Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.182 IF 1.182
  • IF 5-year value: 1.437 IF 5-year
    1.437
  • CiteScore value: 3.0 CiteScore
    3.0
  • SNIP value: 0.686 SNIP 0.686
  • IPP value: 1.36 IPP 1.36
  • SJR value: 0.538 SJR 0.538
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 11 Scimago H
    index 11
  • h5-index value: 13 h5-index 13
GI | Articles | Volume 9, issue 1
Geosci. Instrum. Method. Data Syst., 9, 213–222, 2020
https://doi.org/10.5194/gi-9-213-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Instrum. Method. Data Syst., 9, 213–222, 2020
https://doi.org/10.5194/gi-9-213-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 May 2020

Research article | 26 May 2020

A compact ocean bottom electromagnetic receiver and seismometer

Kai Chen et al.

Viewed

Total article views: 1,286 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,034 213 39 1,286 37 38
  • HTML: 1,034
  • PDF: 213
  • XML: 39
  • Total: 1,286
  • BibTeX: 37
  • EndNote: 38
Views and downloads (calculated since 23 Sep 2019)
Cumulative views and downloads (calculated since 23 Sep 2019)

Viewed (geographical distribution)

Total article views: 1,116 (including HTML, PDF, and XML) Thereof 1,089 with geography defined and 27 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 29 Oct 2020
Publications Copernicus
Download
Short summary
Based on existing ocean bottom E-field (OBE) receiver specifications, including low noise levels, low power consumption, and low time drift errors, we integrated two induction coils for the magnetic sensor and a three-axis omnidirectional geophone for the seismic sensor to assemble an ultra-short baseline (USBL) transponder as the position sensor, which improved position accuracy and operational efficiency while reducing field data acquisition costs.
Based on existing ocean bottom E-field (OBE) receiver specifications, including low noise...
Citation