 15–18 December, 2006.
Citterio, M.: Design and performance of the GEUS AWS, in: Workshop on the use of automatic measuring systems on glaciers – Extended abstracts and recommendations of the IASC Workshop, edited by: Tijm-Reijmer, C. H. and Oerlemans, J., 23–26 March 2011, Pontresina (Switzerland), 22–26, Institute for Marine and Atmospheric Research, Utrecht University, 2011.
Corripio, J.: Snow surface albedo estimation using terrestrial photography, Int. J. Remote Sens., 25, 5705–5729, 2004.
Dow, J. M., Neilan, R. E., and Rizos, C.: The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geod., 83, 191–198, https://doi.org/10.1007/s00190-008-0300-3, 2009.
ECMWF: CREX User's Guide and Reference, http://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/ECMWF/crex_ user_guide.pdf (last access: 8 March 2013), 2006.
EUMETSAT: TD 16 – Meteosat Data Collection and Retransmission Service, available at:http://www.eumetsat.int/idcplg?IdcService=GET_ FILE&dDocName=PDF_TD16_MSG_CRS&RevisionSelectionMethod=LatestReleased (last access: 20 December 2012), 2009.
Finaev, A.: Review of hydrometeorological observations in Tajikistan for the period of 1990–2005, in: Assessment of Snow, Glacier and Water Resources in Asia, edited by: Braun, L. N., Hagg, W., Severskiy, I. V., and Young, G., Selected papers from the Workshop in Almaty, Kazakhstan, 2006, UNESCO-IHP and German IHP/HWRP National Committee, IHP/HWRP-Berichte 8, 55–64, Koblenz, 2009.
Fleischer, J., Häner, R., Herrnkind, S., Kloth, A., Kriegel, U., Schwarting, H., and Wächter, J.: An integration platform for heterogeneous sensor systems in GITEWS – Tsunami Service Bus, Nat. Hazards Earth Syst. Sci., 10, 1239–1252, https://doi.org/10.5194/nhess-10-1239-2010, 2010.
Gorodetskaya, I. V., van Lipzig, N. P. M., Boot, W., Reijmer, C., and van den Broeke, M. R.: AWS measurements at the Belgian Antarctic station Princess Elisabeth, in Dronning Maud Land, for precipitation and surface mass balance studies, in: Workshop on the use of automatic measuring systems on glaciers – Extended abstracts and recommendations of the IASC Workshop, edited by: Tijm-Reijmer, C. H. and Oerlemans, J., 23–26 March 2011, Pontresina (Switzerland), 40–44, Institute for Marine and Atmospheric Research, Utrecht University, 2011.
Gurtner, W. and Estey, L.: RINEX – The Receiver Independent Exchange Format, Version 3.00, University of Berne, 2007.
Hanka, W., Heinloo, A., and Jäckel, K.-H.: Networked Seismographs: GEOFON Real-Time data Distribution, ORFEUS Electronic Newsletter, 2, 3, available at: http://www.orfeus-eu.org/Organization/Newsletter/vol2no3/geofon.html (last access: 8 March 2013), 2000.
Helmholtz Association: Helmholtz Roadmap for Research Infrastructures, available at: http://www.helmholtz.de/fileadmin/user_ upload/publikationen/pdf/11_Helmholtz_ Roadmap_EN_WEB.pdf (last access: 20 December 2012), 2012.
Herring, T. A., King, R. W., and McClusky, S. C.: Documentation for the GAMIT/GLOBK GPS processing software release 10.3, Mass. Inst. of Technol., Cambridge, 2009.
Huss, M., Sold, L., Hoelzle, M., Stokvis, M., Salzmann, N., Daniel Farinotti, D., and Zemp, M.: Towards remote monitoring of sub-seasonal glacier mass balance, Ann. Glaciol., 56, 85–93, https://doi.org/10.3189/2013AoG63A427, 2012.
