Articles | Volume 14, issue 2
https://doi.org/10.5194/gi-14-263-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-14-263-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of SAMA interference on Pc3 pulsations using data from conjugate stations: a case study
COGEO, National Observatory – ON. R. Gen. J. Cristino, 77, Rio de Janeiro, 20921-400, Rj, Brazil
Luiz Benyosef
COGEO, National Observatory – ON. R. Gen. J. Cristino, 77, Rio de Janeiro, 20921-400, Rj, Brazil
Related authors
Thiago Sant'Anna, Luiz Benyosef, and Edwin Camacho
EGUsphere, https://doi.org/10.5194/egusphere-2025-2569, https://doi.org/10.5194/egusphere-2025-2569, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
Artificial intelligence research has been improving as a viable solution for scientific and operational problems related to Space Weather. Based on multivariate solar wind data, we conducted a study to enable the prediction of geomagnetic storms using a deep neural network model. We tested the accuracy and sensitivity of the model when predicting the intense geomagnetic storm of May 2024. The results show good performance when compared to international reference models.
Éfren Mota, Edwin Camacho, and Luiz Benyosef
EGUsphere, https://doi.org/10.5194/egusphere-2025-2381, https://doi.org/10.5194/egusphere-2025-2381, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
During geomagnetic storms, transmission lines can be affected by Geomagnetically Induced Currents (GICs). Near the magnetic equator, where the Equatorial Electrojet influences current generation, this study analyzed electrical data from two lines (TMAT-01/02) and magnetic data from TTB, KOU, and SLZ. Pearson correlation showed strong links during the initial and main phases of the May 2024 storm. Values of dH/dt exceeding 65 nT/min indicate potential GICs induction.
Thiago Sant'Anna, Luiz Benyosef, and Edwin Camacho
EGUsphere, https://doi.org/10.5194/egusphere-2025-2569, https://doi.org/10.5194/egusphere-2025-2569, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
Artificial intelligence research has been improving as a viable solution for scientific and operational problems related to Space Weather. Based on multivariate solar wind data, we conducted a study to enable the prediction of geomagnetic storms using a deep neural network model. We tested the accuracy and sensitivity of the model when predicting the intense geomagnetic storm of May 2024. The results show good performance when compared to international reference models.
Éfren Mota, Edwin Camacho, and Luiz Benyosef
EGUsphere, https://doi.org/10.5194/egusphere-2025-2381, https://doi.org/10.5194/egusphere-2025-2381, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
During geomagnetic storms, transmission lines can be affected by Geomagnetically Induced Currents (GICs). Near the magnetic equator, where the Equatorial Electrojet influences current generation, this study analyzed electrical data from two lines (TMAT-01/02) and magnetic data from TTB, KOU, and SLZ. Pearson correlation showed strong links during the initial and main phases of the May 2024 storm. Values of dH/dt exceeding 65 nT/min indicate potential GICs induction.
Cited articles
Abdu, M., Batista, I., Carrasco, A., and Brum, C.: South Atlantic magnetic anomaly ionization: A review and a new focus on electrodynamic effects in the equatorial ionosphere, J. Atmos. Sol.-Terr. Phy., 67, 1643–1657, https://doi.org/10.1016/j.jastp.2005.01.014, 2022. a, b
