Articles | Volume 5, issue 1
https://doi.org/10.5194/gi-5-95-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-5-95-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The Sodankylä in situ soil moisture observation network: an example application of ESA CCI soil moisture product evaluation
Jaakko Ikonen
CORRESPONDING AUTHOR
Finnish Meteorological Institute, Arctic Research, Helsinki, Finland
Juho Vehviläinen
Finnish Meteorological Institute, Arctic Research, Helsinki, Finland
Kimmo Rautiainen
Finnish Meteorological Institute, Arctic Research, Helsinki, Finland
Tuomo Smolander
Finnish Meteorological Institute, Arctic Research, Helsinki, Finland
Juha Lemmetyinen
Finnish Meteorological Institute, Arctic Research, Helsinki, Finland
Simone Bircher
Centre d'Etudes Spatiales de la Biosphére (CESBIO), Toulouse, France
Jouni Pulliainen
Finnish Meteorological Institute, Arctic Research, Helsinki, Finland
Related authors
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Juliette Ortet, Arnaud Mialon, Alain Royer, Mike Schwank, Manu Holmberg, Kimmo Rautiainen, Simone Bircher-Adrot, Andreas Colliander, Yann Kerr, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3963, https://doi.org/10.5194/egusphere-2024-3963, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We propose a new method to determine the ground surface temperature under the snowpack in the Arctic area from satellite observations. The obtained ground temperatures time series were evaluated over 21 reference sites in Northern Alaska and compared with ground temperatures obtained with global models. The method is excessively promising for monitoring ground temperature below the snowpack and studying the spatiotemporal variability thanks to 15 years of observations over the whole Arctic area.
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-2518, https://doi.org/10.5194/egusphere-2024-2518, 2024
Short summary
Short summary
We developed a robust freeze/thaw detection approach, applying a constant threshold on Copernicus Sentinel-1 data, that is suitable for tundra regions. All global, coarser resolution products, tested with the resulting benchmarking dataset, are of value for freeze/thaw retrieval, although differences were found depending on seasons, in particular during spring and autumn transition.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, Luke Smallmann, Susan Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zähle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek El-Madany, Mirco Migliavacca, Marika Honkanen, Yann Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaetan Pique, Amanda Ojasalo, Shaun Quegan, Peter Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
EGUsphere, https://doi.org/10.5194/egusphere-2024-1534, https://doi.org/10.5194/egusphere-2024-1534, 2024
Short summary
Short summary
When it comes to climate change, the land surfaces are where the vast majority of impacts happen. The task of monitoring those across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us see what changes on our lands.
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024, https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Short summary
We developed an algorithm to estimate snow mass using X- and dual Ku-band radar, and tested it in a ground-based experiment. The algorithm, the Bayesian-based Algorithm for SWE Estimation (BASE) using active microwaves, achieved an RMSE of 30 mm for snow water equivalent. These results demonstrate the potential of radar, a highly promising sensor, to map snow mass at high spatial resolution.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023, https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Short summary
Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. In extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record. Retrieval is most robust in the tundra biome, where records can be used to identify extremes and the results can be applied to impact studies at regional scale.
Pinja Venäläinen, Kari Luojus, Colleen Mortimer, Juha Lemmetyinen, Jouni Pulliainen, Matias Takala, Mikko Moisander, and Lina Zschenderlein
The Cryosphere, 17, 719–736, https://doi.org/10.5194/tc-17-719-2023, https://doi.org/10.5194/tc-17-719-2023, 2023
Short summary
Short summary
Snow water equivalent (SWE) is a valuable characteristic of snow cover. In this research, we improve the radiometer-based GlobSnow SWE retrieval methodology by implementing spatially and temporally varying snow densities into the retrieval procedure. In addition to improving the accuracy of SWE retrieval, varying snow densities were found to improve the magnitude and seasonal evolution of the Northern Hemisphere snow mass estimate compared to the baseline product.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Bin Cheng, Yubing Cheng, Timo Vihma, Anna Kontu, Fei Zheng, Juha Lemmetyinen, Yubao Qiu, and Jouni Pulliainen
Earth Syst. Sci. Data, 13, 3967–3978, https://doi.org/10.5194/essd-13-3967-2021, https://doi.org/10.5194/essd-13-3967-2021, 2021
Short summary
Short summary
Climate change strongly impacts the Arctic, with clear signs of higher air temperature and more precipitation. A sustainable observation programme has been carried out in Lake Orajärvi in Sodankylä, Finland. The high-quality air–snow–ice–water temperature profiles have been measured every winter since 2009. The data can be used to investigate the lake ice surface heat balance and the role of snow in lake ice mass balance and parameterization of snow-to-ice transformation in snow/ice models.
Pinja Venäläinen, Kari Luojus, Juha Lemmetyinen, Jouni Pulliainen, Mikko Moisander, and Matias Takala
The Cryosphere, 15, 2969–2981, https://doi.org/10.5194/tc-15-2969-2021, https://doi.org/10.5194/tc-15-2969-2021, 2021
Short summary
Short summary
Information about snow water equivalent (SWE) is needed in many applications, including climate model evaluation and forecasting fresh water availability. Space-borne radiometer observations combined with ground snow depth measurements can be used to make global estimates of SWE. In this study, we investigate the possibility of using sparse snow density measurement in satellite-based SWE retrieval and show that using the snow density information in post-processing improves SWE estimations.
Jianwei Yang, Lingmei Jiang, Kari Luojus, Jinmei Pan, Juha Lemmetyinen, Matias Takala, and Shengli Wu
The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020, https://doi.org/10.5194/tc-14-1763-2020, 2020
Short summary
Short summary
There are many challenges for accurate snow depth estimation using passive microwave data. Machine learning (ML) techniques are deemed to be powerful tools for establishing nonlinear relations between independent variables and a given target variable. In this study, we investigate the potential capability of the random forest (RF) model on snow depth estimation at temporal and spatial scales. The result indicates that the fitted RF algorithms perform better on temporal than spatial scales.
Henna-Reetta Hannula, Kirsikka Heinilä, Kristin Böttcher, Olli-Pekka Mattila, Miia Salminen, and Jouni Pulliainen
Earth Syst. Sci. Data, 12, 719–740, https://doi.org/10.5194/essd-12-719-2020, https://doi.org/10.5194/essd-12-719-2020, 2020
Short summary
Short summary
We publish and describe a surface spectral reflectance data record of seasonal snow (dry, wet, shadowed), forest ground (lichen, moss) and forest canopy (spruce and pine, branches) constituting the main elements of the boreal landscape and collected at four scales. The data record describes the characteristics and variability of the satellite scene reflectance contributors in boreal landscape, thus enabling the development of improved optical satellite snow mapping methods for forested areas.
