Articles | Volume 9, issue 1
https://doi.org/10.5194/gi-9-11-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-9-11-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe
Romane Berthelin
CORRESPONDING AUTHOR
Chair of Hydrological Modeling and Water Resources,
University of Freiburg, Freiburg 79098, Germany
Michael Rinderer
Chair of Hydrology, University of Freiburg, Freiburg 79098, Germany
Bartolomé Andreo
Department of Geology and Centre of Hydrogeology, University of
Malaga, Málaga, 29071, Spain
Andy Baker
Connected Waters Initiative Research Centre, UNSW, Sydney, NSW 2052, Australia
Daniela Kilian
Research Department, Nationalpark Berchtesgaden, Berchtesgaden 83471, Germany
Gabriele Leonhardt
Research Department, Nationalpark Berchtesgaden, Berchtesgaden 83471, Germany
Annette Lotz
Research Department, Nationalpark Berchtesgaden, Berchtesgaden 83471, Germany
Kurt Lichtenwoehrer
Research Department, Nationalpark Berchtesgaden, Berchtesgaden 83471, Germany
Matías Mudarra
Department of Geology and Centre of Hydrogeology, University of
Malaga, Málaga, 29071, Spain
Ingrid Y. Padilla
Department of Civil Engineering and Surveying, University of Puerto
Rico, Mayagüez, 00682, Puerto Rico
Fernando Pantoja Agreda
Department of Civil Engineering and Surveying, University of Puerto
Rico, Mayagüez, 00682, Puerto Rico
Rafael Rosolem
Department of Civil Engineering, University of Bristol, Bristol, BS8
1TR, UK
Abel Vale
Ciudadanos del Karso, 267 Sierra Morena PMB 230, San Juan, 009264, Puerto Rico
Andreas Hartmann
Chair of Hydrological Modeling and Water Resources,
University of Freiburg, Freiburg 79098, Germany
Department of Civil Engineering, University of Bristol, Bristol, BS8
1TR, UK
Related authors
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023, https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Short summary
Karstic recharge processes have mainly been explored using discharge analysis despite the high influence of the heterogeneous surface on hydrological processes. In this paper, we introduce an event-based method which allows for recharge estimation from soil moisture measurements. The method was tested at a karst catchment in Germany but can be applied to other karst areas with precipitation and soil moisture data available. It will allow for a better characterization of karst recharge processes.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2761, https://doi.org/10.5194/egusphere-2024-2761, 2024
Short summary
Short summary
Groundwater is a crucial resource at risk by droughts. To understand drought effects on groundwater in Germany, we grouped 6626 wells into six regional and two nationwide head patterns. Weather explained half of the head variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024, https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short summary
To understand the impact of external factors on groundwater level modelling using a 1-D convolutional neural network (CNN) model, we train, validate, and tune individual CNN models for 505 wells distributed across Lower Saxony, Germany. We then evaluate the performance of these models against available geospatial and time series features. This study provides new insights into the relationship between these factors and the accuracy of groundwater modelling.
Markus Giese, Yvan Caballero, Andreas Hartmann, and Jean-Baptiste Charlier
EGUsphere, https://doi.org/10.5194/egusphere-2024-2078, https://doi.org/10.5194/egusphere-2024-2078, 2024
Short summary
Short summary
Groundwater recharge and flow processes are difficult to quantify on a larger scale. Therefore, it is difficult to assess groundwater resources, substantially used for fresh water supply, and their changes over time. In karst areas, groundwater drainage networks over large areas are generated due to the soluble rocks. The observation of discharge from springs provides an alternative to estimate changes in groundwater resources over time, which can be connected to changing climatic conditions.
Yanchen Zheng, Gemma Coxon, Ross Woods, Daniel Power, Miguel Angel Rico-Ramirez, David McJannet, Rafael Rosolem, Jianzhu Li, and Ping Feng
Hydrol. Earth Syst. Sci., 28, 1999–2022, https://doi.org/10.5194/hess-28-1999-2024, https://doi.org/10.5194/hess-28-1999-2024, 2024
Short summary
Short summary
Reanalysis soil moisture products are a vital basis for hydrological and environmental research. Previous product evaluation is limited by the scale difference (point and grid scale). This paper adopts cosmic ray neutron sensor observations, a novel technique that provides root-zone soil moisture at field scale. In this paper, global harmonized CRNS observations were used to assess products. ERA5-Land, SMAPL4, CFSv2, CRA40 and GLEAM show better performance than MERRA2, GLDAS-Noah and JRA55.
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024, https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Short summary
Much of the world relies on groundwater as a water resource, yet it is hard to know when and where rainfall replenishes our groundwater aquifers. Caves, mines, and tunnels that are situated above the groundwater table are unique observatories of water transiting from the land surface to the aquifer. This paper will show how networks of loggers deployed in these underground spaces across Australia have helped understand when, where, and how much rainfall is needed to replenish the groundwater.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023, https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
Short summary
We present a method to collect water vapor samples into bags in the field without an in-field analyser, followed by isotope analysis in the lab. This new method resolves even fine-scaled natural isotope variations. It combines low-cost and lightweight components for maximum spatial and temporal flexibility regarding environmental setups. Hence, it allows for sampling even in terrains that are rather difficult to access, enabling future extended isotope datasets in soil sciences and ecohydrology.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
EGUsphere, https://doi.org/10.5194/egusphere-2023-1548, https://doi.org/10.5194/egusphere-2023-1548, 2023
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within mHM, using the Desilets equation with uniformly and with non-uniformly weighted average soil moisture, and the physically-based code COSMIC. The data not only improved soil moisture simulations, but also the parameterization of evapotranspiration in the model.
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023, https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023, https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Short summary
Karstic recharge processes have mainly been explored using discharge analysis despite the high influence of the heterogeneous surface on hydrological processes. In this paper, we introduce an event-based method which allows for recharge estimation from soil moisture measurements. The method was tested at a karst catchment in Germany but can be applied to other karst areas with precipitation and soil moisture data available. It will allow for a better characterization of karst recharge processes.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022, https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Short summary
We adapt the informal Kling–Gupta efficiency (KGE) with a gamma distribution to apply it as an informal likelihood function in the DiffeRential Evolution Adaptive Metropolis DREAM(ZS) method. Our adapted approach performs as well as the formal likelihood function for exploring posterior distributions of model parameters. The adapted KGE is superior to the formal likelihood function for calibrations combining multiple observations with different lengths, frequencies and units.