Huwald, H., Higgins, C. W., Boldi, M., Bou-Zeid, E., Lehning, M., and Parlange, M. B.: Albedo effect on radiative errors in air temperature measurements, Water Resour. Res., 45, W08431, https://doi.org/10.1029/2008WR007600, 2009.
Ingelrest, F., Barrenetxea, G., Schaefer, G., Vetterli, M., Couach, O., and Parlange, M.: SensorScope: Application-specific sensor network for environmental monitoring, ACM T. Sensor Network., 6, 1–32, https://doi.org/10.1145/1689239.1689247, 2010.
Inmarsat Global Limited: BGAN Overview Brochure, available at: http://www.inmarsat.com/cs/groups/inmarsat/documents/assets/018710.pdf (last access: 20 December 2012), 2009.
Iridium Communications Inc.: Iridium 9522B, L-Band Satellite Transceiver, available at: http://www.iridium.com/DownloadAttachment.aspx?attachmentID=564 (last access: 20 December 2012), 2010.
Itibayev, Z.: Report of the State Agency for Hydrometeorology at the Ministry for Emergency Situations of the Kyrgyz Republic (Kyrgyz Hydromet), Regional Workshop "Improving Weather, Climate and Hydrological Service Delivery, and Reducing Vulnerability to Disasters in Central Asia and Caucasus", Tashkent, (available at: http://siteresources.worldbank.org/INTUZBEKISTAN/Resources/294087-1246601504640/Day2_ s3_f8_rus.pdf) (last access: 20 December 2012), 2009 (in Russian).
Jeanicke, J., Mayer, C., Scharrer, K., Münzer, U., and Gudmundsson, A.: The use of remote-sensing data for mass-balance studies at Myrdalsjökull ice cap, Iceland, J. Glaciol., 52, 565–573, 2006.
Kayumov, A., Makhmadaliev, B., and Novikov, V.: Tajikistan. The first national communication of the Republic of Tajikistan to the United Nations Framework Convention on Climate Change, Addendum. Phase 2: Capacity building in priority areas, 2002.
Kloth, A.: Concept, Design and Implementation of Reliable and Autonomous Systems, Master Thesis, University of Potsdam, Institute for Computer Science Operating Systems and Distributed Systems, 2008.
Maussion, F., Wei, Y., Huintjes, E., Pieczonka, T., Scherer, D., Yao, T., Kang, S., Bolch, T., Buchroithner, M., and Schneider, C.: Glaciological field studies at Zhadang Glacier (5500–6095 m), Tibetan Plateau, in: Workshop on the use of automatic measuring systems on glaciers – Extended abstracts and recommendations of the IASC Workshop, edited by: Tijm-Reijmer, C. H. and Oerlemans, J., 23–26 March 2011, Pontresina (Switzerland), 62–68, Institute for Marine and Atmospheric Research, Utrecht University, 2011.
Mittelbach, H., Lehner, I., and Seneviratne, S. I.: Comparison of four soil moisture sensor types under field conditions in Switzerland, J. Hydrol., 430–431, 39–49, https://doi.org/10.1016/j.jhydrol.2012.01.041, 2012.
O{&}M: Geographic Information: Observations and Measurements, OGC Abstract Specification Topic 20, Version 2.0.0, ref. OGC 10-004r3 and ISO 19156, available at: http://portal.opengeospatial.org/files/?artifact_id=41579 (last access: 20 December 2012), 2010.
OGC: OpenGIS: OpenGIS\textsuperscript{\textregistered} Standards, available at: http://www.opengeospatial.org/standards (last access 20.12.2012), 2010.
Pertziger, F. I.: Abramov Glacier Data Reference Book: Climate, Runoff, Mass Balance, 279 p., Technical University Munich, Tashkent/Munich, 1996.
Rabatel, A., Dedieu, J.-P., and Vincent, C.: Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: validation on three French glaciers, 1994–2002, J. Glaciol., 51, 539–546, 2005.