Addison, P.: The illustrated wavelet transform handbook. Introductory theory and applications in science, engineering, medicine and finance, CRC press, ISBN 9780750306928, https://doi.org/10.1201/9781420033397, 2002. a
Antoine, J., Murenzi, R., Vandergheynst, P., and Ali, S. (Eds.): Two-Dimensional Wavelets and their Relatives, Cambridge University, Cambridge, https://doi.org/10.1017/CBO9780511543395, 2004. a
Bortel, R. and Sovka, P.: Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping, Signal Process., 87, 1100–1117, https://doi.org/10.1016/j.sigpro.2006.10.003, 2007. a
Brigham, O.: The fast Fourier transform and its applications, Prentice Hall, New Jersey, ISBN 0-13-307505-2, 1988. a
Camacho, E., Benyosef, L., Mendes, O., and Domingues, M.: Pc5 Pulsations in the South Atlantic Magnetic Anomaly, Braz. J. Phys., 53, 16, https://doi.org/10.1007/s13538-022-01229-x, 2023. a, b, c, d
Caraballo, R.: The South Atlantic Magnetic Anomaly Phenomena: Its impact on the technological infrastructure, Master's thesis, University of the Republic Uruguay, https://doi.org/10.13140/RG.2.1.4345.5600, 2016. a, b
Daubechies, I.: Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philadelphia, ISBN 978-0-89871-274-2, https://doi.org/10.1137/1.9781611970104, 1992. a, b
Denardini, C. M., Chen, S. S., Resende, L. C. A., Moro, J., Bilibio, A. V., Fagundes, P. R., Gende, M. A., Cabrera, M. A., Bolzan, M. J. A., Padilha, A. L., Schuch, N. J., Hormaechea, J. L., Alves, L. R., Barbosa Neto, P. F., Nogueira, P. A. B., Picanço, G. A. S., and Bertollotto, T. O.: The Embrace magnetometer network for South America: Network description and its qualification, Radio Sci., 53, 288–302, https://doi.org/10.1002/2017RS006477, 2018. a
de Paula, E. R., Muella, M. T. A. H., Sobral, J. H. A., Abdu, M. A., Batista, I. S., Beach, T. L., and Groves, K. M.: Magnetic conjugate point observations of kilometer and hundred-meter scale irregularities and zonal drifts, J. Geophys. Res.-Space, 115, 288–302, https://doi.org/10.1029/2010JA015383, 2010. a
Domingos, J., Jault, D., Pais, M. A., and Mandea, M.: The South Atlantic Anomaly throughout the solar cycle, Earth Planet. Sc. Lett., 473, 154–163, https://doi.org/10.1016/j.epsl.2017.06.004, 2017. a, b
Domingues, M. O., Mendes, O., and da Costa, A. M.: On wavelet techniques in atmospheric sciences, Adv. Space Res., 35, 831–842, https://doi.org/10.1016/j.asr.2005.02.097, 2005. a
Engebretson, M. J., Cobian, R. K., Posch, J. L., and Arnoldy, R. L.: A conjugate study of Pc3–4 pulsations at cusp latitudes: Is there a clock angle effect?, J. Geophys. Res.-Space, 105, 15965–15980, https://doi.org/10.1029/1999JA000328, 2000. a, b
Eriksson, P. T. I., Blomberg, L. G., Schaefer, S., and Glassmeier, K.-H.: On the excitation of ULF waves by solar wind pressure enhancements, Ann. Geophys., 24, 3161–3172, https://doi.org/10.5194/angeo-24-3161-2006, 2006. a
Finlay, C., Kloss, C., Olsen, N., Hammer, M., Tøffner-Clausen, L., Grayver, A., and Kuvshinov, A.: The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly, Earth Planets Space, 72, 1–31, https://doi.org/10.1186/s40623-020-01252-9, 2020. a
Francia, P., De Lauretis, M., Vellante, M., Villante, U., and Piancatelli, A.: ULF geomagnetic pulsations at different latitudes in Antarctica, Ann. Geophys., 27, 3621–3629, https://doi.org/10.5194/angeo-27-3621-2009, 2009. a, b
Francia, P., Regi, M., De Lauretis, M., Villante, U., and Pilipenko, V. A.: A case study of upstream wave transmission to the ground at polar and low latitudes, J. Geophys. Res.-Space, 117, 1–14, https://doi.org/10.1029/2011JA016751, 2012. a