Yong Chang, Benjamin Mewes, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-77, https://doi.org/10.5194/hess-2022-77, 2022
Revised manuscript not accepted
Short summary
Short summary
This study presents a work to investigate the feasibility of using EC to predict the discharge in a typical karst catchment. We found that the spring discharge can be well predicted by EC in storms using LSTM (Long Short Term Memory) model, while the prediction has relatively large uncertainties in small recharge events. To establish a roust LSTM model for long-term discharge prediction from EC in ungauged catchments, the random or fixed-interval discharge monitoring strategy is recommended.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Shaini Naha, Miguel Angel Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci., 25, 6339–6357, https://doi.org/10.5194/hess-25-6339-2021, https://doi.org/10.5194/hess-25-6339-2021, 2021
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand, and as a consequence, percentages of land are being converted to cropland which alters river flow processes. This study describes how the hydrology of a flood-prone river basin in India would respond to the current and future changes in land cover. Our findings indicate that the recurrent flood events occurring in the basin might be influenced by these changes in land cover at the catchment scale.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Daniel Power, Miguel Angel Rico-Ramirez, Sharon Desilets, Darin Desilets, and Rafael Rosolem
Geosci. Model Dev., 14, 7287–7307, https://doi.org/10.5194/gmd-14-7287-2021, https://doi.org/10.5194/gmd-14-7287-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensors estimate root-zone soil moisture at sub-kilometre scales. There are national-scale networks of these sensors across the globe; however, methods for converting neutron signals to soil moisture values are inconsistent. This paper describes our open-source Python tool that processes raw sensor data into soil moisture estimates. The aim is to allow a user to ensure they have a harmonized data set, along with informative metadata, to facilitate both research and teaching.
E. Andrés Quichimbo, Michael Bliss Singer, Katerina Michaelides, Daniel E. J. Hobley, Rafael Rosolem, and Mark O. Cuthbert
Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021, https://doi.org/10.5194/gmd-14-6893-2021, 2021
Short summary
Short summary
Understanding and quantifying water partitioning in dryland regions are of key importance to anticipate the future impacts of climate change in water resources and dryland ecosystems. Here, we have developed a simple hydrological model (DRYP) that incorporates the key processes of water partitioning in drylands. DRYP is a modular, versatile, and parsimonious model that can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
Tesfalem Abraham, Yan Liu, Sirak Tekleab, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-271, https://doi.org/10.5194/hess-2021-271, 2021
Preprint withdrawn
Short summary
Short summary
In this study we demonstrate the use of global data products for the regionalization of model parameters. We combine three steps of uncertainty quantification from the parameter sampling, best parameter sets identification, and spatial cross-validation. Our results show the best validation parameters provide the most robust regionalization results, and the uncertainties from the regionalization in the ungauged catchments are higher than those obtained from simulations in the gauged catchments.
Ashley N. Martin, Karina Meredith, Andy Baker, Marc D. Norman, and Eliza Bryan
Hydrol. Earth Syst. Sci., 25, 3837–3853, https://doi.org/10.5194/hess-25-3837-2021, https://doi.org/10.5194/hess-25-3837-2021, 2021
Short summary
Short summary
We measured the silicon isotopic composition of groundwater from Rottnest Island, Western Australia, to investigate water–rock interactions in a coastal aquifer. Silicon isotopic ratios varied spatially across the island and were related to secondary mineral formation and vertical mixing within the aquifer. We find that silicate dissolution occurs in the freshwater–seawater transition zone, supporting the recent recognition of submarine groundwater discharge in the oceanic silicon isotope cycle.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Isaac Kipkemoi, Katerina Michaelides, Rafael Rosolem, and Michael Bliss Singer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-48, https://doi.org/10.5194/hess-2021-48, 2021
Manuscript not accepted for further review
Short summary
Short summary
The work is a novel investigation of the role of temporal rainfall resolution and intensity in affecting the water balance of soil in a dryland environment. This research has implications for what rainfall data are used to assess the impact of climate and climate change on the regional water balance. This information is critical for anticipating the impact of a changing climate on dryland communities globally who need it to know when to plant their seeds or where livestock pasture is available.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Shaini Naha, Miguel A. Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-220, https://doi.org/10.5194/hess-2020-220, 2020
Manuscript not accepted for further review
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand and as a consequence, percentages of land are being converted to cropland which alters the river flow processes. Therefore we try to understand the exact role of these changes in modifying the river flows through the prediction of the impacts of these changes in the future by taking a clue from the past. This study concludes that recurrent flood events might be influenced by these changes in future.
Karina T. Meredith, Andy Baker, Martin S. Andersen, Denis M. O'Carroll, Helen Rutlidge, Liza K. McDonough, Phetdala Oudone, Eliza Bryan, and Nur Syahiza Zainuddin
Hydrol. Earth Syst. Sci., 24, 2167–2178, https://doi.org/10.5194/hess-24-2167-2020, https://doi.org/10.5194/hess-24-2167-2020, 2020
Short summary
Short summary
Dissolved organic carbon within groundwater and processes controlling it remain largely unknown. The average groundwater concentration at this coastal site was 5 times higher than the global median, doubling with depth, but with no change in chromatographic character. The lack of oxygen limited the rate of organic matter processing, leading to enhanced preservation. Changes in coastal hydrology could lead to the flux of unreacted organic carbon.
Fanny Sarrazin, Andreas Hartmann, Francesca Pianosi, Rafael Rosolem, and Thorsten Wagener
Geosci. Model Dev., 11, 4933–4964, https://doi.org/10.5194/gmd-11-4933-2018, https://doi.org/10.5194/gmd-11-4933-2018, 2018
Short summary
Short summary
We propose the first large-scale vegetation–recharge model for karst regions (V2Karst), which enables the analysis of the impact of changes in climate and land cover on karst groundwater recharge. We demonstrate the plausibility of V2Karst simulations against observations at FLUXNET sites and of controlling modelled processes using sensitivity analysis. We perform virtual experiments to further test the model and gain insight into its sensitivity to precipitation pattern and vegetation cover.
Jana von Freyberg, Bjørn Studer, Michael Rinderer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 5847–5865, https://doi.org/10.5194/hess-22-5847-2018, https://doi.org/10.5194/hess-22-5847-2018, 2018
Short summary
Short summary
We show event- and pre-event-water volumes as fractions of precipitation, rather than discharge, to provide an alternative and more insightful approach to study catchment hydrological processes. For this, we analyze 24 storm events using high-frequency measurements of stable water isotopes in stream water and precipitation at a pre-Alpine catchment. Antecedent wetness and storm characteristics are dominant controls on event-water discharge and pre-event-water mobilization from storage.
Kamolphat Atsawawaranunt, Laia Comas-Bru, Sahar Amirnezhad Mozhdehi, Michael Deininger, Sandy P. Harrison, Andy Baker, Meighan Boyd, Nikita Kaushal, Syed Masood Ahmad, Yassine Ait Brahim, Monica Arienzo, Petra Bajo, Kerstin Braun, Yuval Burstyn, Sakonvan Chawchai, Wuhui Duan, István Gábor Hatvani, Jun Hu, Zoltán Kern, Inga Labuhn, Matthew Lachniet, Franziska A. Lechleitner, Andrew Lorrey, Carlos Pérez-Mejías, Robyn Pickering, Nick Scroxton, and SISAL Working Group Members
Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, https://doi.org/10.5194/essd-10-1687-2018, 2018
Short summary
Short summary
This paper is an overview of the contents of the SISAL database and its structure. The database contains oxygen and carbon isotope measurements from 371 individual speleothem records and 10 composite records from 174 cave systems from around the world. The SISAL database is created by a collective effort of the members of the Past Global Changes SISAL working group, which aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation.
