Articles | Volume 6, issue 1
https://doi.org/10.5194/gi-6-199-2017
https://doi.org/10.5194/gi-6-199-2017
Research article
 | 
19 Apr 2017
Research article |  | 19 Apr 2017

A low-cost acoustic permeameter

Stephen A. Drake, John S. Selker, and Chad W. Higgins

Related authors

Wind enhances differential air advection in surface snow at sub-meter scales
Stephen A. Drake, John S. Selker, and Chad W. Higgins
The Cryosphere, 11, 2075–2087, https://doi.org/10.5194/tc-11-2075-2017,https://doi.org/10.5194/tc-11-2075-2017, 2017
Short summary

Related subject area

Acoustic sensor
Towards a self-sufficient mobile broadband seismological recording system for year-round operation in Antarctica
Alfons Eckstaller, Jölund Asseng, Erich Lippmann, and Steven Franke
Geosci. Instrum. Method. Data Syst., 11, 235–245, https://doi.org/10.5194/gi-11-235-2022,https://doi.org/10.5194/gi-11-235-2022, 2022
Short summary
Automated field detection of rock fracturing, microclimate, and diurnal rock temperature and strain fields
K. Warren, M.-C. Eppes, S. Swami, J. Garbini, and J. Putkonen
Geosci. Instrum. Method. Data Syst., 2, 275–288, https://doi.org/10.5194/gi-2-275-2013,https://doi.org/10.5194/gi-2-275-2013, 2013
A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls
L. Girard, J. Beutel, S. Gruber, J. Hunziker, R. Lim, and S. Weber
Geosci. Instrum. Method. Data Syst., 1, 155–167, https://doi.org/10.5194/gi-1-155-2012,https://doi.org/10.5194/gi-1-155-2012, 2012

Cited articles

Albert, D. G.: Acoustic waveform inversion with application to seasonal snow covers, J. Acoust. Soc. Am., 109, 91–101, https://doi.org/10.1121/1.1328793, 2001.
Albert, D. G., Decato, S. N., and Carbee, D. L.: Snow cover effects on acoustic sensors, Cold Reg. Sci. Technol., 52, 132–145, https://doi.org/10.1016/j.coldregions.2007.05.009, 2007.
Albert, M. R., Shultz, E. F., and Perron Jr., F. E.: Snow and firn permeability at Siple Dome, Antarctica, Ann. Glaciol., 31, 353–356, https://doi.org/10.3189/172756400781820273, 2000.
Álvarez-Arenas, T. E. G., de la Fuente, S., and Gómez, I. G.: Simultaneous determination of apparent tortuosity and microstructure length scale and shape: Application to rigid open cell foams, Appl. Phys. Lett., 88, 221910, https://doi.org/10.1063/1.2208921, 2006.
Arakawa, H., Izumi, K., Kawashima, K., and Kawamura, T.: Study on quantitative classification of seasonal snow using specific surface area and intrinsic permeability, Cold Reg. Sci. Technol., 59, 163–168, https://doi.org/10.1016/j.coldregions.2009.07.004, 2009.
Download
Short summary
Intrinsic permeability of snow is an important parameter that regulates snow–atmosphere exchange. Current permeability measurements require specialized equipment for acquisition in the field and have increased variability with increasing snow heterogeneity. To facilitate a field-based, volume-averaged measure of permeability, we designed and assembled an acoustic permeameter. When using reticulated foam samples of known permeability, the mean relative error from known values was less than 20 %.