Melody Sandells, Richard Essery, Nick Rutter, Leanne Wake, Leena Leppänen, and Juha Lemmetyinen
The Cryosphere, 11, 229–246, https://doi.org/10.5194/tc-11-229-2017, https://doi.org/10.5194/tc-11-229-2017, 2017
Short summary
Short summary
This study looks at a wide range of options for simulating sensor signals for satellite monitoring of water stored as snow, though an ensemble of 1323 coupled snow evolution and microwave scattering models. The greatest improvements will be made with better computer simulations of how the snow microstructure changes, followed by how the microstructure scatters radiation at microwave frequencies. Snow compaction should also be considered in systems to monitor snow mass from space.
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016, https://doi.org/10.5194/gi-5-403-2016, 2016
Silvan Leinss, Henning Löwe, Martin Proksch, Juha Lemmetyinen, Andreas Wiesmann, and Irena Hajnsek
The Cryosphere, 10, 1771–1797, https://doi.org/10.5194/tc-10-1771-2016, https://doi.org/10.5194/tc-10-1771-2016, 2016
Short summary
Short summary
Four years of anisotropy measurements of seasonal snow are presented in the paper. The anisotropy was measured every 4 h with a ground-based polarimetric radar. An electromagnetic model has been developed to measured the anisotropy with radar instruments from ground and from space. The anisotropic permittivity was derived with Maxwell–Garnett-type mixing formulas which are shown to be equivalent to series expansions of the permittivity tensor based on spatial correlation function of snow.
Henna-Reetta Hannula, Juha Lemmetyinen, Anna Kontu, Chris Derksen, and Jouni Pulliainen
Geosci. Instrum. Method. Data Syst., 5, 347–363, https://doi.org/10.5194/gi-5-347-2016, https://doi.org/10.5194/gi-5-347-2016, 2016
Short summary
Short summary
The paper described an extensive in situ data set of bulk snow depth, snow water equivalent, and snow density collected as a support of SnowSAR-2 airborne campaign in northern Finland. The spatial and temporal variability of these snow properties was analyzed in different land cover types. The success of the chosen measurement protocol to provide an accurate reference for the simultaneous SAR data products was analyzed in the context of spatial scale, sample size, and uncertainty.
Richard Essery, Anna Kontu, Juha Lemmetyinen, Marie Dumont, and Cécile B. Ménard
Geosci. Instrum. Method. Data Syst., 5, 219–227, https://doi.org/10.5194/gi-5-219-2016, https://doi.org/10.5194/gi-5-219-2016, 2016
Short summary
Short summary
Physically based models that predict the properties of snow on the ground are used in many applications, but meteorological input data required by these models are hard to obtain in cold regions. Monitoring at the Sodankyla research station allows construction of model input and evaluation datasets covering several years for the first time in the Arctic. The data are used to show that a sophisticated snow model developed for warmer and wetter sites can perform well in very different conditions.
Leena Leppänen, Anna Kontu, Henna-Reetta Hannula, Heidi Sjöblom, and Jouni Pulliainen
Geosci. Instrum. Method. Data Syst., 5, 163–179, https://doi.org/10.5194/gi-5-163-2016, https://doi.org/10.5194/gi-5-163-2016, 2016
Short summary
Short summary
The manual snow survey program of Finnish Meteorological Institute consists of numerous observations of natural seasonal snowpack in Sodankylä, in northern Finland. Systematic snow measurements began in 1911 with snow depth and snow water equivalent. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from snow pits. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack.
Simone Bircher, Mie Andreasen, Johanna Vuollet, Juho Vehviläinen, Kimmo Rautiainen, François Jonard, Lutz Weihermüller, Elena Zakharova, Jean-Pierre Wigneron, and Yann H. Kerr
Geosci. Instrum. Method. Data Syst., 5, 109–125, https://doi.org/10.5194/gi-5-109-2016, https://doi.org/10.5194/gi-5-109-2016, 2016
Short summary
Short summary
At the Finnish Meteorological Institute in Sodankylä and the Danish Center for Hydrology, calibration functions for organic surface layers were derived for two in situ soil moisture sensors to be used in the validation of coarse-resolution soil moisture from satellites and land surface models. There was no clear difference in the data from a variety of humus types, strengthening confidence that these calibrations are applicable over a wide range of conditions as encountered in the large areas.
William Maslanka, Leena Leppänen, Anna Kontu, Mel Sandells, Juha Lemmetyinen, Martin Schneebeli, Martin Proksch, Margret Matzl, Henna-Reetta Hannula, and Robert Gurney
Geosci. Instrum. Method. Data Syst., 5, 85–94, https://doi.org/10.5194/gi-5-85-2016, https://doi.org/10.5194/gi-5-85-2016, 2016
Short summary
Short summary
The paper presents the initial findings of the Arctic Snow Microstructure Experiment in Sodankylä, Finland. The experiment observed the microwave emission of extracted snow slabs on absorbing and reflecting bases. Snow parameters were recorded to simulate the emission upon those bases using two different emission models. The smallest simulation errors were associated with the absorbing base at vertical polarization. The observations will be used for the development of snow emission modelling.
M. Proksch, C. Mätzler, A. Wiesmann, J. Lemmetyinen, M. Schwank, H. Löwe, and M. Schneebeli
Geosci. Model Dev., 8, 2611–2626, https://doi.org/10.5194/gmd-8-2611-2015, https://doi.org/10.5194/gmd-8-2611-2015, 2015
Short summary
Short summary
The measurement of snow properties on global scale relies on microwave remote sensing data. The interpretation of the data is however challenging. Here we introduce MEMLS3&a, an extension of the snow emission model MEMLS, to include a backscatter model for active microwave remote sensing. In MEMLS3&a, snow input parameters can be derived by objective measurement methods, which avoids fitting the scattering efficiency of snow. The model is validated with combined active and passive measurements.
E. Malnes, A. Buanes, T. Nagler, G. Bippus, D. Gustafsson, C. Schiller, S. Metsämäki, J. Pulliainen, K. Luojus, H. E. Larsen, R. Solberg, A. Diamandi, and A. Wiesmann
The Cryosphere, 9, 1191–1202, https://doi.org/10.5194/tc-9-1191-2015, https://doi.org/10.5194/tc-9-1191-2015, 2015
Short summary
Short summary
The paper provides detailed information on the outcome of a user survey carried out in the EU FP7 project CryoLand. The project focuses on monitoring of seasonal snow, glaciers and lake/river ice. The user survey showed that a European operational snow and land ice service is required and that there exists products that can meet the specific needs. The majority of the users were mainly interested in the snow services, but also the lake/river ice products and the glacier products were desired.
P. Räisänen, A. Luomaranta, H. Järvinen, M. Takala, K. Jylhä, O. N. Bulygina, K. Luojus, A. Riihelä, A. Laaksonen, J. Koskinen, and J. Pulliainen
Geosci. Model Dev., 7, 3037–3057, https://doi.org/10.5194/gmd-7-3037-2014, https://doi.org/10.5194/gmd-7-3037-2014, 2014
Short summary
Short summary
Snowmelt influences greatly the climatic conditions in spring. This study evaluates the timing of springtime end of snowmelt in the ECHAM5 model. A key finding is that, in much of northern Eurasia, snow disappears too early in ECHAM5, in spite of a slight cold bias in spring. This points to the need for a more comprehensive treatment of the surface energy budget. In particular, the surface temperature for the snow-covered and snow-free parts of a climate model grid cell should be separated.
