Articles | Volume 9, issue 2
https://doi.org/10.5194/gi-9-435-2020
https://doi.org/10.5194/gi-9-435-2020
Research article
 | 
05 Nov 2020
Research article |  | 05 Nov 2020

Easy to build low-power GPS drifters with local storage and a cellular modem made from off-the-shelf components

Rolf Hut, Thanda Thatoe Nwe Win, and Thom Bogaard

Related authors

Measuring rainfall using microwave links: the influence of temporal sampling
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1971,https://doi.org/10.5194/egusphere-2023-1971, 2023
Short summary
On the importance of observation uncertainty when evaluating and comparing models: a hydrological example
Jerom P.M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
EGUsphere, https://doi.org/10.5194/egusphere-2023-1156,https://doi.org/10.5194/egusphere-2023-1156, 2023
Short summary
Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022,https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Large-sample assessment of varying spatial resolution on the streamflow estimates of the wflow_sbm hydrological model
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022,https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
The eWaterCycle platform for open and FAIR hydrological collaboration
Rolf Hut, Niels Drost, Nick van de Giesen, Ben van Werkhoven, Banafsheh Abdollahi, Jerom Aerts, Thomas Albers, Fakhereh Alidoost, Bouwe Andela, Jaro Camphuijsen, Yifat Dzigan, Ronald van Haren, Eric Hutton, Peter Kalverla, Maarten van Meersbergen, Gijs van den Oord, Inti Pelupessy, Stef Smeets, Stefan Verhoeven, Martine de Vos, and Berend Weel
Geosci. Model Dev., 15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022,https://doi.org/10.5194/gmd-15-5371-2022, 2022
Short summary

Related subject area

Field campaign
New proglacial meteorology and river stage observations from Inglefield Land and Pituffik, NW Greenland
Sarah E. Esenther, Laurence C. Smith, Adam LeWinter, Lincoln H. Pitcher, Brandon T. Overstreet, Aaron Kehl, Cuyler Onclin, Seth Goldstein, and Jonathan C. Ryan
Geosci. Instrum. Method. Data Syst., 12, 215–230, https://doi.org/10.5194/gi-12-215-2023,https://doi.org/10.5194/gi-12-215-2023, 2023
Short summary
Passive seismic experiment “AniMaLS” in the Polish Sudetes (NE Variscides)
Monika Bociarska, Julia Rewers, Dariusz Wójcik, Weronika Materkowska, Piotr Środa, and the AniMaLS Working Group
Geosci. Instrum. Method. Data Syst., 10, 183–202, https://doi.org/10.5194/gi-10-183-2021,https://doi.org/10.5194/gi-10-183-2021, 2021
Short summary
Monitoring aseismic creep trends in the İsmetpaşa and Destek segments throughout the North Anatolian Fault (NAF) with a large-scale GPS network
Hasan Hakan Yavaşoğlu, Mehmet Nurullah Alkan, Serdar Bilgi, and Öykü Alkan
Geosci. Instrum. Method. Data Syst., 9, 25–40, https://doi.org/10.5194/gi-9-25-2020,https://doi.org/10.5194/gi-9-25-2020, 2020
Short summary
A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe
Romane Berthelin, Michael Rinderer, Bartolomé Andreo, Andy Baker, Daniela Kilian, Gabriele Leonhardt, Annette Lotz, Kurt Lichtenwoehrer, Matías Mudarra, Ingrid Y. Padilla, Fernando Pantoja Agreda, Rafael Rosolem, Abel Vale, and Andreas Hartmann
Geosci. Instrum. Method. Data Syst., 9, 11–23, https://doi.org/10.5194/gi-9-11-2020,https://doi.org/10.5194/gi-9-11-2020, 2020
Short summary
Nordic Snow Radar Experiment
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016,https://doi.org/10.5194/gi-5-403-2016, 2016

Cited articles

Arduino: Arduino – Home, available at: https://www.arduino.cc/ (last access: 8 September 2020), 2018. a
Austin, J. and Atkinson, S.: The Design and Testing of Small, Low-Cost GPS-Tracked Surface Drifters, Estuaries, 27, 1026–1029, https://doi.org/10.1007/BF02803428, 2004. a
Bakker, T.: Dispersion in the Ayeyarwady: A Description of the Mixing of Tracers in the Area of the Ayeyarwady River–Chindwin River Confluence, available at: http://resolver.tudelft.nl/uuid:07a91b3a-7068-48fd-a74f-1f7906602832 (last access: 2 November 2020), 2017. a, b, c
Banzi, M. and Shiloh, M.: Getting Started with Arduino: The Open Source Electronics Prototyping Platform, Maker Media, Inc., Make Community, LLC, ISBN-13: 978-1449363338, 2014. a
Cadena, A., Vera, S., and Moreira, M.: A Low-Cost Lagrangian Drifter Based on Open-Source Hardware and Software Platform, in: 2018 4th International Conference on Control, Automation and Robotics (ICCAR), 218–221, https://doi.org/10.1109/ICCAR.2018.8384673, 2018. a
Download
Short summary
GPS drifters that float down rivers are important tools in studying rivers, but they can be expensive. Recently, both GPS receivers and cellular modems have become available at lower prices to tinkering scientists due to the rise of open hardware and the Arduino. We provide detailed instructions on how to build a low-power GPS drifter with local storage and a cellular model that we tested in a fieldwork in Myanmar. These instructions allow fellow geoscientists to recreate the device.