Zhao Chen, Andreas Hartmann, Thorsten Wagener, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 22, 3807–3823, https://doi.org/10.5194/hess-22-3807-2018, https://doi.org/10.5194/hess-22-3807-2018, 2018
Short summary
Short summary
This paper investigates potential impacts of climate change on mountainous karst systems. Our study highlights the fast groundwater dynamics in mountainous karst catchments, which make them highly vulnerable to future changing-climate conditions. Additionally, this work presents a novel holistic modeling approach, which can be transferred to similar karst systems for studying the impact of climate change on local karst water resources.
Simon Brenner, Gemma Coxon, Nicholas J. K. Howden, Jim Freer, and Andreas Hartmann
Nat. Hazards Earth Syst. Sci., 18, 445–461, https://doi.org/10.5194/nhess-18-445-2018, https://doi.org/10.5194/nhess-18-445-2018, 2018
Short summary
Short summary
In this study we simulate groundwater levels with a semi-distributed karst model. Using a percentile approach we can assess the number of days exceeding or falling below selected groundwater level percentiles. We show that our approach is able to predict groundwater levels across all considered timescales up to the 75th percentile. We then use our approach to assess future changes in groundwater dynamics and show that projected climate changes may lead to generally lower groundwater levels.
Kashif Mahmud, Gregoire Mariethoz, Andy Baker, and Pauline C. Treble
Hydrol. Earth Syst. Sci., 22, 977–988, https://doi.org/10.5194/hess-22-977-2018, https://doi.org/10.5194/hess-22-977-2018, 2018
Short summary
Short summary
This study explores the relationship between drip water and rainfall in a SW Australian karst, where both intra- and interannual hydrological variations are strongly controlled by seasonal variations in recharge. The hydrological behavior of cave drips is examined at daily resolution with respect to mean discharge and the flow variation. We demonstrate that the analysis of the time series produced by cave drip loggers generates useful hydrogeological information that can be applied generally.
Andreas Hartmann, Juan Antonio Barberá, and Bartolomé Andreo
Hydrol. Earth Syst. Sci., 21, 5971–5985, https://doi.org/10.5194/hess-21-5971-2017, https://doi.org/10.5194/hess-21-5971-2017, 2017
Short summary
Short summary
In karst modeling, there is often an imbalance between the complexity of model structures and the data availability for parameterization. We present a new approach to quantify the value of water quality data for improved karst model parameterization. We show that focusing on “informative” time periods, which are time periods with decreased observation uncertainty, allows for further reduction of simulation uncertainty. Our approach is transferable to other sites with limited data availability.
Martin Schrön, Markus Köhli, Lena Scheiffele, Joost Iwema, Heye R. Bogena, Ling Lv, Edoardo Martini, Gabriele Baroni, Rafael Rosolem, Jannis Weimar, Juliane Mai, Matthias Cuntz, Corinna Rebmann, Sascha E. Oswald, Peter Dietrich, Ulrich Schmidt, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, https://doi.org/10.5194/hess-21-5009-2017, 2017
Short summary
Short summary
A field-scale average of near-surface water content can be sensed by cosmic-ray neutron detectors. To interpret, calibrate, and validate the integral signal, it is important to account for its sensitivity to heterogeneous patterns like dry or wet spots. We show how point samples contribute to the neutron signal based on their depth and distance from the detector. This approach robustly improves the sensor performance and data consistency, and even reveals otherwise hidden hydrological features.
Pauline C. Treble, Andy Baker, Linda K. Ayliffe, Timothy J. Cohen, John C. Hellstrom, Michael K. Gagan, Silvia Frisia, Russell N. Drysdale, Alan D. Griffiths, and Andrea Borsato
Clim. Past, 13, 667–687, https://doi.org/10.5194/cp-13-667-2017, https://doi.org/10.5194/cp-13-667-2017, 2017
Short summary
Short summary
Little is known about the climate of southern Australia during the Last Glacial Maximum and deglaciation owing to sparse records for this region. We present the first high-resolution data, derived from speleothems that grew 23–5 ka. It appears that recharge to the Flinders Ranges was higher than today, particularly during 18.9–15.8 ka, argued to be due to the enhanced availability of tropical moisture. An abrupt shift to aridity is recorded at 15.8 ka, associated with restored westerly airflow.
Joost Iwema, Rafael Rosolem, Mostaquimur Rahman, Eleanor Blyth, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 21, 2843–2861, https://doi.org/10.5194/hess-21-2843-2017, https://doi.org/10.5194/hess-21-2843-2017, 2017
Short summary
Short summary
We investigated whether the simulation of water flux from the land surface to the atmosphere (using the Joint UK Land Environment Simulator model) could be improved by replacing traditional soil moisture sensor data with data from the more novel Cosmic-Ray Neutron soil moisture sensor. Despite observed differences between the two types of soil moisture measurement data, we found no substantial differences in improvement in water flux estimation, based on multiple calibration experiments.
Mostaquimur Rahman and Rafael Rosolem
Hydrol. Earth Syst. Sci., 21, 459–471, https://doi.org/10.5194/hess-21-459-2017, https://doi.org/10.5194/hess-21-459-2017, 2017
Short summary
Short summary
Modelling water flow through chalk (a fine-grained porous medium traversed by fractures) is important for optimizing water resource management practices in the UK. However, efficient simulations of water movement through chalk are difficult due to the porous nature of chalk, creating high-velocity preferential flow paths. This paper describes a novel approach to representing chalk hydrology in land surface modelling for large-scale applications.
Carol V. Tadros, Pauline C. Treble, Andy Baker, Ian Fairchild, Stuart Hankin, Regina Roach, Monika Markowska, and Janece McDonald
Hydrol. Earth Syst. Sci., 20, 4625–4640, https://doi.org/10.5194/hess-20-4625-2016, https://doi.org/10.5194/hess-20-4625-2016, 2016
Short summary
Short summary
We investigated the potential use of trace element and stable oxygen-isotope variations in cave drip water as palaeorainfall proxies in an Australian alpine karst site. Using 7 years of cave monitoring data, we constrained the hydrological processes impacting the drip-water composition and identified a robust ENSO–drip water hydrochemical relationship. These findings are fundamental for reconstructing past ENSO variability from speleothems (cave deposits) regionally and globally.