Related subject area
Ground-based instruments
Distance of flight of cosmic-ray muons to study dynamics of the upper muosphere
Development of an internet-of-things-based controlled-source ultrasonic audio frequency electromagnetic receiver
Steering RECoverable Autonomous Sonde (RECAS) for accessing and studying subglacial lakes
A tool for estimating ground-based InSAR acquisition characteristics prior to monitoring installation and survey and its differences from satellite InSAR
An underground drip water monitoring network to characterize rainfall recharge of groundwater at different geologies, environments, and climates across Australia
Research and application of a flexible measuring array for deep displacement of landslides
A hydrate reservoir renovation device and its application in nitrogen bubble fracturing
Gas equilibrium membrane inlet mass spectrometry (GE-MIMS) for water at high pressure
Development of a power station unit in a distributed hybrid acquisition system of seismic and electrical methods based on the narrowband Internet of Things (NB-IoT)
Spectral observations at the Canary Island Long-Baseline Observatory (CILBO): calibration and datasets
Calculation of soil water content using dielectric-permittivity-based sensors – benefits of soil-specific calibration
The land–atmosphere feedback observatory: a new observational approach for characterizing land–atmosphere feedback
Design and construction of an automated and programmable resistivity meter for shallow subsurface investigation
Feasibility of irrigation monitoring with cosmic-ray neutron sensors
Design and operation of a long-term monitoring system for spectral electrical impedance tomography (sEIT)
Measurements of natural airflow within a Stevenson screen and its influence on air temperature and humidity records
The soil heat flux sensor functioning checks, imbalances' origins, and forgotten energies
Wind speed influences corrected Autocalibrated Soil Evapo-respiration Chamber (ASERC) evaporation measures
Assessing the feasibility of a directional cosmic-ray neutron sensing sensor for estimating soil moisture
Accounting for meteorological effects in the detector of the charged component of cosmic rays
Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (central Europe)
The impact and resolution of the GPS week number rollover of April 2019 on autonomous geophysical instrument platforms
Internet-of-things-based four-dimensional high-density electrical instrument for geophysical prospecting
Design and implementation of the detection software of a wireless microseismic acquisition station based on the Android platform
First evaluation of an absolute quantum gravimeter (AQG#B01) for future field experiments
A new borehole electromagnetic receiver developed for controlled-source electromagnetic methods
Daytime and nighttime aerosol optical depth implementation in CÆLIS
A geophone-based and low-cost data acquisition and analysis system designed for microtremor measurements
A monitoring system for spatiotemporal electrical self-potential measurements in cryospheric environments
Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific environmental applications
Development of a new distributed hybrid seismic and electrical data acquisition station based on system-on-a-programmable-chip technology
Development of a distributed hybrid seismic–electrical data acquisition system based on the Narrowband Internet of Things (NB-IoT) technology
A low-cost autonomous rover for polar science
Shallow geophysical techniques to investigate the groundwater table at the Great Pyramids of Giza, Egypt
Apsu: a wireless multichannel receiver system for surface nuclear magnetic resonance groundwater investigations
Development of high-precision distributed wireless microseismic acquisition stations
Links between annual surface temperature variation and land cover heterogeneity for a boreal forest as characterized by continuous, fibre-optic DTS monitoring
The development and test research of a multichannel synchronous transient electromagnetic receiver
Evaluating four gap-filling methods for eddy covariance measurements of evapotranspiration over hilly crop fields
Tri-axial square Helmholtz coil system at the Alibag Magnetic Observatory: upgraded to a magnetic sensor calibration facility
Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment
Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters
Making better sense of the mosaic of environmental measurement networks: a system-of-systems approach and quantitative assessment
Fog-based automatic true north detection for absolute magnetic declination measurement
Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer
U.S. Geological Survey experience with the residual absolutes method
The magnetic observatory on Tatuoca, Belém, Brazil: history and recent developments
Several years of experience with automatic DI-flux systems: theory, validation and results
In situ vector calibration of magnetic observatories
A low-power data acquisition system for geomagnetic observatories and variometer stations
Hiroyuki K. M. Tanaka
Geosci. Instrum. Method. Data Syst., 14, 1–11, https://doi.org/10.5194/gi-14-1-2025, https://doi.org/10.5194/gi-14-1-2025, 2025
Short summary
Short summary
A new ground-based technique is described, called
distance of flight of cosmic-ray muons, for sensing the height of the layer of the Earth where cosmic-ray muons are generated, called the muopause, which is closely related to the height of the tropopause and lower stratosphere.
Zucan Lin, Qisheng Zhang, Keyu Zhou, Xiyuan Zhang, Xinchang Wang, Hui Zhang, and Feng Liu
Geosci. Instrum. Method. Data Syst., 13, 325–336, https://doi.org/10.5194/gi-13-325-2024, https://doi.org/10.5194/gi-13-325-2024, 2024
Short summary
Short summary
This paper describes the development of a controlled-source ultra-audio frequency electromagnetic receiver based on remote wireless communication technology for use in geophysical prospecting. Our design successfully addresses several shortcomings of such instruments currently available on the market, including their weight, limitations in data acquisition frequency, and difficulty in connecting to the internet for remote monitoring.
Mikhail A. Sysoev, Pavel G. Talalay, Xiaopeng Fan, Nan Zhang, Da Gong, Yang Yang, Ting Wang, and Zhipeng Deng
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-7, https://doi.org/10.5194/gi-2024-7, 2024
Revised manuscript accepted for GI
Short summary
Short summary
Our research introduces a technology for exploring subglacial lakes while keeping them isolated from surface contamination. The RECoverable Autonomous Sonde (RECAS) can drill ice both downward and upward, allowing clean water sampling. In some cases, the sonde should drill at specific angles to follow a trajectory, maintain verticality, or bypass obstacles. This paper describes the general principles of steering RECAS by adjusting the drill's heat distribution and the results of the experiments.
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024, https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
Short summary
The remote-sensing InSAR technique is vital for monitoring slope instabilities but requires understanding. This paper delves into differences between satellite and GB-InSAR. It offers a tool to determine the optimal GB-InSAR installation site, considering various technical, meteorological, and topographical factors. By generating detailed maps and simulating radar image characteristics, the tool eases the setup of monitoring campaigns for effective and accurate ground movement tracking.
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024, https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Short summary
Much of the world relies on groundwater as a water resource, yet it is hard to know when and where rainfall replenishes our groundwater aquifers. Caves, mines, and tunnels that are situated above the groundwater table are unique observatories of water transiting from the land surface to the aquifer. This paper will show how networks of loggers deployed in these underground spaces across Australia have helped understand when, where, and how much rainfall is needed to replenish the groundwater.