Frick, P., Grossmann, A., and Tchamitchian, P.: Wavelet analysis of signals with gaps, J. Math. Phys., 39, 4091–4107, https://doi.org/10.1063/1.532485, 1998. a
Fukushima, D., Shiokawa, K., Otsuka, Y., Kubota, M., Yokoyama, T., Nishioka, M., Komonjinda, S., and Yatini, C.: Geomagnetically conjugate observations of ionospheric and thermospheric variations accompanied by a midnight brightness wave at low latitudes, Earth Planets Space, 69, 112, https://doi.org/10.1186/s40623-017-0698-z, 2017. a
Greenstadt, E. W., McPherron, R. L., and Takahashi, K.: Solar Wind Control of Daytime, Midperiod Geomagnetic Pulsations, Springer Netherlands, Dordrecht, 89–110, ISBN 978-94-009-8426-4, https://doi.org/10.1007/978-94-009-8426-4_6, 1981. a
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004. a, b
Hagen, M. and Azevedo, A.: Investigation of Potential Factors on South Atlantic Magnetic Anomaly, Open Journal of Earthquake Research, 15, 207–221, https://doi.org/10.4236/ojer.2024.131001, 2024. a
Hajkowicz, L. A.: Magnetoconjugate phenomena in Alaska and Macquarie Is., Australia in 2003: position of the global maximum iso-aurorae, Ann. Geophys., 24, 2611–2617, https://doi.org/10.5194/angeo-24-2611-2006, 2006. a
Hartinger, M. D., Xu, Z., Clauer, C. R., Yu, Y., Weimer, D. R., Kim, H., Pilipenko, V., Welling, D. T., Behlke, R., and Willer, A. N.: Associating ground magnetometer observations with current or voltage generators, J. Geophys. Res.-Space, 122, 7130–7141, https://doi.org/10.1002/2017JA024140, 2017. a
Hartmann, G. A. and Pacca, I. G.: Time evolution of the South Atlantic agnetic Anomaly, An. Acad. Bras. Ciênc., 81, 243–255, https://doi.org/10.1590/S0001-37652009000200010, 2009. a, b
Haykin, S. and Van Veen, B.: Signals and Systems, Wiley, ISBN 9780471138204, https://books.google.com.br/books?id=uOE-ngEACAAJ (last access: February 2025), 1998. a
Instituto Nacional de Pesquisas Espaciais, INPE [data set], https://www2.inpe.br/climaespacial/portal/embracedatasobre/, last access: 1 February 2025, 2025. a
International Real-time Magnetic Observatory Network: INTERMAGNET [data set], https://intermagnet.org/data_download.html, last access: 1 February 2025, 2025. a
Jun, C. W., Shiokawa, K., Connors, M., Schofield, I., Poddelsky, I., and Shevtsov, B.: Study of Pc1 pearl structures observed at multi-point ground stations in Russia, Japan, and Canada, Earth Planets Space, 66, 1–14, https://doi.org/10.1186/s40623-014-0140-8, 2014. a
Jun, C. W., Shiokawa, K., Connors, M., Schofield, I., Poddelsky, I., and Shevtsov, B.: Possible generation mechanisms for Pc1 pearl structures in the ionosphere based on 6 years of ground observations in Canada, Russia, and Japan, J. Geophys. Res.-Space, 121, 4409–4424, https://doi.org/10.1002/2015JA022123, 2016. a
Kivelson, M. G. and Southwood, D. J.: Resonant ULF waves: A new interpretation, Geophys. Res. Lett., 12, 49–52, https://doi.org/10.1029/GL012i001p00049, 1985. a, b
Kleimenova, N., Kozyreva, O., Malysheva, L., Soloviev, A., Bogoutdinov, S., and Zelinsky, N.: Storm-associated equatorial Pc3 geomagnetic pulsations based on the one-second INTERMAGNET multi-station measurements, in: Proceedings of the 9th International Conference “Problems of Geocosmos”, 8–12 October 2012, St. Petersburg, Russia, p. 261, https://geo.phys.spbu.ru/materials_of_a_conference_2012/STP2012/Kleimenova_%20et_all_Geocosmos2012proceedings.pdf, 2012. a
