Articles | Volume 12, issue 2
https://doi.org/10.5194/gi-12-239-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-12-239-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Daedalus Ionospheric Profile Continuation (DIPCont): Monte Carlo studies assessing the quality of in situ measurement extrapolation
Joachim Vogt
CORRESPONDING AUTHOR
School of Science, Constructor University, Campus Ring, 28759 Bremen, Germany
Octav Marghitu
Institute for Space Science, Str. Atomistilor 409, Ro 077125, Bucharest-Măgurele, Romania
Adrian Blagau
School of Science, Constructor University, Campus Ring, 28759 Bremen, Germany
Institute for Space Science, Str. Atomistilor 409, Ro 077125, Bucharest-Măgurele, Romania
Leonie Pick
School of Science, Constructor University, Campus Ring, 28759 Bremen, Germany
Institute for Solar-Terrestrial Physics, German Aerospace Center, Kalkhorstweg 53, 17235 Neustrelitz, Germany
Nele Stachlys
School of Science, Constructor University, Campus Ring, 28759 Bremen, Germany
Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
Stephan Buchert
Swedish Institute of Space Physics, 75121 Uppsala, Sweden
Theodoros Sarris
Department of Electrical and Computer Engineering, Democritus University of Thrace, 67132 Xanthi, Greece
Stelios Tourgaidis
Department of Electrical and Computer Engineering, Democritus University of Thrace, 67132 Xanthi, Greece
Thanasis Balafoutis
Department of Electrical and Computer Engineering, Democritus University of Thrace, 67132 Xanthi, Greece
Dimitrios Baloukidis
Department of Electrical and Computer Engineering, Democritus University of Thrace, 67132 Xanthi, Greece
Panagiotis Pirnaris
Department of Electrical and Computer Engineering, Democritus University of Thrace, 67132 Xanthi, Greece
Related authors
No articles found.
Stelios Tourgaidis, Dimitrios Baloukidis, Panagiotis Pirnaris, Theodoros Sarris, Aaron Ridley, and Gang Lu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2679, https://doi.org/10.5194/egusphere-2025-2679, 2025
Short summary
Short summary
During geomagnetic storms, Joule heating is a major heating source of the upper atmosphere that is not well estimated, due to a lack of measurements. This leads to uncertainties in orbital calculations. We present simulations with commonly used physics-based models and empirical models that provide measurements of Joule heating. The results show great discrepancies, pointing to the need for measurements in the Earth's Lower Thermosphere-Ionosphere at altitudes where Joule heating maximizes.
Panagiotis Pirnaris and Theodoros Sarris
Ann. Geophys., 41, 339–354, https://doi.org/10.5194/angeo-41-339-2023, https://doi.org/10.5194/angeo-41-339-2023, 2023
Short summary
Short summary
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere (LTI) is key to understanding the energy balance and transfer between species. However, their simultaneous measurement is rare in the LTI. Based on data from the AE-C, AE-D, AE-E and DE-2 satellites of the 1970s and 1980s, a large number of events where neutrals are hotter than ions are identified and statistically analyzed. Potential mechanisms that could trigger these events are proposed.
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022, https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Short summary
The quality control and validation activities performed by the Swarm data quality team reveal the good-quality LPs. The analysis demonstrated that the current baseline plasma data products are improved with respect to previous baseline. The LPs have captured the ionospheric plasma variability over more than half of a solar cycle, revealing the data quality dependence on the solar activity. The quality of the LP data will further improve promotion of their application to a broad range of studies.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Sharon Aol, Stephan Buchert, Edward Jurua, and Marco Milla
Ann. Geophys., 38, 1063–1080, https://doi.org/10.5194/angeo-38-1063-2020, https://doi.org/10.5194/angeo-38-1063-2020, 2020
Short summary
Short summary
Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. In this paper, we compared simultaneous observations of plasma plumes by the JULIA radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory, and irregularities observed in situ by Swarm to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread F on the ground.
Stephan C. Buchert
Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-2020, https://doi.org/10.5194/angeo-38-1019-2020, 2020
Short summary
Short summary
Winds in the Earth's upper atmosphere cause magnetic and electric variations both at the ground and in space all over the Earth. According to the model of entangled dynamos the true cause is wind differences between regions in the Northern and Southern Hemispheres that are connected by the Earth's dipole-like magnetic field. The power produced in the southern dynamo heats the northern upper atmosphere and vice versa. The dynamos exist owing to this entanglement, an analogy to quantum mechanics.