Katie Coleborn, Gabriel C. Rau, Mark O. Cuthbert, Andy Baker, and Owen Navarre
Hydrol. Earth Syst. Sci., 20, 4439–4455, https://doi.org/10.5194/hess-20-4439-2016, https://doi.org/10.5194/hess-20-4439-2016, 2016
Short summary
Short summary
This is the first observation of tree water use in cave drip water. Our novel time series analysis using the synchrosqueeze transform identified daily and sub-daily oscillations in drip rate. The only hypothesis consistent with hydrologic theory and the data was that the oscillations were caused by solar driven pumping by trees above the cave. We propose a new protocol for inferring karst architecture and our findings support research on the impact trees on speleothem paleoclimate proxies.
Gurinder Nagra, Pauline C. Treble, Martin S. Andersen, Ian J. Fairchild, Katie Coleborn, and Andy Baker
Hydrol. Earth Syst. Sci., 20, 2745–2758, https://doi.org/10.5194/hess-20-2745-2016, https://doi.org/10.5194/hess-20-2745-2016, 2016
Short summary
Short summary
Our current understanding of wildfires on Earth is filled with knowledge gaps. One reason for this is our poor record of fire in natural archives. We open the possibility for speleothems to be "a missing piece to the fire-puzzle". We find by effecting surface evaporation and transpiration rates, wildfires can have a multi-year impact on speleothem, forming dripwater hydrology and chemistry. We open a new avenue for speleothems as potential palaeo-fire archives.
K. Mahmud, G. Mariethoz, A. Baker, P. C. Treble, M. Markowska, and E. McGuire
Hydrol. Earth Syst. Sci., 20, 359–373, https://doi.org/10.5194/hess-20-359-2016, https://doi.org/10.5194/hess-20-359-2016, 2016
Short summary
Short summary
Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. In this study, we develop a method that combines automated drip rate logging systems and remote sensing techniques to quantify the infiltration processes within a cave.
A. Hartmann, J. Kobler, M. Kralik, T. Dirnböck, F. Humer, and M. Weiler
Biogeosciences, 13, 159–174, https://doi.org/10.5194/bg-13-159-2016, https://doi.org/10.5194/bg-13-159-2016, 2016
Short summary
Short summary
We consider the time period before and after a wind disturbance in an Austrian karst system. Using a process-based flow and solute transport simulation model we estimate impacts on DIN and DOC. We show that DIN increases for several years, while DOC remains within its pre-disturbance variability. Simulated transit times indicate that impact passes through the hydrological system within some months but with a small fraction exceeding transit times of even a year.
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015, https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
DasPy is a ready to use open source parallel multivariate land data assimilation framework with joint state and parameter estimation using Local Ensemble Transform Kalman Filter. The Community Land Model (4.5) was integrated as model operator. The Community Microwave Emission Modelling platform, COsmic-ray Soil Moisture Interaction Code and the Two-Source Formulation were integrated as observation operators for the multivariate assimilation of soil moisture and soil temperature, respectively.
M. Rinderer, H. C. Komakech, D. Müller, G. L. B. Wiesenberg, and J. Seibert
Hydrol. Earth Syst. Sci., 19, 3505–3516, https://doi.org/10.5194/hess-19-3505-2015, https://doi.org/10.5194/hess-19-3505-2015, 2015
Short summary
Short summary
A field method for assessing soil moisture in semi-arid conditions is proposed and tested in terms of inter-rater reliability with 40 Tanzanian farmers, students and experts. The seven wetness classes are based on qualitative indicators that one can see, feel or hear. It could be shown that the qualitative wetness classes reflect differences in volumetric water content and neither experience nor a certain level of education was a prerequisite to gain high agreement among raters.
J. Iwema, R. Rosolem, R. Baatz, T. Wagener, and H. R. Bogena
Hydrol. Earth Syst. Sci., 19, 3203–3216, https://doi.org/10.5194/hess-19-3203-2015, https://doi.org/10.5194/hess-19-3203-2015, 2015
Short summary
Short summary
The cosmic-ray neutron sensor can provide soil moisture content averages over areas of roughly half a kilometre by half a kilometre. Although this sensor is usually calibrated using soil samples taken on a single day, we found that multiple sampling days are needed. The calibration results were also affected by the soil wetness conditions of the sampling days. The outcome of this study will help researchers to calibrate/validate new cosmic-ray neutron sensor sites more accurately.
P. T. S. Oliveira, E. Wendland, M. A. Nearing, R. L. Scott, R. Rosolem, and H. R. da Rocha
Hydrol. Earth Syst. Sci., 19, 2899–2910, https://doi.org/10.5194/hess-19-2899-2015, https://doi.org/10.5194/hess-19-2899-2015, 2015
Short summary
Short summary
We determined the main components of the water balance for an undisturbed cerrado.
Evapotranspiration ranged from 1.91 to 2.60mm per day for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20% and stemflow values were approximately 1% of gross precipitation.
The average runoff coefficient was less than 1%, while cerrado deforestation has the potential to increase that amount up to 20-fold.
The water storage may be estimated by the difference between P and ET.
A. Hartmann, T. Gleeson, R. Rosolem, F. Pianosi, Y. Wada, and T. Wagener
Geosci. Model Dev., 8, 1729–1746, https://doi.org/10.5194/gmd-8-1729-2015, https://doi.org/10.5194/gmd-8-1729-2015, 2015
Short summary
Short summary
We present a new approach to assess karstic groundwater recharge over Europe and the Mediterranean. Cluster analysis is used to subdivide all karst regions into four typical karst landscapes and to simulate karst recharge with a process-based karst model. We estimate its parameters by a combination of a priori information and observations of soil moisture and evapotranspiration. Independent observations of recharge that present large-scale models significantly under-estimate karstic recharge.
X. Han, H.-J. H. Franssen, R. Rosolem, R. Jin, X. Li, and H. Vereecken
Hydrol. Earth Syst. Sci., 19, 615–629, https://doi.org/10.5194/hess-19-615-2015, https://doi.org/10.5194/hess-19-615-2015, 2015
Short summary
Short summary
This paper presents the joint assimilation of cosmic-ray neutron counts and land surface temperature with parameter estimation of leaf area index at an irrigated corn field. The results show that the data assimilation can reduce the systematic input errors due to the lack of irrigation data. The estimations of soil moisture, evapotranspiration and leaf area index can be improved in the joint assimilation framework.
