Articles | Volume 10, issue 1
Geosci. Instrum. Method. Data Syst., 10, 101–112, 2021
https://doi.org/10.5194/gi-10-101-2021
Geosci. Instrum. Method. Data Syst., 10, 101–112, 2021
https://doi.org/10.5194/gi-10-101-2021

Research article 19 May 2021

Research article | 19 May 2021

Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying

Loughlin E. Tuck et al.

Related authors

UAV PHOTGRAMMETRIC WORKFLOWS: A BEST PRACTICE GUIDELINE
A. Federman, M. Santana Quintero, S. Kretz, J. Gregg, M. Lengies, C. Ouimet, and J. Laliberte
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W5, 237–244, https://doi.org/10.5194/isprs-archives-XLII-2-W5-237-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W5-237-2017, 2017

Related subject area

Sensing
Using near-surface atmospheric measurements as a proxy for quantifying field-scale soil gas flux
Andrew Barkwith, Stan E. Beaubien, Thomas Barlow, Karen Kirk, Thomas R. Lister, Maria C. Tartarello, and Helen Taylor-Curran
Geosci. Instrum. Method. Data Syst., 9, 483–490, https://doi.org/10.5194/gi-9-483-2020,https://doi.org/10.5194/gi-9-483-2020, 2020
Short summary
A novel permanent gauge-cam station for surface-flow observations on the Tiber River
Flavia Tauro, Andrea Petroselli, Maurizio Porfiri, Lorenzo Giandomenico, Guido Bernardi, Francesco Mele, Domenico Spina, and Salvatore Grimaldi
Geosci. Instrum. Method. Data Syst., 5, 241–251, https://doi.org/10.5194/gi-5-241-2016,https://doi.org/10.5194/gi-5-241-2016, 2016
Short summary
Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing
Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen
Geosci. Instrum. Method. Data Syst., 5, 151–162, https://doi.org/10.5194/gi-5-151-2016,https://doi.org/10.5194/gi-5-151-2016, 2016
Short summary
The surface temperatures of Earth: steps towards integrated understanding of variability and change
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321, https://doi.org/10.5194/gi-2-305-2013,https://doi.org/10.5194/gi-2-305-2013, 2013

Cited articles

Align: T-REX 600L RC Helicopter, available at: http://www.align.com.tw/helicopter-en/trex600e/ (last access: 1 February 2020), 2021. 
Anderson, D. E. and Pita, A. C.: Geophysical surveying with GeoRanger™ UAV, Am. Inst. Aeronaut. Astronaut. Inc., (September), 67–78, https://doi.org/10.2514/6.2005-6952, 2005. 
Camara, E. de B. and Guimarães, S. N. P.: Magnetic airborne survey – Geophysical flight, Geosci. Instrumentation, Methods Data Syst., 5, 181–192, https://doi.org/10.5194/gi-5-181-2016, 2016. 
Cherkasov, S. and Kapshtan D.: Drones – Applications, Chp. 9: Unmanned aerial systems for magnetic survey, IntechOpen, 135–249, https://doi.org/10.5772/intechopen.73003, 2018. 
Coyle, M., Dumont, R., Keating, P., Kiss, F., and Miles, W.: Geological Survey of Canada aeromagnetic surveys: design, quality assurance, and data dissemination, Geol. Surv. Canada, 7660, 1–48, https://doi.org/10.4095/295088, 2014. 
Download
Short summary
This paper presents a novel method for locating magnetic interference sources on unmanned aircraft systems (UAS) destined for aeromagnetic surveys. The technique is demonstrated in an indoor laboratory, whereas most magnetic mapping has previously been done outdoors, and is performed on four different types of UAS with their motors engaged. Sources are discussed on each UAS platform but can also be used as a point of reference for typical components that cause interference.