Articles | Volume 11, issue 2
https://doi.org/10.5194/gi-11-359-2022
https://doi.org/10.5194/gi-11-359-2022
Research article
 | 
25 Oct 2022
Research article |  | 25 Oct 2022

Glider observations of thermohaline staircases in the tropical North Atlantic using an automated classifier

Callum Rollo, Karen J. Heywood, and Rob A. Hall

Related authors

Critical uncoupling between biogeochemical stocks and rates in Ross Sea springtime production-export dynamics
Meredith G. Meyer, Esther Portela, Walker O. Smith Jr., and Karen J. Heywood
EGUsphere, https://doi.org/10.5194/egusphere-2024-3830,https://doi.org/10.5194/egusphere-2024-3830, 2024
Short summary
Stirring across the Antarctic Circumpolar Current's southern boundary at the prime meridian, Weddell Sea
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023,https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary
Ocean cross-validated observations from R/Vs L'Atalante, Maria S. Merian, and Meteor and related platforms as part of the EUREC4A-OA/ATOMIC campaign
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023,https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023,https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Turbulent kinetic energy dissipation rate and associated fluxes in the western tropical Atlantic estimated from ocean glider observations
Peter M. F. Sheehan, Gillian M. Damerell, Philip J. Leadbitter, Karen J. Heywood, and Rob A. Hall
Ocean Sci., 19, 77–92, https://doi.org/10.5194/os-19-77-2023,https://doi.org/10.5194/os-19-77-2023, 2023
Short summary

Related subject area

Ocean instruments
Continuous in situ measurement of dissolved methane in Lake Kivu using a membrane inlet laser spectrometer
Roberto Grilli, François Darchambeau, Jérôme Chappellaz, Ange Mugisha, Jack Triest, and Augusta Umutoni
Geosci. Instrum. Method. Data Syst., 9, 141–151, https://doi.org/10.5194/gi-9-141-2020,https://doi.org/10.5194/gi-9-141-2020, 2020
Short summary
A comprehensive data quality evaluation method for the currents of marine controlled-source electromagnetic transmitters based on the analytic hierarchy process
Rui Yang, Meng Wang, Gongxiang Wang, Ming Deng, Jianen Jing, and Xiancheng Li
Geosci. Instrum. Method. Data Syst., 9, 69–77, https://doi.org/10.5194/gi-9-69-2020,https://doi.org/10.5194/gi-9-69-2020, 2020
Short summary
Evaluations of an ocean bottom electro-magnetometer and preliminary results offshore NE Taiwan
Ching-Ren Lin, Chih-Wen Chiang, Kuei-Yi Huang, Yu-Hung Hsiao, Po-Chi Chen, Hsu-Kuang Chang, Jia-Pu Jang, Kun-Hui Chang, Feng-Sheng Lin, Saulwood Lin, and Ban-Yuan Kuo
Geosci. Instrum. Method. Data Syst., 8, 265–276, https://doi.org/10.5194/gi-8-265-2019,https://doi.org/10.5194/gi-8-265-2019, 2019
Short summary
Removing low-frequency artefacts from Datawell DWR-G4 wave buoy measurements
J.-V. Björkqvist, H. Pettersson, L. Laakso, K. K. Kahma, H. Jokinen, and P. Kosloff
Geosci. Instrum. Method. Data Syst., 5, 17–25, https://doi.org/10.5194/gi-5-17-2016,https://doi.org/10.5194/gi-5-17-2016, 2016
Short summary
Simple, affordable, and sustainable borehole observatories for complex monitoring objectives
A. Kopf, T. Freudenthal, V. Ratmeyer, M. Bergenthal, M. Lange, T. Fleischmann, S. Hammerschmidt, C. Seiter, and G. Wefer
Geosci. Instrum. Method. Data Syst., 4, 99–109, https://doi.org/10.5194/gi-4-99-2015,https://doi.org/10.5194/gi-4-99-2015, 2015
Short summary

Cited articles

Argo: Argo float data and metadata from Global Data Assembly Centre, Argo GDAC [data set], https://doi.org/10.17882/42182, 2021. a
Bryden, H. L., Schroeder, K., Sparnocchia, S., Borghini, M., and Vetrano, A.: Thermohaline staircases in the western Mediterranean Sea, J. Marine Res., 72, 1–18, https://doi.org/10.1357/002224014812655198, 2014. a, b
Buffett, G. G., Krahmann, G., Klaeschen, D., Schroeder, K., Sallarès, V., Papenberg, C., Ranero, C. R., and Zitellini, N.: Seismic Oceanography in the Tyrrhenian Sea: Thermohaline Staircases, Eddies, and Internal Waves, J. Geophys. Res.-Oceans, 122, 8503–8523, https://doi.org/10.1002/2017JC012726, 2017. a, b, c, d, e, f
Durante, S., Schroeder, K., Mazzei, L., Pierini, S., Borghini, M., and Sparnocchia, S.: Permanent Thermohaline Staircases in the Tyrrhenian Sea, Geophys. Res. Lett., 46, 1562–1570, https://doi.org/10.1029/2018GL081747, 2019. a, b
Durante, S., Oliveri, P., Nair, R., and Sparnocchia, S.: Mixing in the Tyrrhenian Interior Due to Thermohaline Staircases, Front. Mar. Sci., 8, 672437, https://doi.org/10.3389/fmars.2021.672437, 2021. a, b
Download
Short summary
Using an underwater buoyancy-powered autonomous glider, we collected profiles of temperature and salinity from the ocean north-east of Barbados. Most of the temperature and salinity profiles contained staircase-like structures of alternating constant values and large gradients. We wrote an algorithm to identify these staircases. We hypothesise that these staircases are prevented from forming where background gradients in temperature and salinity are too great.