R. Rosolem, T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz
Hydrol. Earth Syst. Sci., 18, 4363–4379, https://doi.org/10.5194/hess-18-4363-2014, https://doi.org/10.5194/hess-18-4363-2014, 2014
A. Hartmann, M. Weiler, T. Wagener, J. Lange, M. Kralik, F. Humer, N. Mizyed, A. Rimmer, J. A. Barberá, B. Andreo, C. Butscher, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, https://doi.org/10.5194/hess-17-3305-2013, 2013
J. Shuttleworth, R. Rosolem, M. Zreda, and T. Franz
Hydrol. Earth Syst. Sci., 17, 3205–3217, https://doi.org/10.5194/hess-17-3205-2013, https://doi.org/10.5194/hess-17-3205-2013, 2013
T. E. Franz, M. Zreda, R. Rosolem, and T. P. A. Ferre
Hydrol. Earth Syst. Sci., 17, 453–460, https://doi.org/10.5194/hess-17-453-2013, https://doi.org/10.5194/hess-17-453-2013, 2013
Related subject area
Field campaign
New proglacial meteorology and river stage observations from Inglefield Land and Pituffik, NW Greenland
Passive seismic experiment “AniMaLS” in the Polish Sudetes (NE Variscides)
Easy to build low-power GPS drifters with local storage and a cellular modem made from off-the-shelf components
Monitoring aseismic creep trends in the İsmetpaşa and Destek segments throughout the North Anatolian Fault (NAF) with a large-scale GPS network
Nordic Snow Radar Experiment
Spatial and temporal variation of bulk snow properties in northern boreal and tundra environments based on extensive field measurements
Sodankylä manual snow survey program
Arctic Snow Microstructure Experiment for the development of snow emission modelling
Thermal-plume fibre optic tracking (T-POT) test for flow velocity measurement in groundwater boreholes
Inner structure of the Puy de Dôme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)
Observing desert dust devils with a pressure logger
Sarah E. Esenther, Laurence C. Smith, Adam LeWinter, Lincoln H. Pitcher, Brandon T. Overstreet, Aaron Kehl, Cuyler Onclin, Seth Goldstein, and Jonathan C. Ryan
Geosci. Instrum. Method. Data Syst., 12, 215–230, https://doi.org/10.5194/gi-12-215-2023, https://doi.org/10.5194/gi-12-215-2023, 2023
Short summary
Short summary
Meltwater runoff estimates from the Greenland ice sheet contain uncertainty. To better understand ice sheet hydrology, we installed a weather station and river stage sensors along three proglacial rivers in a cold-bedded area of NW Greenland without firn, crevasse, or moulin influence. The first 3 years (2019–2021) of observations have given us a first look at the seasonal and annual weather and hydrological patterns of this understudied region.
Monika Bociarska, Julia Rewers, Dariusz Wójcik, Weronika Materkowska, Piotr Środa, and the AniMaLS Working Group
Geosci. Instrum. Method. Data Syst., 10, 183–202, https://doi.org/10.5194/gi-10-183-2021, https://doi.org/10.5194/gi-10-183-2021, 2021
Short summary
Short summary
This paper describes a seismic dataset acquired by network of broadband sensors in Poland and technical issues related to data acquisition. We describe a new azimuth-transfer device for precise sensor orientation and apply methods for data-based orientation checking. We analyse the seismic noise level and discuss effect of geology at sites on character of seismic data and noise. We show data examples and describe methods of seismic data interpretation for studies of lithospheric structure.
Rolf Hut, Thanda Thatoe Nwe Win, and Thom Bogaard
Geosci. Instrum. Method. Data Syst., 9, 435–442, https://doi.org/10.5194/gi-9-435-2020, https://doi.org/10.5194/gi-9-435-2020, 2020
Short summary
Short summary
GPS drifters that float down rivers are important tools in studying rivers, but they can be expensive. Recently, both GPS receivers and cellular modems have become available at lower prices to tinkering scientists due to the rise of open hardware and the Arduino. We provide detailed instructions on how to build a low-power GPS drifter with local storage and a cellular model that we tested in a fieldwork in Myanmar. These instructions allow fellow geoscientists to recreate the device.
Hasan Hakan Yavaşoğlu, Mehmet Nurullah Alkan, Serdar Bilgi, and Öykü Alkan
Geosci. Instrum. Method. Data Syst., 9, 25–40, https://doi.org/10.5194/gi-9-25-2020, https://doi.org/10.5194/gi-9-25-2020, 2020
Short summary
Short summary
This study has been carried out within the scope of a project supported by the Istanbul Technical, Afyon Kocatepe and Hitit universities. The data were obtained from annual GPS campaigns. With this study, the actual velocity field of the region was revealed and the deformations of the region were determined. In particular, the creep, which is a rare phenomenon in tectonics, was studied in order to understand its mechanism and whether it is present in the region or not.
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016, https://doi.org/10.5194/gi-5-403-2016, 2016
Henna-Reetta Hannula, Juha Lemmetyinen, Anna Kontu, Chris Derksen, and Jouni Pulliainen
Geosci. Instrum. Method. Data Syst., 5, 347–363, https://doi.org/10.5194/gi-5-347-2016, https://doi.org/10.5194/gi-5-347-2016, 2016
Short summary
Short summary
The paper described an extensive in situ data set of bulk snow depth, snow water equivalent, and snow density collected as a support of SnowSAR-2 airborne campaign in northern Finland. The spatial and temporal variability of these snow properties was analyzed in different land cover types. The success of the chosen measurement protocol to provide an accurate reference for the simultaneous SAR data products was analyzed in the context of spatial scale, sample size, and uncertainty.
Leena Leppänen, Anna Kontu, Henna-Reetta Hannula, Heidi Sjöblom, and Jouni Pulliainen
Geosci. Instrum. Method. Data Syst., 5, 163–179, https://doi.org/10.5194/gi-5-163-2016, https://doi.org/10.5194/gi-5-163-2016, 2016
Short summary
Short summary
The manual snow survey program of Finnish Meteorological Institute consists of numerous observations of natural seasonal snowpack in Sodankylä, in northern Finland. Systematic snow measurements began in 1911 with snow depth and snow water equivalent. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from snow pits. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack.
William Maslanka, Leena Leppänen, Anna Kontu, Mel Sandells, Juha Lemmetyinen, Martin Schneebeli, Martin Proksch, Margret Matzl, Henna-Reetta Hannula, and Robert Gurney
Geosci. Instrum. Method. Data Syst., 5, 85–94, https://doi.org/10.5194/gi-5-85-2016, https://doi.org/10.5194/gi-5-85-2016, 2016
Short summary
Short summary
The paper presents the initial findings of the Arctic Snow Microstructure Experiment in Sodankylä, Finland. The experiment observed the microwave emission of extracted snow slabs on absorbing and reflecting bases. Snow parameters were recorded to simulate the emission upon those bases using two different emission models. The smallest simulation errors were associated with the absorbing base at vertical polarization. The observations will be used for the development of snow emission modelling.
T. Read, V. F. Bense, R. Hochreutener, O. Bour, T. Le Borgne, N. Lavenant, and J. S. Selker
Geosci. Instrum. Method. Data Syst., 4, 197–202, https://doi.org/10.5194/gi-4-197-2015, https://doi.org/10.5194/gi-4-197-2015, 2015
Short summary
Short summary
The monitoring and measurement of water flow in groundwater wells allows us to understand how aquifers transmit water. In this paper we develop a simple method, which we call T-POT, that allows flows to be estimated by tracking the movement of a small parcel of warmed water. The parcel is tracked using fibre optic temperature sensing - a technology that allows detailed measurements of temperature, and therefore flow using the T-POT method, to be made in the well.
