Articles | Volume 12, issue 1
https://doi.org/10.5194/gi-12-71-2023
https://doi.org/10.5194/gi-12-71-2023
18 Apr 2023
 | 18 Apr 2023

Auroral alert version 1.0: two-step automatic detection of sudden aurora intensification from all-sky JPEG images

Masatoshi Yamauchi and Urban Brändström

Related authors

Leaping and vortex motion of the shock aurora toward the late evening sector observed on 26 February 2023
Sota Nanjo, Masatoshi Yamauchi, Magnar Gullikstad Johnsen, Yoshihiro Yokoyama, Urban Brändström, Yasunobu Ogawa, Anna Naemi Willer, and Keisuke Hosokawa
EGUsphere, https://doi.org/10.5194/egusphere-2024-3277,https://doi.org/10.5194/egusphere-2024-3277, 2024
Short summary
Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021,https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
High-latitude crochet: solar-flare-induced magnetic disturbance independent from low-latitude crochet
Masatoshi Yamauchi, Magnar G. Johnsen, Carl-Fredrik Enell, Anders Tjulin, Anna Willer, and Dmitry A. Sormakov
Ann. Geophys., 38, 1159–1170, https://doi.org/10.5194/angeo-38-1159-2020,https://doi.org/10.5194/angeo-38-1159-2020, 2020
Short summary
Terrestrial ion escape and relevant circulation in space
Masatoshi Yamauchi
Ann. Geophys., 37, 1197–1222, https://doi.org/10.5194/angeo-37-1197-2019,https://doi.org/10.5194/angeo-37-1197-2019, 2019
Short summary
Energy conversion through mass loading of escaping ionospheric ions for different Kp values
Masatoshi Yamauchi and Rikard Slapak
Ann. Geophys., 36, 1–12, https://doi.org/10.5194/angeo-36-1-2018,https://doi.org/10.5194/angeo-36-1-2018, 2018
Short summary

Related subject area

Image processing
Automatic detection of calving events from time-lapse imagery at Tunabreen, Svalbard
Dorothée Vallot, Sigit Adinugroho, Robin Strand, Penelope How, Rickard Pettersson, Douglas I. Benn, and Nicholas R. J. Hulton
Geosci. Instrum. Method. Data Syst., 8, 113–127, https://doi.org/10.5194/gi-8-113-2019,https://doi.org/10.5194/gi-8-113-2019, 2019
Short summary
Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece
Mohamed Elhag and Dalal Alshamsi
Geosci. Instrum. Method. Data Syst., 8, 45–54, https://doi.org/10.5194/gi-8-45-2019,https://doi.org/10.5194/gi-8-45-2019, 2019
Short summary
Consideration of NDVI thematic changes in density analysis and floristic composition of Wadi Yalamlam, Saudi Arabia
Amal Y. Aldhebiani, Mohamed Elhag, Ahmad K. Hegazy, Hanaa K. Galal, and Norah S. Mufareh
Geosci. Instrum. Method. Data Syst., 7, 297–306, https://doi.org/10.5194/gi-7-297-2018,https://doi.org/10.5194/gi-7-297-2018, 2018
Short summary
Precise DEM extraction from Svalbard using 1936 high oblique imagery
Luc Girod, Niels Ivar Nielsen, Frédérique Couderette, Christopher Nuth, and Andreas Kääb
Geosci. Instrum. Method. Data Syst., 7, 277–288, https://doi.org/10.5194/gi-7-277-2018,https://doi.org/10.5194/gi-7-277-2018, 2018
Short summary
A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification
Qiuju Yang and Ze-Jun Hu
Geosci. Instrum. Method. Data Syst., 7, 113–122, https://doi.org/10.5194/gi-7-113-2018,https://doi.org/10.5194/gi-7-113-2018, 2018
Short summary

Cited articles

Akasofu, S.-I.: The development of the auroral substorm, Planet. Space Sci., 12, 273–282, https://doi.org/10.1016/0032-0633(64)90151-5, 1964. 
Akasofu, S.-I.: Physics of magnetospheric substorms, in: Astrophysics and space science library, vol. 47, Reidel, Dordrecht, https://doi.org/10.1007/978-94-010-1164-8, 1977. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Clausen, L. B. N. and Nickisch, H.: Automatic classification of auroral images from the Oslo Auroral THEMIS (OATH) data set using machine learning, J. Geophys. Res., 123, 5640–5647,https://doi.org/10.1029/2018JA025274, 2018.  
Download
Short summary
Potential users of all-sky aurora images even include power companies, tourists, and aurora enthusiasts. However, these potential users are normally not familiar with interpreting these images. To make them comprehensive for more users, we developed an automatic evaluation system of auroral activity level. The method involves two steps: first making a simple set of numbers that describes the auroral activity and then further simplifying them into several levels (Level 6 is an auroral explosion).