Kumar, P. and Foufoula-Georgiou, E.: Wavelet Analysis for Geophysical Application, Rev. Geophys., 35, 385–412, https://doi.org/10.1029/97RG00427, 1997. a
Labat, D.: Recent advances in wavelet analyses: Part 1. a review of concepts, J. Hydrol., 314, 275–288, https://doi.org/10.1016/j.jhydrol.2005.04.003, 2005. a
Laundal, K. and Richmond, A. D.: Magnetic coordinate systems, Space Sci. Rev., 206, 27–59, https://doi.org/10.1007/s11214-016-0275-y, 2017. a, b
Liu, Y., Fraser, B., Liu, R., and Ponomarenko, P.: Conjugate phase studies of ULF waves in the Pc5 band near the cusp, J. Geophys. Res.-Space, 108, 1274–1290, https://doi.org/10.1029/2002JA009336, 2003. a, b
Matsuoka, H., Takahashi, K., Kokubun, S., Yumoto, K., Yamamoto, T., Solovyev, S., and Vershinin, E.: Phase and amplitude structure of Pc 3 magnetic pulsations as determined from multipoint observations, J. Geophys. Res.-Space, 102, 2391–2403, https://doi.org/10.1029/96JA02918, 1997. a, b
McPherron, R.: Magnetic pulsations: their sources and relation to solar wind and geomagnetic activity, Surv. Geophys., 26, 545–592, https://doi.org/10.1007/s10712-005-1758-7, 2005. a
Mendes da Costa, A., Oliveira Domingues, M., Mendes, O., and Marques Brum, C. G.: Interplanetary medium condition effects in the South Atlantic Magnetic Anomaly: A case study, J. Atmos. Sol.-Terr. Phy., 73, 1478–1491, https://doi.org/10.1016/j.jastp.2011.01.010, 2011. a
Menk, F. and Waters, C.: Field line resonances and waveguide modes at low latitudes: 2. A model, J. Geophys. Res.-Space, 105, 7763–7774, https://doi.org/10.1029/1999JA900267, 2000. a, b, c
Menk, F. W., Fraser, B. J., Waters, C. L., Ziesolleck, C. W. S., Feng, Q., Lee, S. H., and Mcnabb, P. W.: Ground Measurements of Low Latitude Magnetospheric Field Line Resonances, in: Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, American Geophysical Union, Washington DC, vol. 81, 299–310, https://doi.org/10.1029/GM081p0299, 1994. a
Menk, F. W., Clilverd, M. A., Yearby, K. H., Milinevski, G., Thomson, N. R., and Rose, M. C.: ULF Doppler oscillations of L=2.5 flux tubes, J. Geophys. Res.-Space, 111, A07205, https://doi.org/10.1029/2005JA011192, 2006. a, b
Momani, M. A.: GPS observations at quasi-conjugate points during solar minimum, Radio Sci., 47, 1–12, https://doi.org/10.1029/2011RS004826, 2012. a
Motoba, T., Ebihara, Y., Kadokura, A., Engebretson, M. J., Lessard, M. R., Weatherwax, A. T., and Gerrard, A. J.: Fast-moving diffuse auroral patches: A new aspect of daytime Pc3 auroral pulsations, J. Geophys. Res.-Space, 122, 1542–1554, https://doi.org/10.1002/2016JA023285, 2017. a
Nagata, T.: Geomagnetic conjugacy between the antarctic and the arctic, in: Proceedings of the International Symposium on Pacific Antarctic Sciences Pacific, 11th Pacific Science Congress, National Institute of Polar Research Repository, Tokyo, Japan, 23–27 August 1966, 65–80, https://core.ac.uk/download/51479527.pdf (last access: February 2025), 1967. a, b
Nasuddin, K. A., Abdullah, M., and Abdul Hamid, N. S.: Characterization of the South Atlantic Anomaly, Nonlin. Processes Geophys., 26, 25–35, https://doi.org/10.5194/npg-26-25-2019, 2019. a, b, c
Odera, T., Van Swol, D., and Russell, C.: Simultaneous observation of Pc 3, 4 pulsations in the magnetosphere and at multiple ground stations, Geoph. Monog. Series, 81, 311–323, 1994. a
Oliva, D., Meirelles, M., and Papa, A.: A study of Pc4-5 geomagnetic pulsations in the Brazilian sector, Physics Space, arXiv [preprint], https://doi.org/10.48550/arXiv.1404.4321, 16 April 2014. a