Rabatel, A., Dedieu, J.-P., Thibert, E., Letréguilly, A., and Vincent, C.: 25 years (1981–2005) of equilibrium-line altitude and mass-balance reconstruction on Glacier Blanc, French Alps, using remote-sensing methods and meteorological data, J. Glaciol., 54, 307–314, https://doi.org/10.3189/002214308784886063, 2008.
Reijmer, C. H. , van den Broeke, M. R., and Boot, W.: Measuring humidity at temperatures well below zero, in: Automatic weather stations on glaciers – Lessons to be learned and Extended abstracts from the Workshop, edited by: Oerlemans, J. and Tijm-Reijmer, C. H., 28–31 March 2004, Pontresina (Switzerland), 88–92, Institute for Marine and Atmospheric Research, Utrecht University, 2004.
Schilling, D. L.: Meteor burst communications – Theory and practice, John Wiley & Sons Inc., New York, 480 p., 1993.
Schöne, T., Illigner, J., Manurung, P., Subarya, C., Khafid, Zech, C., and Galas, R.: GPS-controlled tide gauges in Indonesia – a German contribution to Indonesia's Tsunami Early Warning System, Nat. Hazards Earth Syst. Sci., 11, 731–740, https://doi.org/10.5194/nhess-11-731-2011, 2011.
Simoni, S., Padoan, S., Nadeau, D. F., Diebold, M., Porporato, A., Barrenetxea, G., Ingelrest, F., Vetterli, M., and Parlange, M. B.: Hydrologic response of an alpine watershed: Application of a meteorological wireless sensor network to understand streamflow generation, Water Resour. Res., 47, W10524, https://doi.org/10.1029/2011WR010730, 2011.
Sommer: Sommer Mess-Systemtechnik: RQ24 – Non-contact measurement of discharge, Product information, available at: http://www.sommer.at/fileadmin/template/PDF/mySommer/RQ-24/Productinfo_ RQ24_Vxx.xx.rxx_V009_ENG_www.pdf) (last access: 20 December 2012), 2008.
Sommer: Sommer Mess-Systemtechnik: Snow Pack Analyser (SPA) for snow water equivalent (SWE) and liquid water content, Document release: V1.0.0, (available at: http://www.sommer.at/fileadmin/template/PDF/mySommer/SPA/Paper_SPA_V001_ENG.pdf) (last access 20.12.2012), 2009.
Sorg, A., Bolch, T., Stoffel, M., Solomina, O., and Beniston, M.: Climate change impacts on glaciers and runoff in Tien Shan (Central Asia), Nat. Clim. Change, 2, 725–731, https://doi.org/10.1038/nclimate1592, 2012.
SOS: Sensor Observation Service, Version 1.0, ref. OGC 06-009r6, available at: http://portal.opengeospatial.org/files/?artifact id=26667 (last access: 20 December 2012), 2007.
UNISDR: World Bank, and World Meteorological Organization: Central Asia and Caucasus disaster risk management initiative (CAC DRMI), Risk assessment for Central Asia and Caucasus – Desk study review, available at: http://www.preventionweb.net/files/11641_CentralAsiaCaucasusDRManagementInit.pdf (last access: 20 December 2012), 2009.
WMO: Guide to Meteorological Instruments and Methods of Observation, WMO-No. 8, available at: https://www.google.com/url?q=http://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf) (last access: 20 December 2012), 2008.
World Bank: Improving weather, climate and hydrological services delivery in Central Asia (Kyrgyz Republic, Republic of Tajikistan, and Turkmenistan), Report prepared in the frame of the technical assistance project "An action plan for improving weather and climate service delivery in high-risk, low-income countries in Central Asia", World Bank Russia Country Office, Moscow, 2009.
Zhang, Y., Luo, L., Huo, J., and Zhu, W.: An Eco-hydrology wireless sensor demonstration network in high-altitude and alpine environment in the Heihe River Basin of China, Lect. Notes Comput. Sc., 4, 138–146, https://doi.org/10.4236/wsn.2012.45020, 2012.