Yang Li, Zhong Li, Qifeng Guo, Yimin Liu, and Daji Zhang
Geosci. Instrum. Method. Data Syst., 13, 97–105, https://doi.org/10.5194/gi-13-97-2024, https://doi.org/10.5194/gi-13-97-2024, 2024
Short summary
Short summary
We have developed a novel flexible measurement array for deep landslide displacement and measurement processes, which enables higher accuracy in full-hole multidimensional deformation measurement. It provides a more comprehensive monitoring tool for disaster prevention and reduction.
Jingsheng Lu, Yuanxin Yao, Dongliang Li, Jinhai Yang, Deqing Liang, Yiqun Zhang, Decai Lin, and Kunlin Ma
Geosci. Instrum. Method. Data Syst., 13, 75–83, https://doi.org/10.5194/gi-13-75-2024, https://doi.org/10.5194/gi-13-75-2024, 2024
Short summary
Short summary
Natural gas hydrate (GH) is a significant potential energy source. However, the gas production rate of past GH production tests is much lower than the requirement of commercial gas production. Reservoir stimulation technologies like hydraulic fracture provide one potential approach to enhance gas production from GH. This paper presents an experimental facility that was developed to analyze the hydraulic fracture mechanism in a synthesized hydrate-bearing sediments.
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst., 13, 1–8, https://doi.org/10.5194/gi-13-1-2024, https://doi.org/10.5194/gi-13-1-2024, 2024
Short summary
Short summary
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas quantification was expanded to work in water at high pressures.
Feng Guo, Qisheng Zhang, and Shenghui Liu
Geosci. Instrum. Method. Data Syst., 12, 111–120, https://doi.org/10.5194/gi-12-111-2023, https://doi.org/10.5194/gi-12-111-2023, 2023
Short summary
Short summary
We propose a new type of power station unit with wireless data transmission capability, which was not supported by same type of instrument as on the market. Based on this, a novel distributed geophysical data acquisition architecture is also proposed. The proposed instrument loads more stations than the industry-leading LAUL-428 while providing additional wireless data transmission and narrowband Internet of Things remote control.
Joe Zender, Detlef Koschny, Regina Rudawska, Salvatore Vicinanza, Stefan Loehle, Martin Eberhart, Arne Meindl, Hans Smit, Lionel Marraffa, Rico Landman, and Daphne Stam
Geosci. Instrum. Method. Data Syst., 12, 91–109, https://doi.org/10.5194/gi-12-91-2023, https://doi.org/10.5194/gi-12-91-2023, 2023
Short summary
Short summary
The paper describes the ground-based camera equipment to obtain images from dust ablation phenomena (meteors) in the Earth's atmosphere. The meteors are observed from two locations, but one station is equipped with a camera containing a spectral grating, which allows following and determining the spectral information through the meteor ablation process. We describe the data merging, calibration, and processing to finally derive the meteor composition.
Bartosz M. Zawilski, Franck Granouillac, Nicole Claverie, Baptiste Lemaire, Aurore Brut, and Tiphaine Tallec
Geosci. Instrum. Method. Data Syst., 12, 45–56, https://doi.org/10.5194/gi-12-45-2023, https://doi.org/10.5194/gi-12-45-2023, 2023
Short summary
Short summary
In most cases, the soil water content (SWC) measurement is carried out using commercially available dielectric-permittivity-based probes such as time domain reflectometers or frequency domain reflectometers (FDR). However, these probes use transfer functions which may be inadequate in the soil concerned. Raw SWC measurement in clayey soil shows an important relative error. A simple protocol is presented, allowing for the recovery of an acceptable accuracy of the FDR SWC measurements.
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023, https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary
Short summary
Important topics in land–atmosphere feedback research are water and energy balances and heterogeneities of fluxes at the land surface and in the atmosphere. To target these questions, the Land–Atmosphere Feedback Observatory (LAFO) has been installed in Germany. The instrumentation allows for comprehensive measurements from the bedrock to the troposphere. The LAFO observation strategy aims for simultaneous measurements in all three compartments: atmosphere, soil and land surface, and vegetation.
Antenor Oliveira Cruz Júnior, Cosme Ferreira da Ponte-Neto, and André Wiermann
Geosci. Instrum. Method. Data Syst., 12, 15–23, https://doi.org/10.5194/gi-12-15-2023, https://doi.org/10.5194/gi-12-15-2023, 2023
Short summary
Short summary
This project aims to demonstrate the viability of the development of a concept prototype that has, as a differential, free software and hardware used in its development and operation. It thus has unique characteristics compared with commercially available equipment for signal detection, providing strong rejection of spurious electrical noise, typical of urban areas. This project is important academic contribution to open-source instrumental research.
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022, https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
Short summary
Accurate monitoring of water in soil can improve irrigation efficiency, which is important considering climate change and the growing world population. Cosmic-ray neutrons sensors (CRNSs) are a promising tool in irrigation monitoring due to a larger sensed area and to lower maintenance than other ground-based sensors. Here, we analyse the feasibility of irrigation monitoring with CRNSs and the impact of the irrigated field dimensions, of the variations of water in soil, and of instrument design.
Maximilian Weigand, Egon Zimmermann, Valentin Michels, Johan Alexander Huisman, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 11, 413–433, https://doi.org/10.5194/gi-11-413-2022, https://doi.org/10.5194/gi-11-413-2022, 2022
Short summary
Short summary
The construction, operation and analysis of a spectral electrical
impedance tomography (sEIT) field monitoring setup with high spatial and temporal resolution are presented. Electromagnetic induction errors are corrected, allowing the recovery of images of in-phase conductivity and electrical polarisation of up to 1 kHz.
Stephen Burt
Geosci. Instrum. Method. Data Syst., 11, 263–277, https://doi.org/10.5194/gi-11-263-2022, https://doi.org/10.5194/gi-11-263-2022, 2022
Short summary
Short summary
Most measurements of air temperature and humidity originate from Stevenson-type thermometer screens, which can produce erroneous measurements in light winds owing to insufficient ventilation of the in-screen sensors. A field experiment to measure airflow within a Stevenson screen found mean airflow to be only 0.2 m s−1, well below the 1 m s−1 minimum normally assumed, and only 7 % of 10 m mean wind speeds. Implications for air temperature and humidity measurement uncertainties are discussed.
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 223–234, https://doi.org/10.5194/gi-11-223-2022, https://doi.org/10.5194/gi-11-223-2022, 2022
Short summary
Short summary
Surface energy balance (SEB) closure check and important environmental variable monitoring require soil heat flux measurement. On the one hand every experimental technique has its possible errors and needs to be checked and corrected. On the other hand, SEB equation should include all sensed energy sources and sinks.