Pavón-Carrasco, F. J. and De Santis, A.: The South Atlantic Anomaly: The Key for a Possible Geomagnetic Reversal, Front. Earth Sci., 4, 1–9, https://doi.org/10.3389/feart.2016.00040, 2016. a, b
Pilipenko, V., Fedorov, E., Heilig, B., and Engebretson, M. J.: Structure of ULF Pc3 waves at low altitudes, J. Geophys. Res.-Space, 113, 1–16, https://doi.org/10.1029/2008JA013243, 2008. a
Ponomarenko, P. V., Waters, C. L., and St-Maurice, J.-P.: Upstream Pc3-4 waves: Experimental evidence of propagation to the nightside plasmapause/plasmatrough, Geophys. Res. Lett., 37, 1–4, https://doi.org/10.1029/2010GL045416, 2010. a
Sanchez, S., Wicht, J., and Baerenzung, J.: Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations, Earth Planets Space, 72, 1–20, https://doi.org/10.1186/s40623-020-01279-y, 2020. a, b
Santarelli, L., Lepidi, S., Palangio, P., and Cafarella, L.: Pc3–Pc4 pulsations at Terra Nova Bay (Antarctica): seasonal dependence of the power and its relationship with solar wind parameters, Memorie della Società Astronomica Italiana, ISBN 1274183774, 2003. a
Shaofeng, Y.: Digital filter technology and its application to geomagnetic pulsations in Antarctica, Advances in Polar Science, 11, 67–73, http://library.arcticportal.org/id/eprint/2199 (last access: February 2025), 2000. a
Shepherd, S.: Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations, J. Geophys. Res.-Space, 119, 7501–752, https://doi.org/10.1002/2014JA020264, 2014. a, b, c
Shi, X., Hartinger, M. D., Baker, J. B. H., Ruohoniemi, J. M., Lin, D., Xu, Z., Coyle, S., Kunduri, B. S. R., Kilcommons, L. M., and Willer, A.: Multipoint Conjugate Observations of Dayside ULF Waves During an Extended Period of Radial IMF, J. Geophys. Res.-Space, 125, 1–16, https://doi.org/10.1029/2020JA028364, 2020. a
Silva, G. B. D., Padilha, A. L., and Alves, L. R.: Latitudinal variation of Pc3–Pc5 geomagnetic pulsation amplitude across the dip equator in central South America, Ann. Geophys., 38, 35–49, https://doi.org/10.5194/angeo-38-35-2020, 2020. a, b
Stearns, S. D. and Hush, D. R.: Digital signal processing with examples in MATLAB, CRC press, ISBN-13 978-1439837825, 2016. a
Sutcliffe, P. R., Heilig, B., and Lotz, S.: Spectral structure of Pc3–4 pulsations: possible signatures of cavity modes, Ann. Geophys., 31, 725–743, https://doi.org/10.5194/angeo-31-725-2013, 2013. a
Takahashi, K., Anderson, B., Newell, P., Yamamoto, T., and Sato, N.: Propagation of compressional Pc3 pulsations from space to the ground: A case study using multipoint measurements, in: Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, vol. 81 of Geophysical Monograph, American Geophysical Union, Washington DC, 355–363, https://doi.org/10.1029/GM081p0355, 1994. a, b
Takasaki, S., Sato, N., Kadokura, A., Yamagishi, H., Kawano, H., Ebihara, Y., and Tanaka, Y.: Interhemispheric observations of field line resonance frequencies as a continuous function of ground latitude in the auroral zones, Polar Sci., 2, 73–86, https://doi.org/10.1016/j.polar.2008.05.003, 2008. a
Tanaka, Y.-M., Yumoto, K., Yoshikawa, A., Shinohara, M., Kawano, H., and Kitamura, T.-I.: Longitudinal structure of Pc3 pulsations on the ground near the magnetic equator, J. Geophys. Res.-Space, 109, 1–10, https://doi.org/10.1029/2003JA009903, 2004. a
Terra-Nova, F., Amit, H., and Choblet, G.: Preferred locations of weak surface field in numerical dynamos with heterogeneous core-mantle boundary heat flux: Consequences for the South Atlantic Anomaly, Geophys. J. Int., 217, 1179–1199, https://doi.org/10.1093/gji/ggy519, 2019. a