Cited articles
Baumjohann, W. and Treumann, R. A.: Basic space plasma physics, Imperial College Press, London, ISBN 186094017X, 9781860940170, 1996. a
Bilitza, D., Pezzopane, M., Truhlik, V., Altadill, D., Reinisch, B. W., and Pignalberi, A.: The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark, Rev. Geophys., 60, e2022RG000792, https://doi.org/10.1029/2022RG000792, 2022. a
Chamberlain, J. W. and Hunten, D. M.: Theory of planetary atmospheres: an introduction to their physics and chemistry, Academic Press, ISBN 9780080963136, 1987. a
Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth, P. Phys. Soc., 43, 26–45, https://doi.org/10.1088/0959-5309/43/1/305, 1931. a, b
Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones Jr., M., Mlynczak, M. G., Bernath, P. F., Chu, X., Doornbos, E., Funke, B., Goncharenko, L. P., Hervig, M. E., Schwartz, M. J., Sheese, P. E., Vargas, F., Williams, B. P., and Yuan, T.: NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities, Earth Space Sci., 8, e2020EA001321, https://doi.org/10.1029/2020EA001321, 2021. a, b
Evans, D. S., Maynard, N. C., Troim, J., Jacobsen, T., and Egeland, A.: Auroral vector electric field and particle comparisons, 2, Electrodynamics of an arc, J. Geophys. Res.-Space, 82, 2235, https://doi.org/10.1029/JA082i016p02235, 1977. a
Gledhill, J. A. and Szendrei, M. E.: Theory of the Production of an Ionized Layer in a Non-Isothermal Atmosphere Neglecting the Earth's Curvature, and its Application to Experimental Results, P. Phys. Soc. Lond. B, 63, 427–445, https://doi.org/10.1088/0370-1301/63/6/305, 1950. a
Grebowsky, J. M. and Gervin, J. C.: Geospace electrodynamic connections, Phys. Chem. Earth Pt. C, 26, 253–258, https://doi.org/10.1016/S1464-1917(00)00117-3, 2001. a
Hairer, E., Lubich, C., and Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numer., 12, 399–450, https://doi.org/10.1017/S0962492902000144, 2003. a
Hargreaves, J. K.: The solar-terrestrial environment: an introduction to geospace-the science of the terrestrial upper atmosphere, ionosphere, and magnetosphere, Cambridge University Press, https://doi.org/10.1017/CBO9780511628924, 1992. a
Heelis, R. A. and Maute, A.: Challenges to Understanding the Earth's Ionosphere and Thermosphere, J. Geophys. Res.-Space, 125, e27497, https://doi.org/10.1029/2019JA027497, 2020. a
Izakov, M. N.: Turbulence in the free atmospheres of Earth, Mars, and Venus: A review, Solar Syst. Res., 41, 355–384, https://doi.org/10.1134/S0038094607050012, 2007. a
Palmroth, M., Janhunen, P., Pulkkinen, T. I., Aksnes, A., Lu, G., Østgaard, N., Watermann, J., Reeves, G. D., and Germany, G. A.: Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellite-based statistics: towards a synthesis, Ann. Geophys., 23, 2051–2068, https://doi.org/10.5194/angeo-23-2051-2005, 2005. a
Palmroth, M., Grandin, M., Sarris, T., Doornbos, E., Tourgaidis, S., Aikio, A., Buchert, S., Clilverd, M. A., Dandouras, I., Heelis, R., Hoffmann, A., Ivchenko, N., Kervalishvili, G., Knudsen, D. J., Kotova, A., Liu, H.-L., Malaspina, D. M., March, G., Marchaudon, A., Marghitu, O., Matsuo, T., Miloch, W. J., Moretto-Jørgensen, T., Mpaloukidis, D., Olsen, N., Papadakis, K., Pfaff, R., Pirnaris, P., Siemes, C., Stolle, C., Suni, J., van den IJssel, J., Verronen, P. T., Visser, P., and Yamauchi, M.: Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models, Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, 2021. a, b, c
Pfaff, R. F.: The Near-Earth Plasma Environment, Space Sci. Rev., 168, 23–112, https://doi.org/10.1007/s11214-012-9872-6, 2012. a
Pfaff, R., Kudeki, E., Freudenreich, H., Rowland, D., Larsen, M., and Klenzing, J.: Dual Sounding Rocket and C/NOFS Satellite Observations of DC Electric Fields and Plasma Density in the Equatorial E- and F-Region Ionosphere at Sunset, J. Geophys. Res.-Space, 127, e30191, https://doi.org/10.1029/2021JA030191, 2022a. a
Pfaff, R., Rowland, D., Kepko, L., Benna, M., Heelis, R., Clemmons, J., and Thayer, J.: The Atmosphere-Space Transition Region Explorer (ASTRE) – Using in situ Measurements on a Low Perigee Satellite to Understand How the Upper Atmosphere and Magnetosphere are Coupled, in: 44th COSPAR Scientific Assembly, Held, 16–24 July, Vol. 44, 775, https://ui.adsabs.harvard.edu/abs/2022cosp...44..775P/abstract (last access: 22 November 2023), 2022b. a