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 163–182, https://doi.org/10.5194/gi-11-163-2022, https://doi.org/10.5194/gi-11-163-2022, 2022
Short summary
Short summary
Soil evaporation is one of the most important water vapor sources on the Earth with multiple and severe consequences; however, there is a relative lack of instruments to measure it. This study describes a simple apparatus making the soil evaporation measurement accessible. The soil evaporation complexity is overcome by measuring the evaporation dynamic under different measurement conditions. A relatively simple measurement correction is then performed depending on the wind speed.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Maxim Philippov, Vladimir Makhmutov, Galina Bazilevskaya, Fedor Zagumennov, Vladimir Fomenko, Yuri Stozhkov, and Andrey Orlov
Geosci. Instrum. Method. Data Syst., 10, 219–226, https://doi.org/10.5194/gi-10-219-2021, https://doi.org/10.5194/gi-10-219-2021, 2021
Short summary
Short summary
This paper presents a brief description of the ground-based installation for the study of cosmic rays
CARPET. Today there is a network of such installations located in different parts of the world. For ground-based installations, meteorological effects must be considered as they affect the data. This paper shows a technique for eliminating barometric and temperature dependences based on data for 2019–2020.
Ondřej Racek, Jan Blahůt, and Filip Hartvich
Geosci. Instrum. Method. Data Syst., 10, 203–218, https://doi.org/10.5194/gi-10-203-2021, https://doi.org/10.5194/gi-10-203-2021, 2021
Short summary
Short summary
This paper is dedicated to description of universal, easy-to-modify, and affordable rock slope monitoring system. Using such a system, we are able to monitor environmental variables, the rock mass 3 m subsurface zone temperature profile, and spatiotemporal joint dynamics. We observe differences between three monitored sites. To further data analyses, longer time series are needed. The data will be further used for trend analyses and thermomechanical modelling.
Shane Coyle, C. Robert Clauer, Michael D. Hartinger, Zhonghua Xu, and Yuxiang Peng
Geosci. Instrum. Method. Data Syst., 10, 161–168, https://doi.org/10.5194/gi-10-161-2021, https://doi.org/10.5194/gi-10-161-2021, 2021
Short summary
Short summary
Global satellite navigation systems are commonly used for timing and synchronization of instrument platforms. These system clocks periodically
roll overfrom limitations in discrete counter math. Due to the rarity of these events (19.6 years for GPS), special consideration must be given to designing instruments intended for use in hard-to-reach locations like the Antarctic Plateau. A few
best practicesare presented to prevent total system failure from unexpected subsystem faults.
Keyu Zhou, Qisheng Zhang, Yongdong Liu, Zhen Wu, Zucan Lin, Bentian Zhao, Xingyuan Jiang, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 10, 141–151, https://doi.org/10.5194/gi-10-141-2021, https://doi.org/10.5194/gi-10-141-2021, 2021
Short summary
Short summary
This paper describes the development of a new multifunctional four-dimensional high-density electrical instrument based on remote wireless communication technology, for use in shallow geophysical prospecting. We carried out a lot of tests. Our design successfully addresses a number of shortcomings of such instruments currently available on the market, including bulkiness, weight, limitations in data acquisition accuracy, and difficulty of connecting to the Internet for remote monitoring.
Qimao Zhang, Shuaiqing Qiao, Qisheng Zhang, and Shiyang Liu
Geosci. Instrum. Method. Data Syst., 10, 91–100, https://doi.org/10.5194/gi-10-91-2021, https://doi.org/10.5194/gi-10-91-2021, 2021
Short summary
Short summary
In order to meet the needs of geophysical exploration, the requirements of intelligent and convenient exploration instruments are realized. From the perspective of software, this research combines today's wireless transmission technology to integrate applications into mobile phones to realize remote control of field operations. It provides a new idea for geophysical exploration.
Anne-Karin Cooke, Cédric Champollion, and Nicolas Le Moigne
Geosci. Instrum. Method. Data Syst., 10, 65–79, https://doi.org/10.5194/gi-10-65-2021, https://doi.org/10.5194/gi-10-65-2021, 2021
Short summary
Short summary
Gravimetry studies the variations of the Earth’s gravity field which can be linked to mass changes studied in various disciplines of the Earth sciences. The gravitational attraction of the Earth is measured with gravimeters. Quantum gravimeters allow for continuous, high-frequency absolute gravity monitoring while remaining user-friendly and transportable. We assess the capacity of the AQG#B01, developed by Muquans, as a field gravimeter for hydrogeophysical applications.
Sixuan Song, Ming Deng, Kai Chen, Muer A, and Sheng Jin
Geosci. Instrum. Method. Data Syst., 10, 55–64, https://doi.org/10.5194/gi-10-55-2021, https://doi.org/10.5194/gi-10-55-2021, 2021
Short summary
Short summary
Current borehole receivers only measure a single parameter of the magnetic field component, which does not meet the special requirements of controlled-source electromagnetic (CSEM) methods. This study proposes a borehole electromagnetic receiver that realizes synchronous acquisition of the vertical electric field component and three-axis orthogonal magnetic field components. Results of the experiments show that our system functioned adequately and that high-quality CSEM signals were obtained.
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020, https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary
Short summary
Aerosol optical depth (AOD) is a parameter widely used in remote sensing for the characterization of atmospheric aerosol particles. AERONET was created by NASA for aerosol monitoring as well as satellite and model validation. The University of Valladolid (UVa) has managed an AERONET calibration center since 2006. The CÆLIS software tool, developed by UVa, was created to manage the data generated by AERONET photometers. The AOD algorithm in CÆLIS is developed and validated in this work.
Ozkan Kafadar
Geosci. Instrum. Method. Data Syst., 9, 365–373, https://doi.org/10.5194/gi-9-365-2020, https://doi.org/10.5194/gi-9-365-2020, 2020
Short summary
Short summary
In this paper, a low-cost, computer-aided, and geophone-based system designed to record, monitor, and analyze three-component microtremor data is presented. This system has several features such as a 200 Hz sampling frequency, text data format, and data analysis tools. The developed software undertakes many tasks such as communication between the external hardware and computer, transferring, monitoring, and recording the seismic data to a computer, and interpretation of the recorded data.
Maximilian Weigand, Florian M. Wagner, Jonas K. Limbrock, Christin Hilbich, Christian Hauck, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 9, 317–336, https://doi.org/10.5194/gi-9-317-2020, https://doi.org/10.5194/gi-9-317-2020, 2020
Short summary
Short summary
In times of global warming, permafrost is starting to degrade at alarming rates, requiring new and improved characterization approaches. We describe the design and test installation, as well as detailed data quality assessment, of a monitoring system used to capture natural electrical potentials in the subsurface. These self-potential signals are of great interest for the noninvasive investigation of water flow in the non-frozen or partially frozen subsurface.