A. Portal, P. Labazuy, J.-F. Lénat, S. Béné, P. Boivin, E. Busato, C. Cârloganu, C. Combaret, P. Dupieux, F. Fehr, P. Gay, I. Laktineh, D. Miallier, L. Mirabito, V. Niess, and B. Vulpescu
Geosci. Instrum. Method. Data Syst., 2, 47–54, https://doi.org/10.5194/gi-2-47-2013, https://doi.org/10.5194/gi-2-47-2013, 2013
R. D. Lorenz
Geosci. Instrum. Method. Data Syst., 1, 209–220, https://doi.org/10.5194/gi-1-209-2012, https://doi.org/10.5194/gi-1-209-2012, 2012
Cited articles
Aley, T. J. and Kirkland S. L.: Down but Not Straight down: Significance
of Lateral Flow in the Vadose Zone of Karst Terrains, Carbonate.
Evaporite., 27, 193–98, https://doi.org/10.1007/s13146-012-0106-5,
2012.
Anderson, S., Brantley, S., Derry, L., Dietrich, W., Grant, G., Hart, S., Kumar, P., Lohse, K., McDowell, W., McIntosh, J., Moloch, N., Papanicolaou, T., Richardson, J., Richter, D., Riebe, C., Russo, T., Seyfried, M., Thompson, S., and White, T.: A Strategy for Advancing Critical Zone Science, CZO
Strategy Meeting, Boulder, 3–5 February 2016, Colorado, 2016.
Bakalowicz, M.: Karst groundwater: a challenge for new resources,
Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005.
Behrensmeyer, A. K., Darmuth, J. D., DiMichele, W. A., Pots, R., Sues, H. D., and
Wing, S. L.: Terrestrial Ecosystems through Time, Chicago, IL, The
University of Chicago Press, 1992.
Beinroth, F. H, Engel, R. J., Lugo, J. L., Santiago, C. L., Ríos, S., and Brannon, G. R.: Updated Taxonomic Classification of the Soils of Puerto
Rico, 2002, Bull. 303, Univ. Puerto Rico, Agric. Experiment Station,
Río Piedras, P.R., 2003.
Berthelin, R. and Hartmann, A.: The Shallow Subsurface of Karst Systems:
Review and Directions, in: Eurokarst 2018, Besançon. Advances in Karst
Science, edited by: Bertrand, C., Denimal, S., Steinmann, M., and Renard,
P., 11, 61–68, Springer, Cham,
https://doi.org/10.1007/978-3-030-14015-1_7, 2020.
Chalikakis, K., Plagnes, V., Guerin, R., Valois, R., and Bosch, F. P.:
Contribution of Geophysical Methods to Karst-System Exploration: An
Overview, Hydrogeol. J., 19, 1169–1180,
https://doi.org/10.1007/s10040-011-0746-x, 2011.
Champollion, C., Deville, S., Chéry, J., Doerflinger, E., Le Moigne, N., Bayer, R., Vernant, P., and Mazzilli, N.: Estimating epikarst water storage by time-lapse surface-to-depth gravity measurements, Hydrol. Earth Syst. Sci., 22, 3825–3839, https://doi.org/10.5194/hess-22-3825-2018, 2018.
Charlier, J. B., Bertrand, C., and Mudry, J.: Conceptual Hydrogeological Model
of Flow and Transport of Dissolved Organic Carbon in a Small Jura Karst
System, J. Hydrol., 460–461, 52–64,
https://doi.org/10.1016/j.jhydrol.2012.06.043, 2012.
Chen, Z., Auler, A. S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A., Stevanovic, Z., Veni, G., and Goldscheider, N.: The World Karst Aquifer Mapping Project: Concept,
Mapping Procedure and Map of Europe, Hydrogeol. J., 25, 771–785,
https://doi.org/10.1007/s10040-016-1519-3, 2017a.
Chen, Z., Hartmann, A., and Goldscheider, N.: A new approach to evaluate
spatiotemporal dynamics of controlling parameters in distributed
environmental models, Environ. Modell. Softw., 87, 1–16,
https://doi.org/10.1016/j.envsoft.2016.10.005, 2017b.
Chifflard, P., Blume, T., Maerker, K., Hopp, L., Meerveld, I., Graef, T., Gronz, O., Hartmann, A., Kohl, B., Martini, E., Reinhardt-Imjela, C., Reiss, M., Rinderer, M., and Achleitner, S.: How Can We Model Subsurface Stormflow at the Catchment
Scale If We Cannot Measure It?, Hydrol. Process., 33, 1378–1385,
https://doi.org/10.1002/hyp.13407, 2019.
Cuthbert, M. O., Baker, A., Jex, C. N., Graham, P. W., Treble, P. C.,
Andersen, M. S., and Acworth, R. I.: Drip Water Isotopes in Semi-Arid
Karst: Implications for Speleothem Paleoclimatology, Earth Planet.
Sc. Lett., 395, 194–204,
https://doi.org/10.1016/j.epsl.2014.03.034, 2014.
Demand, D., Blume, T., and Weiler, M.: Spatio-temporal relevance and controls of preferential flow at the landscape scale, Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, 2019.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011.
Enemark, T., Peeters, L. J. M., Mallants, D., and Batelaan, O.:
Hydrogeological Conceptual Model Building and Testing: A Review, J.
Hydrol., 569, 310–329,
https://doi.org/10.1016/j.jhydrol.2018.12.007, 2019.
Ewel, J. J. and Whitmore, J. L.: The Ecological Life Zones of Puerto Rico and
the U.S. Virgin Islands, SDA Forest Service, Institute of Tropical
Forestry, Research Paper ITF-018, 1973.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier, J., Perket, J., Rouholahnejad‐Freund, E., Wagener, T., Zeng, X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen, C., Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope Hydrology in Global Change Research and
Earth System Modeling, Water Resour. Res., 55, 1737–1772,
https://doi.org/10.1029/2018WR023903, 2019.
Fonseca da Silva, J.: Species Composition, Diversity and Structure of Novel Forests of Castilla Elastica in Puerto Rico, Tropical Ecology, 55, 231–244, 2014.
Ford, D. C. and Williams, P. W.: Karst Hydrogeology and Geomorphology, John Wiley & Sons, Chichester, 2007.
Fu, Z. Y., Chen, H. S., Zhang, W., Xu, Q. X., Wang, S., and Wang, K. L.:
Subsurface Flow in a Soil-Mantled Subtropical Dolomite Karst Slope: A Field
Rainfall Simulation Study, Geomorphology, 250, 1–14,
https://doi.org/10.1016/j.geomorph.2015.08.012, 2015.
Garvelmann, J., Warscher, M., Leonhardt, G., Franz, H., Lotz, A., and
Kunstmann, H.: Quantification and Characterization of the Dynamics of
Spring and Stream Water Systems in the Berchtesgaden Alps with a Long-Term
Stable Isotope Dataset, Environ. Earth Sci., 76, 766,
https://doi.org/10.1007/s12665-017-7107-6, 2017.