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.-Space, 107, 1468, https://doi.org/10.1029/2002JA009430, 2002. a, b
Pignalberi, A., Pezzopane, M., Themens, D. R., Haralambous, H., Nava, B., and Coisson, P.: On the Analytical Description of the Topside Ionosphere by NeQuick: Modeling the Scale Height Through COSMIC/FORMOSAT-3 Selected Data, IEEE J. Sel. Top. Appl., 13, 1867–1878, https://doi.org/10.1109/JSTARS.2020.2986683, 2020. a
Richmond, A. D.: Ionospheric electrodynamics, Boca Raton: CRC Press, 249–290, https://doi.org/10.1201/9780203713297, 1995. a
Sangalli, L., Knudsen, D. J., Larsen, M. F., Zhan, T., Pfaff, R. F., and Rowland, D.: Rocket-based measurements of ion velocity, neutral wind, and electric field in the collisional transition region of the auroral ionosphere, J. Geophys. Res.-Space, 114, A04306, https://doi.org/10.1029/2008JA013757, 2009. a, b
Sarris, T. E.: Understanding the ionosphere thermosphere response to solar and magnetospheric drivers: status, challenges and open issues, Philos. T. R. Soc. A, 377, 20180101, https://doi.org/10.1098/rsta.2018.0101, 2019. a
Sarris, T. E., Talaat, E. R., Palmroth, M., Dandouras, I., Armandillo, E., Kervalishvili, G., Buchert, S., Tourgaidis, S., Malaspina, D. M., Jaynes, A. N., Paschalidis, N., Sample, J., Halekas, J., Doornbos, E., Lappas, V., Moretto Jørgensen, T., Stolle, C., Clilverd, M., Wu, Q., Sandberg, I., Pirnaris, P., and Aikio, A.: Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere, Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, 2020. a, b, c, d
Sarris, T. E., Palmroth, M., Aikio, A., Buchert, S. C., Clemmons, J., Clilverd, M., Dandouras, I., Doornbos, E., Goodwin, L. V., Grandin, M., Heelis, R., Ivchenko, N., Moretto-Jørgensen, T., Kervalishvili, G., Knudsen, D., Liu, H.-L., Lu, G., Malaspina, D. M., Marghitu, O., Maute, A., Miloch, W. J., Olsen, N., Pfaff, R., Stolle, C., Talaat, E., Thayer, J., Tourgaidis, S., Verronen, P. T., and Yamauchi, M.: Plasma-neutral interactions in the lower thermosphere-ionosphere: The need for in situ measurements to address focused questions, Frontiers in Astronomy and Space Sciences, 9, 1063190, https://doi.org/10.3389/fspas.2022.1063190, 2023a. a
Sarris, T. E., Tourgaidis, S., Pirnaris, P., Baloukidis, D., Papadakis, K., Psychalas, C., Buchert, S. C., Doornbos, E., Clilverd, M. A., Verronen, P. T., Malaspina, D., Ahmadi, N., Dandouras, I., Kotova, A., Miloch, W. J., Knudsen, D., Olsen, N., Marghitu, O., Matsuo, T., Lu, G., Marchaudon, A., Hoffmann, A., Lajas, D., Strømme, A., Taylor, M., Aikio, A., Palmroth, M., Heelis, R., Ivchenko, N., Stolle, C., Kervalishvili, G., Moretto-Jørgensen, T., Pfaff, R., Siemes, C., Visser, P., van den Ijssel, J., Liu, H.-L., Sandberg, I., Papadimitriou, C., Vogt, J., Blagau, A., and Stachlys, N.: Daedalus MASE (mission assessment through simulation exercise): A toolset for analysis of in situ missions and for processing global circulation model outputs in the lower thermosphere-ionosphere, Frontiers in Astronomy and Space Sciences, 9, 1048318, https://doi.org/10.3389/fspas.2022.1048318, 2023b. a, b, c, d
Vogt, J., Haerendel, G., and Glassmeier, K. H.: A model for the reflection of Alfvén waves at the source region of the Birkeland current system: The tau generator, J. Geophys. Res.-Space, 104, 269–278, https://doi.org/10.1029/1998JA900048, 1999. a
Yee, J.-H., Cameron, G. E., and Kusnierkiewicz, D. Y.: Overview of TIMED, in: Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, International Society for Optics and Photonics, SPIE, edited by: Larar, A. M., Vol. 3756, 244–254, https://doi.org/10.1117/12.366378, 1999. a
Short summary
Motivated by recent community interest in a satellite mission to the atmospheric lower thermosphere and ionosphere (LTI) region (100–200 km altitude), the DIPCont project is concerned with the reconstruction quality of vertical profiles of key LTI variables using dual- and single-spacecraft observations. The report introduces the probabilistic DIPCont modeling framework, demonstrates its usage by means of a set of self-consistent parametric non-isothermal models, and discusses first results.
Motivated by recent community interest in a satellite mission to the atmospheric lower...