Angelika Xaver, Luca Zappa, Gerhard Rab, Isabella Pfeil, Mariette Vreugdenhil, Drew Hemment, and Wouter Arnoud Dorigo
Geosci. Instrum. Method. Data Syst., 9, 117–139, https://doi.org/10.5194/gi-9-117-2020, https://doi.org/10.5194/gi-9-117-2020, 2020
Short summary
Short summary
Soil moisture plays a key role in the hydrological cycle and the climate system. Although soil moisture can be observed by the means of satellites, ground observations are still crucial for evaluating and improving these satellite products. In this study, we investigate the performance of a consumer low-cost soil moisture sensor in the lab and in the field. We demonstrate that this sensor can be used for scientific applications, for example to create a dataset valuable for satellite validation.
Qisheng Zhang, Wenhao Li, Feng Guo, Zhenzhong Yuan, Shuaiqing Qiao, and Qimao Zhang
Geosci. Instrum. Method. Data Syst., 8, 241–249, https://doi.org/10.5194/gi-8-241-2019, https://doi.org/10.5194/gi-8-241-2019, 2019
Short summary
Short summary
Complex and harsh exploration environments have put forward higher requirements for traditional geophysical exploration methods and instruments. In this study, a new distributed seismic and electrical hybrid acquisition station is developed and it can achieve high-precision hybrid acquisition of seismic and electrical data. The synchronization precision of the acquisition station is better than 200 ns and the maximum low-power data transmission speed is 16 Mbps along a 55 m cable.
Wenhao Li, Qisheng Zhang, Qimao Zhang, Feng Guo, Shuaiqing Qiao, Shiyang Liu, Yueyun Luo, Yuefeng Niu, and Xing Heng
Geosci. Instrum. Method. Data Syst., 8, 177–186, https://doi.org/10.5194/gi-8-177-2019, https://doi.org/10.5194/gi-8-177-2019, 2019
Short summary
Short summary
The nonuniqueness of geophysical inversions, which is based on a single geophysical method, is a long–standing problem in geophysical exploration. This paper developed a distributed, multi–channel, high–precision data acquisition system. It can achieve high–precision hybrid acquisition of seismic–electrical data and monitor the real–time quality of data acquisition processes using NB–IoT technology. The equivalent input noise is 0.5 μV and the synchronization accuracy is within 200 ns.
Andrew O. Hoffman, Hans Christian Steen-Larsen, Knut Christianson, and Christine Hvidberg
Geosci. Instrum. Method. Data Syst., 8, 149–159, https://doi.org/10.5194/gi-8-149-2019, https://doi.org/10.5194/gi-8-149-2019, 2019
Short summary
Short summary
We present the design considerations and deployment of an autonomous modular terrestrial rover for ice-sheet exploration that is inexpensive, easy to construct, and allows for instrumentation customization. The rover proved capable of driving over 20 km on a single charge with a drawbar pull of 250 N, which is sufficient to tow commercial ground-penetrating radars. Due to its low cost, low power requirements, and simple modular design, mass deployments of this rover design are practicable.
Sharafeldin M. Sharafeldin, Khalid S. Essa, Mohamed A. S. Youssef, Hakan Karsli, Zein E. Diab, and Nilgun Sayil
Geosci. Instrum. Method. Data Syst., 8, 29–43, https://doi.org/10.5194/gi-8-29-2019, https://doi.org/10.5194/gi-8-29-2019, 2019
Short summary
Short summary
Integrated geophysical techniques (ERT, SSR, and GPR) along the conducted profiles at the Great Pyramids of Giza have been successfully used to investigate the groundwater table and support hazard mitigation. The groundwater table elevation is 15 m under the Great Sphinx, which is safe, and at the Nazlet El-Samman it is 16–17 m.
Lichao Liu, Denys Grombacher, Esben Auken, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst., 8, 1–11, https://doi.org/10.5194/gi-8-1-2019, https://doi.org/10.5194/gi-8-1-2019, 2019
Short summary
Short summary
This paper introcudes the design workflow and test approaches of a surface-NMR receiver. But the method and technqiues, for instance, signal loop, acqusition board, GPS synchronization, and Wi-Fi network, could also be employed in other geophysical instruments.
Shuaiqing Qiao, Hongmei Duan, Qisheng Zhang, Qimao Zhang, Shuhan Li, Shenghui Liu, Shiyang Liu, Yongqing Wang, Shichu Yan, Wenhao Li, and Feng Guo
Geosci. Instrum. Method. Data Syst., 7, 253–263, https://doi.org/10.5194/gi-7-253-2018, https://doi.org/10.5194/gi-7-253-2018, 2018
Short summary
Short summary
In this study, a high-precision distributed wireless microseismic acquisition system has been designed for oil and gas exploration. The system design, which was based on the ADS1274 chip manufactured by TI, made full use of the four channels of the chip to collect vibration signals in three directions and one electrical signal, respectively. Furthermore, the acquisition system used GPS and WIFI technologies to achieve distributed wireless acquisition.
Kazuyuki Saito, Go Iwahana, Hiroki Ikawa, Hirohiko Nagano, and Robert C. Busey
Geosci. Instrum. Method. Data Syst., 7, 223–234, https://doi.org/10.5194/gi-7-223-2018, https://doi.org/10.5194/gi-7-223-2018, 2018
Short summary
Short summary
A DTS system, using fibre-optic cables as a temperature sensor, measured surface and subsurface temperatures at a boreal forest underlain by permafrost in the interior of Alaska for 2 years every 30 min at 0.5-metre intervals along 2.7 km to monitor the daily and seasonal temperature changes, whose temperature ranges between −40 ºC in winter and 30 ºC in summer. This instrumentation illustrated characteristics of temperature variations and snow pack dynamics under different land cover types.
Fanqiang Lin, Xuben Wang, Kecheng Chen, Depan Hu, Song Gao, Xue Zou, and Cai Zeng
Geosci. Instrum. Method. Data Syst., 7, 209–221, https://doi.org/10.5194/gi-7-209-2018, https://doi.org/10.5194/gi-7-209-2018, 2018
Short summary
Short summary
The main purpose of this paper is to introduce a receiver system for the synchronous acquisition of multiple electromagnetic signals in transient electromagnetic prospecting to achieve multiparameter and multichannel synchronous reception. The reliability, practicability, and data validity of the receiver were verified by different kinds of testing. It can be used for the reception of pseudorandom signals and distributed 3-D data, which can improve geophysical exploration efficiency.
Nissaf Boudhina, Rim Zitouna-Chebbi, Insaf Mekki, Frédéric Jacob, Nétij Ben Mechlia, Moncef Masmoudi, and Laurent Prévot
Geosci. Instrum. Method. Data Syst., 7, 151–167, https://doi.org/10.5194/gi-7-151-2018, https://doi.org/10.5194/gi-7-151-2018, 2018
Short summary
Short summary
To provide reliable time series of evapotranspiration, we evaluated the performances of four different gap-filling methods when tailored to conditions of hilly crop fields. The tailoring consisted of splitting the time series beforehand on the basis of upslope and downslope winds. The obtained accuracies on evapotranspiration after gap filling were comparable to those previously reported over flat and mountainous terrains, and they were better with the most widely used gap-filling method.