Giese, M., Reimann, T., Bailly-Comte, V., Maréchal, J. C., Sauter, M.,
and Geyer, T.: Turbulent and Laminar Flow in Karst Conduits Under Unsteady
Flow Conditions: Interpretation of Pumping Tests by Discrete
Conduit-Continuum Modeling, Water Resour. Res., 54, 1918–1933,
https://doi.org/10.1002/2017WR020658, 2018.
Goldscheider, N. and Drew, D.: Methods in Karst Hydrogeology, Taylor &
Francis Group, Leiden, NL, 2007.
Goldscheider, N., Meiman, J., Pronk, M., and Smart, C.: Tracer Tests in
Karst Hydrogeology and Speleology, Int. J. Speleol., 37,
27–40, https://doi.org/10.5038/1827-806X.37.1.3, 2008.
Hartmann, A. and Baker, A.: Modelling Karst Vadose Zone Hydrology and Its
Relevance for Paleoclimate Reconstruction, Earth-Sci. Rev., 172,
178–192, https://doi.org/10.1016/j.earscirev.2017.08.001, 2017.
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.:
Karst Water Resources in a Changing World: Review of Hydrological Modeling
Approaches: KARST WATER RESOURCES PREDICTION, Rev. Geophys., 52,
218–242, https://doi.org/10.1002/2013RG000443, 2014.
Hartmann, A., Barberá, J. A., and Andreo, B.: On the value of water quality data and informative flow states in karst modelling, Hydrol. Earth Syst. Sci., 21, 5971–5985, https://doi.org/10.5194/hess-21-5971-2017, 2017.
Holdridge, L. R.: Life Zone Ecology, San José, Costa Rica: Tropical
Science Center, 1967.
Houillon, N., Lastennet, R., Denis, A., and Malaurent, P.: Hydrochemical
and Hydrodynamic Behavior of the Epikarst at the Lascaux Cave (Montignac,
France), in: EuroKarst 2016, Neuchâtel, edited by: Renard, P. and
Bertrand, C., Advances in Karst Science, Springer
International Publishing, 319–326, 2017.
Iwema, J.: Opportunities and Limitations of the Cosmic-Ray Neutron Soil
Moisture Sensor under Humid Conditions, University of Bristol, UK, 2017.
Jex, C., Mariethoz, G., Baker, A., Graham, P., Andersen, M. Acworth, I.,
Edwards, N., and Azcurra, C.: Spatially Dense Drip Hydrological Monitoring
and Infiltration Behaviour at the Wellington Caves, South East Australia,
Int. J. Speleol., 41, 283–296, https://doi.org/10.5038/1827-806X.41.2.14, 2012.
Keshavarzi, M., Baker, A., Kelly, B. F. J., and Andersen, M. S.:
River-Groundwater Connectivity in a Karst System, Wellington, New South
Wales, Australia, Hydrogeol. J., 25, 557–574,
https://doi.org/10.1007/s10040-016-1491-y, 2017.
Kogovsek, J. and Petric, M.: Solute Transport Processes in a Karst Vadose
Zone Characterized by Long-Term Tracer Tests (the Cave System of Postojnska
Jama, Slovenia), J. Hydrol., 519, 1205–1213,
https://doi.org/10.1016/j.jhydrol.2014.08.047, 2014.
Kraller, G., Strasser, U., and Franz, H.: Effect of Alpine Karst on the
Hydrology of the Berchtesgadener Ache Basin?: A Comprehensive Summary of
Karst Research in the Berchtesgaden Alps, Eco. Mont., 3, 19–28, 2011.
Lugo, A. E., Castro, L. M., Vale, A., López, T. M., Prieto, E. H.,
Martinó, A. G., Rolón, A. R. P., Tossas, A. G., McFarlane, D. A.,
Miller, T., Rodríguez, A., Lundberg, J., Thomlinson, J., Colón, J.,
Schellekens, J. H., Ramos, O., and Helmer, E.: Puerto Rican Karst-A Vital
Resource, United States Department of Agriculture Forest Service General
Technical Report WO-65, 2001.
Maloszewski, P., Stichler, W., Zuber, A., and Rank, D.: Identifying the flow systems
in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling
of environmental 18O and 3H isotopes, J. Hydrol., 256, 48–59,
https://doi.org/10.1016/S0022-1694(01)00526-1, 2002.
Marín, A. I., Andreo, B., and Mudarra, M.: Vulnerability Mapping and
Protection Zoning of Karst Springs. Validation by Multitracer Tests,
Sci. Total Environ., 532, 435–446,
https://doi.org/10.1016/j.scitotenv.2015.05.029, 2015.
Markowska, M., Baker, A., Andersen, M. S., Jex, C. N., Cuthbert, M. O., Rau, G. C., Graham, P. W., Rutlidge, H., Mariethoz, G., Marjo, C. E., Treble, P. C., and Edwards, N.: Semi-Arid Zone Caves: Evaporation and
Hydrological Controls on Δ18O Drip Water Composition and
Implications for Speleothem Paleoclimate Reconstructions, Quaternary
Sci. Rev., 131, 285–301,
https://doi.org/10.1016/j.quascirev.2015.10.024, 2016.
Martini, E., Wollschläger, U., Kögler, S., Beherns, T., Dietrich,
P., Reinstorf, F., Schmidt, K., Weiler, M., Werban, U., and Zacharias, S.:
Spatial and Temporal Dynamics of Hillslope-Scale Soil Moisture Patterns:
Characteristic States and Transition Mechanisms, Vadose Zone J., 14, 1–16, https://doi.org/10.2136/vzj2014.10.0150,
2015.
Mazzilli, N., Guinot, V., Jourde, H., Lecoq, N., Labat, D., Arfib, B.,
Baudement, C., Danquigny, C., Dal Soglio, L., and Bertin, D.: KarstMod: A
Modelling Platform for Rainfall – Discharge Analysis and Modelling Dedicated
to Karst Systems, Environ. Modell. Softw., 122,
103927, https://doi.org/10.1016/j.envsoft.2017.03.015, 2019.
Mudarra, M.: Importancia Relativa de La Zona No Saturada y Zona Saturada En
El Funcionamiento Hidrogeológico de Los Acuíferos Carbonáticos,
Caso de La Alta Cadena, Sierra de Enmedio y Área de Los Tajos (Provincia de Málaga), Malaga, University of Malaga, Spain, 2012.
Mudarra, M. and Andreo, B.: Relative Importance of the Saturated and the Unsaturated Zones
in the Hydrogeological Functioning of Karst Aquifers: The Case of Alta
Cadena (Southern Spain), J. Hydrol., 397, 263–280,
https://doi.org/10.1016/j.jhydrol.2010.12.005, 2011.
Mudarra, M., Andreo, B., Marín, A. I., Vadillo, I., and Barberá, J.
