The Sodankylä in situ soil moisture observation network: an example application of ESA CCI soil moisture product evaluation
Abstract. During the last decade there has been considerable development in remote sensing techniques relating to soil moisture retrievals over large areas. Within the framework of the European Space Agency's (ESA) Climate Change Initiative (CCI) a new soil moisture product has been generated, merging different satellite-based surface soil moisture based products. Such remotely sensed data need to be validated by means of in situ observations in different climatic regions. In that context, a comprehensive, distributed network of in situ measurement stations gathering information on soil moisture, as well as soil temperature, has been set up in recent years at the Finnish Meteorological Institute's (FMI) Sodankylä Arctic research station. The network forms a calibration and validation (CAL–VAL) reference site and is used as a tool to evaluate the validity of satellite retrievals of soil properties.
In this paper we present the Sodankylä CAL–VAL reference site soil moisture observation network, its instrumentation as well as its areal representativeness over the study area and the region in general as a whole. As an example of data utilization, comparisons of spatially weighted average top-layer soil moisture observations between the years 2012 and 2014 against ESA CCI soil moisture data product estimates are presented and discussed. The comparisons were made against a single ESA CCI data product pixel encapsulating most of the Sodankylä CAL–VAL network sites. Comparisons are made with daily averaged and running weekly averaged soil moisture data as well as through application of an exponential soil moisture filter. The overall achieved correlation between the ESA CCI data product and in situ observations varies considerably (from 0.479 to 0.637) depending on the applied comparison perspective. Similarly, depending on the comparison perspective used, inter-annual correlation comparison results exhibit even more pronounced variation, ranging from 0.166 to 0.840.