Prasanna Mahavarkar, Jacob John, Vijay Dhapre, Varun Dongre, and Sachin Labde
Geosci. Instrum. Method. Data Syst., 7, 143–149, https://doi.org/10.5194/gi-7-143-2018, https://doi.org/10.5194/gi-7-143-2018, 2018
Short summary
Short summary
The authors have successfully recommissioned an unused tri-axial Helmholtz coil system. The system now serves as a national facility for calibrating magnetometers.
Martin Schrön, Steffen Zacharias, Gary Womack, Markus Köhli, Darin Desilets, Sascha E. Oswald, Jan Bumberger, Hannes Mollenhauer, Simon Kögler, Paul Remmler, Mandy Kasner, Astrid Denk, and Peter Dietrich
Geosci. Instrum. Method. Data Syst., 7, 83–99, https://doi.org/10.5194/gi-7-83-2018, https://doi.org/10.5194/gi-7-83-2018, 2018
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a unique technology to monitor water storages in complex environments, non-invasively, continuously, autonomuously, and representatively in large areas. However, neutron detector signals are not comparable per se: there is statistical noise, technical differences, and locational effects. We found out what it takes to make CRNS consistent in time and space to ensure reliable data quality. We further propose a method to correct for sealed areas in the footrint.
Xinyue Zhang, Qisheng Zhang, Meng Wang, Qiang Kong, Shengquan Zhang, Ruihao He, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 495–503, https://doi.org/10.5194/gi-6-495-2017, https://doi.org/10.5194/gi-6-495-2017, 2017
Short summary
Short summary
We believe that our study full-waveform voltage and current recording device for MTEM transmitters makes a significant contribution to the literature because this full-waveform recording device can be used to monitor the high-power, full-waveform voltages and currents of MTEM transmitters. It has high precision, finer edge details, low noise, and other advantages. Hence, it can be used for real-time recording and transmission to the receiver for coherent demodulation.
Peter W. Thorne, Fabio Madonna, Joerg Schulz, Tim Oakley, Bruce Ingleby, Marco Rosoldi, Emanuele Tramutola, Antti Arola, Matthias Buschmann, Anna C. Mikalsen, Richard Davy, Corinne Voces, Karin Kreher, Martine De Maziere, and Gelsomina Pappalardo
Geosci. Instrum. Method. Data Syst., 6, 453–472, https://doi.org/10.5194/gi-6-453-2017, https://doi.org/10.5194/gi-6-453-2017, 2017
Short summary
Short summary
The term system-of-systems with respect to observational capabilities is frequently used, but what does it mean and how can it be assessed? Here, we define one possible interpretation of a system-of-systems architecture that is based upon demonstrable aspects of observing capabilities. We develop a set of assessment strands and then apply these to a set of atmospheric observational networks to decide which observations may be suitable for characterising satellite platforms in future work.
Alexandre Gonsette, Jean Rasson, Stephan Bracke, Antoine Poncelet, Olivier Hendrickx, and François Humbled
Geosci. Instrum. Method. Data Syst., 6, 439–446, https://doi.org/10.5194/gi-6-439-2017, https://doi.org/10.5194/gi-6-439-2017, 2017
Short summary
Short summary
Absolute magnetic measurements require the vertical and the geographic north as reference directions. We present here a novel system able to measure the direction of the magnetic field and of the vertical and true north. A design of a north seeker is proposed that takes into account sensor bias as well as misalignment errors. Different methods are derived from this model and measurement results are presented. A measurement test at high latitude is also shown.
Wilhelm Nikonow and Dieter Rammlmair
Geosci. Instrum. Method. Data Syst., 6, 429–437, https://doi.org/10.5194/gi-6-429-2017, https://doi.org/10.5194/gi-6-429-2017, 2017
Short summary
Short summary
This work describes a new approach to use fast X-ray fluorescence mapping as a tool for automated mineralogy applied on thin sections of plutonic rocks. Using a supervised classification of the spectral information, mineral maps are obtained for modal mineralogy and image analysis. The results are compared to a conventional method for automated mineralogy, which is scanning electron microscopy with mineral liberation analyzer, showing a good overall accuracy of 76 %.
E. William Worthington and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 419–427, https://doi.org/10.5194/gi-6-419-2017, https://doi.org/10.5194/gi-6-419-2017, 2017
Short summary
Short summary
We have compared two methods of performing Absolute observations of the Earth's magnetic field. The newer, Residual method was evaluated for use at USGS geomagnetic observatories and compared with measurements using the traditional Null method. A mathematical outline of the Residual method is presented, including more precise conversions of the Declination angles to nanoTeslas (nT). Results show that the Residual method is better than the Null method, especially at high latitude.
Achim Morschhauser, Gabriel Brando Soares, Jürgen Haseloff, Oliver Bronkalla, José Protásio, Katia Pinheiro, and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 367–376, https://doi.org/10.5194/gi-6-367-2017, https://doi.org/10.5194/gi-6-367-2017, 2017
Short summary
Short summary
We report on the history and recent developments of the Tatuoca magnetic observatory in Brazil. This observatory is located close to the geomagnetic equator and within a region of strong main field dynamics. Starting from 2015, we have installed new instrumentation and a new datalogger system. In the paper, we also comment on the challenges of doing absolute measurements at the geomagnetic equator.
Antoine Poncelet, Alexandre Gonsette, and Jean Rasson
Geosci. Instrum. Method. Data Syst., 6, 353–360, https://doi.org/10.5194/gi-6-353-2017, https://doi.org/10.5194/gi-6-353-2017, 2017
Short summary
Short summary
In this paper, we give some background on calibration and verification of our automatic DI-flux instrument and then compare the automatic absolute magnetic measurements
with the human-made and discuss the advantages and disadvantages of automatic measurements.
Alexandre Gonsette, Jean Rasson, and François Humbled
Geosci. Instrum. Method. Data Syst., 6, 361–366, https://doi.org/10.5194/gi-6-361-2017, https://doi.org/10.5194/gi-6-361-2017, 2017
Short summary
Short summary
We present a novel method for calibrating magnetic observatories. We show how magnetometer baselines can highlight a possible calibration error. We also provide a method based on high-frequency automatic absolute measurements. This method determines a transformation matrix for correcting raw data suffering from scale factor and orientation errors. We finally present a practical case where covered data have been successfully compared to those coming from a reference magnetometer.
Achim Morschhauser, Jürgen Haseloff, Oliver Bronkalla, Carsten Müller-Brettschneider, and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 345–352, https://doi.org/10.5194/gi-6-345-2017, https://doi.org/10.5194/gi-6-345-2017, 2017
Short summary
Short summary
A modern geomagnetic observatory is expected to record geomagnetic data with high stability, high resolution, and high reliability. Also, geomagnetic observatories may be located in remote areas, requiring low power consumption and simple maintenance. Here, we present a new data logger system that was designed to meet these criteria. This system is based on a Raspberry Pi embedded PC and includes a modular C++ software package which can be adapted to specific observatory setups.