A.: Combined Use of Natural and Artificial Tracers to Determine the
Hydrogeological Functioning of a Karst Aquifer: The Villanueva Del Rosario
System (Andalusia, Southern Spain), Hydrogeol. J., 22, 1027–1039,
https://doi.org/10.1007/s10040-014-1117-1, 2014.
Mudarra, M., Hartmann, A., and Andreo, B.: Combining Experimental Methods
and Modeling to Quantify the Complex Recharge Behavior of Karst Aquifers,
Water Resour. Res., 55, 1384–1404,
https://doi.org/10.1029/2017WR021819, 2019.
Nationalpark Berchtesgaden: Nationalparkplan, Karte 3: Bodentypen,
Kartografie: Kilian, D., published by: Bayerisches Staatsministeriumfür
Landesentwicklung und Umweltfragen, Munich (Germany), 2001.
Ollivier, C., Mazzilli, N., Olioso, A., Chalikakis, K., Carrière, S. D.,
Danquigny, C., and Emblanch, C.: Karst Recharge-Discharge Semi Distributed
Model to Assess Spatial Variability of Flows, Sci. Total
Environ., 703, 134368,
https://doi.org/10.1016/j.scitotenv.2019.134368, 2019.
Osborne, R. A. L.: Cathedral Cave, Wellington Caves, New South Wales,
Australia. A Multiphase, Non-Fluvial Cave, Earth Surf. Proc.
Land., 32, 2075–2103, https://doi.org/10.1002/esp.1507, 2007.
Perrin, J., Jeannin, P. Y., and Zwahlen, F.: Epikarst Storage in a Karst
Aquifer: A Conceptual Model Based on Isotopic Data, Milandre Test Site,
Switzerland, J. Hydrol., 279, 106–124,
https://doi.org/10.1016/S0022-1694(03)00171-9, 2003.
Peyre, Y.: Géologie D'Antequera et de Sa Région
(Cordillères Bétiques, Espagne), University of Paris, Paris, 1974.
Quiñones, A.: Water Resources of the Lower Rio Grande de Arecibo
Alluvial Valley, Puerto Rico, https://doi.org/10.3133/wri854160, 1986.
Rahman, M. and Rosolem, R.: Towards a simple representation of chalk hydrology in land surface modelling, Hydrol. Earth Syst. Sci., 21, 459–471, https://doi.org/10.5194/hess-21-459-2017, 2017.
Ries, F., Lange, J., Schmidt, S., Puhlmann, H., and Sauter, M.: Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region, Hydrol. Earth Syst. Sci., 19, 1439–1456, https://doi.org/10.5194/hess-19-1439-2015, 2015.
Rivera-Sostre, M. L.: Variación En La Dieta Del Sapo de La Caña (Chaunus [Bufo] Marinus) En La Reserva Natural Privada El Tallonal En Arecibo, Puerto Rico’, MS thesis, University of Puerto Rico, Puerto Rico, 2008.
Rutlidge, H., Baker, A., Marjo, C. E., Andersen, M. S., Graham, P. W., Cuthbert, M. O., Rau, G. C., Roshan, H., Markowska, M., Mariethoz, G., and Jex, C. N.: Dripwater Organic Matter and Trace
Element Geochemistry in a Semi-Arid Karst Environment: Implications for
Speleothem Paleoclimatology, Geochim. Cosmochim. Ac., 135,
217–230, https://doi.org/10.1016/j.gca.2014.03.036, 2014.
Sarrazin, F., Hartmann, A., Pianosi, F., Rosolem, R., and Wagener, T.: V2Karst V1.1: a parsimonious large-scale integrated vegetation–recharge model to simulate the impact of climate and land cover change in karst regions, Geosci. Model Dev., 11, 4933–4964, https://doi.org/10.5194/gmd-11-4933-2018, 2018.
Seiglie, G. A. and Moussa, M. T.: Late Oligocene-Pliocene Transgressive
Regressive Cycles of Sedimentation in Northwestern Puerto Rico, in:
Interregional Unconformities and Hydrocarbon Accumulation, edited by: Schlee, J. S., American Association of Petroleum Geologists Memoir, 36, 89–98,
1984.
Sprenger, M., Volkmann, T. H. M., Blume, T., and Weiler, M.: Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes, Hydrol. Earth Syst. Sci., 19, 2617–2635, https://doi.org/10.5194/hess-19-2617-2015, 2015.
Trček, B.: How Can the Epikarst Zone Influence the Karst Aquifer
Hydraulic Behaviour?, Environ. Geol., 51, 761–765,
https://doi.org/10.1007/s00254-006-0387-x, 2007.
Troester, J. W.: Geochemistry and Hydrogeologic Framework of the
Saline-Freshwater Interface and the Calculation of the Net Recharge in the
Dorado Area, North-Central Puerto Rico, Water Resources Investigations
Report 98-4030, San Juan, PR, US Geological Survey, 1999.
Viera M., C. A., Abelleira Martinez, O. J., and Lugo, A. E.: Estructura y
química del suelo en un bosque de Castilla elastica en el carso del
norte de Puerto Rico: resultados de una calicata, Acta Cient.,
22, 29–35, 2008.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global Threats to Human
Water Security and River Biodiversity, Nature, 467, 555–561,
https://doi.org/10.1038/nature09440, 2010.
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M.,
Vasak, S., and Bierkens, M. F. P.: Global Depletion of Groundwater
Resources: GLOBAL GROUNDWATER DEPLETION, Geophys. Res. Lett., 37, L20402,
https://doi.org/10.1029/2010GL044571, 2010.
Wheater, H. S., Peach, D., and Binley, A.: Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR), Hydrol. Earth Syst. Sci., 11, 108–124, https://doi.org/10.5194/hess-11-108-2007, 2007.
Williams, P. W.: The Role of the Subcutaneous Zone in Karst Hydrology,
J. Hydrol., 61, 45–67, https://doi.org/10.1016/0022-1694(83)90234-2,
1983.
Zhang, Z., Chen, X., Chen, X., and Shi, P.: Quantifying Time Lag of
Epikarst-Spring Hydrograph Response to Rainfall Using Correlation and
Spectral Analyses', Hydrogeol. J., 21, 1619–1631,
https://doi.org/10.1007/s10040-013-1041-9, 2013.
Zhou, Q., Sun, Z., Liu, X., Wei, X., Peng, Z., Yue, C., and Luo, Y.:
Temporal Soil Moisture Variations in Different Vegetation Cover Types in
Karst Areas of Southwest China: A Plot Scale Case Study, Water, 11,
1423, https://doi.org/10.3390/w11071423, 2019.
Short summary
We present the setup of a soil moisture monitoring network, which is implemented at five karstic sites with different climates across the globe. More than 400 soil moisture probes operating at a high spatio-temporal resolution will improve the understanding of groundwater recharge and evapotranspiration processes in karstic areas.
We present the setup of a soil moisture monitoring network, which is implemented at five karstic...