Cited articles
Bircher, S., Andreasen, M., Vuollet, J., Vehviläinen, J., Rautiainen, K., Jonard, F., Weihermüller, L., Zakharova, E., Wigneron, J.-P., and Kerr, Y. H.: Soil moisture sensor calibration for organic soil surface layers, Geosci. Instrum. Method. Data Syst., 5, 109–125, https://doi.org/10.5194/gi-5-109-2016, 2016.
Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M.: Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe, Remote Sens. Environ., 115, 3390–3408, 2011.
Campbell Scientific Ltd.: CS650 & CS655 Soil Water Content Reflectometers, User manual, Campbell Scientific Ltd., Shepshed, Loughborough, UK, 1–56, 2015.
Chung, D., Dorigo, W., Hahn, S., Melzer, T., Paulik, C., Reimer, C., Vreugdenhil, M., Wagner, W., and Kidd, R.: Soil Moisture Retrieval from Active Microwave Sensors: Algorithm Theoretical Baseline Document, Version 2, available at: http://www.esa-soilmoisture-cci.org (last access: 15 October 2015), 2014a.
Chung, D., Dorigo, W., Hahn, S., Melzer, T., Paulik, C., Reimer, C., Vreugdenhil, M., Wagner, W., and Kidd, R.: ECV Production, Fusion of Soil Moisture Products: Algorithm Theoretical Baseline Document, Version 2, available at: http://www.esa-soilmoisture-cci.org (last access: 15 October 2015), 2014b.
Decagon Devices Inc.: 5TE Water Content, EC and Temperature Sensor, User manual, Decagon Devices Inc., Pullman, USA, 1–26, 2014.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011.
Dorigo, W. A., Gruber, A., De Jeu, R. A. M., Wagner, W., Stacke, T., Loew, A., Albergel, C., Brocca, L., Chung, D., Parinussa, R. M., and Kidd, R.: Evaluation of the ESA CCI soil moisture product using ground-based observations, Remote Sens. Environ., 162, 380–395, 2015.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP) mission, Proc. IEEE, 98, 704–716, 2010.
Entekhabi, D., Yueh, S., O'Neill, P., Kent, K. H., Allen, A., Bindlish, R., Brown, M., Chan, S., Colliander, A., Crow, W. T., Das, N., De Lannoy, G., Dunbar, R. S., Edelstein, W. N., Entin, J. K., Escobar, V., Goodman, S. D., Jackson, T. J., Jai, B., and Johnson, J.: SMAP handbook, in: JPL Publication JPL 400-1567, editetd by: Laboratory, J. P., NASA CalTech, Pasadena, CA, USA, 1–192, 2014.
Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., Gruhier, C., Juglea, S. E., Drinkwater, M. R., Hahne, A., Martin-Neira, M., and Mecklenburg, S.: The SMOS mission: new tool for monitoring key elements of the global water cycle, Proc. IEEE, 98, 666–687, 2010.
Legates, D. R., Mahmood, R., Levia, D. F., DeLiberty, T. L., Quiring, S. M., and Houser, C.: Soil moisture: a central and unifying theme in physical geography, Prog. Phys. Geogr., 35, 65–86, 2011.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011.
Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A. M., Wagner, W., McCabe, M. F., Evans, J. P., and van Dijk, A. I. J. M.: Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sens. Environ., 123, 280–297, 2012.
Meesters, A., de Jeu, R. A. M., and Owe, M.: Analytical derivation of the vegetation optical depth from the microwave polarization difference index, IEEE Geosci. Remote Sens., 2, 121–123, 2005.
Nicolai-Shaw, N., Hirschi, M., Mittelbach, H., and Seneviratne, S.: Spatial representativeness of soil moisture using in situ, remote sensing, and land reanalysis data, J. Geophys. Res.-Atmos., 120, 9955–9964, 2015.
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of satellitederived global land surface moisture, J. Geophys. Res.-Ea. Surf., 113, F01002, https://doi.org/10.1029/2007JF000769, 2008.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: The representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Model. Earth Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description, Report No. 349, Max Plack Insitute for Meteorology, Hamburg, 1–140, 2003.
Scipal, K., Naeimi, V., and Hasenauer, S.: Definition of Quality Flags, ASCAT Soil Moisture Report Series, Vienna University of Technology, Vienna, 1–25, 2005.
Sippola, J. and Yli-Halla, M.: Status of soil mapping in Finland, European Soil Bureau Research Report 9, in: Soil Resources of Europe, 2nd Edn., edited by: Jones, R. J. A., Houšková, B., Bullock, P., and Montanarella, L., European SoilBureau Research Report No. 9, EUR 20559 EN, Office for OfficialPublications of the European Communities, Luxembourg, 133–138, 2005.
Stocker, T. F., Qin, D., Plattner, G.-K., Alexander, L. V., Allen, S. K., Bindoff, N. L., Breìon, F.-M., Church, J. A., Cubasch, U., Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J. M., Hartmann, D. L., Jansen, E., Kirtman, B., Knutti, R., Krishna Kumar, K., Lemke, P., Marotzke, J., Masson-Delmotte, V., Meehl, G. A., Mokhov, I. I., Piao, S., Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Talley, L. D., Vaughan, D. G., and Xie, S.-P.: Technical summary, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G- K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 33–118, 2013.
Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic determination of soil water content: measurement in coaxial transmission lines, Water Resour. Res., 16, 574–582, 1980.
Vaz, C. M. P., Jones, S., Meding, M., and Tuller, M.: Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors, Vadose Zone J., 12, 1–16, https://doi.org/10.2136/vzj2012.0160, 2013.
Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture from ERS scatterometer and soil data, Remote Sens. Environ., 70, 191–207, 1999.
Wagner, W., Dorigo, W., de Jeu, R., Fernandez, D., Benveniste, J., Haas, E., and Ertl, M.: Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), Volume I-7, XXII ISPRS Congress, 25 August–1 September 2012, Melbourne, Australia, 315–321, 2012.
Yli-Halla, M. and Mokma, D.: Problems encountered when classifying the soils of Finland, European Soil Bureau Research Report 7, 183–189, in: Soil Classification 2001, edited by: Micheli, E., Nachtergaele, F. O., Jones, R. J. A., and Montanarella, L., European Soil Bureau Research Report No. 7, EUR 20398 EN, Office for Official Publications of the European Communities, Luxembourg, 248 pp., 2002.
Short summary
A comprehensive, distributed network of in situ measurement stations gathering information on soil moisture has been set up in recent years at the Finnish Meteorological Institute's (FMI) Sodankylä Arctic research station. The network is used as a tool to evaluate the validity of satellite retrievals of soil properties. We present the soil moisture observation network and the results of comparisons of top layer soil moisture between 2012 and 2014 against ESA CCI product soil moisture retrievals.
A comprehensive, distributed network of in situ measurement stations gathering information on...