Timoçin, E., Ünal, I., Tulunay, Y., and Göker, U. D.: The effect of geomagnetic activity changes on the ionospheric critical frequencies (foF2) at magnetic conjugate points, Adv. Space Res., 62, 821–828, https://doi.org/10.1016/j.asr.2018.05.035, 2018. a, b
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a, b, c
Trivedi, N., Abdu, M., Pathan, B., Dutra, S., Schuch, N., Santos, J., and Barreto, L.: Amplitude enhancement of SC(H) events in the South Atlantic anomaly region, J. Atmos. Sol.-Terr. Phy., 67, 1751–1760, https://doi.org/10.1016/j.jastp.2005.03.010, 2005a. a
Trivedi, N., Pathan, B., Schuch, N. J., Barreto, M., and Dutra, L.: Geomagnetic phenomena in the South Atlantic anomaly region in Brazil, Adv. Space Res., 36, 2021–2024, https://doi.org/10.1016/j.asr.2004.09.020, 2005b. a
Villante, U., Recchiuti, D., and Di Matteo, S.: The Transmission of ULF Waves From the Solar Wind to the Magnetosphere: An Analysis of Some Critical Aspects, Frontiers in Astronomy and Space Sciences, 9, 1–22, https://doi.org/10.3389/fspas.2022.835539, 2022. a
Waters, C., Harrold, B., Menk, F., Samson, J., and Fraser, B.: Field line resonances and waveguide modes at low latitudes: 2. A model, J. Geophys. Res.-Space, 105, 7763–7774, https://doi.org/10.1029/1999JA900267, 2000. a
Waters, C. L., Menk, F. W., and Fraser, B. J.: The resonance structure of low latitude Pc3 geomagnetic pulsations, Geophys. Res. Lett., 18, 2293–2296, https://doi.org/10.1029/91GL02550, 1991. a, b
Wescott, E.: Magnetic variations at conjugate points, J. Geophys. Res., 66, 1789–1792, https://doi.org/10.1029/JZ066i006p01789, 1961. a, b, c
Wescott, E.: Magnetoconjugate phenomena, Space Sci. Rev., 5, 507–561, https://doi.org/10.1007/BF00240576, 1966. a, b
Wescott, E. and Mather, K.: Magnetic conjugacy at very high latitude; shepherd bay-scott base relationship, Planet. Space Sci., 13, 303–324, https://doi.org/10.1016/0032-0633(65)90005-X, 1965a. a
Wescott, E. and Mather, K.: Magnetic conjugacy from L=6 to L=1.4: 1. auroral zone: Conjugate area, seasonal variations, and magnetic coherence, J. Geophys. Res., 70, 29–42, https://doi.org/10.1029/JZ070i001p00029, 1965b. a
Wolfe, A., Venkatesan, D., Slawinski, R., and Maclennan, C.: A conjugate area study of Pc 3 pulsations near cusp latitudes, J. Geophys. Res.-Space, 95, 10695–10698, 1990. a
Yagova, N., Heilig, B., and Fedorov, E.: Pc2-3 geomagnetic pulsations on the ground, in the ionosphere, and in the magnetosphere: MM100, CHAMP, and THEMIS observations, Ann. Geophys., 33, 117–128, https://doi.org/10.5194/angeo-33-117-2015, 2015. a
Yagova, N., Heilig, B., Pilipenko, V., Yoshikawa, A., Nosikova, N., Yumoto, K., and Reda, J.: Nighttime Pc3 pulsations: MM100 and MAGDAS observations, Earth Planets Space, 69, 1–17, https://doi.org/10.1186/s40623-017-0647-x, 2017. a, b
Yue, Y., Gao, J., He, F., Wei, Y., Cai, S., Wang, H., Wang, Y., Rong, Z., Yao, Z., Lin, W., and Pan, Y.: Evolution and disappearance of the paleo-West Pacific Anomaly: Implications to the future of South Atlantic Anomaly, Phys. Earth Planet. In., 353, 107214, https://doi.org/10.1016/j.pepi.2024.107214, 2024. a
Yumoto, K. and Saito, T.: Relation of compressional HM waves at GOES 2 to low-latitude Pc 3 magnetic pulsations, J. Geophys. Res.-Space, 88, 10041–10052, 1983. a
Zanandrea, A., Da Costa, J., Dutra, S., Rosa, R., and Saotome, O.: Spectral and polarization analysis of geomagnetic pulsations data using a multitaper method, Comput. Geosci., 30, 797–808, https://doi.org/10.1016/j.cageo.2004.03.016, 2004a. a
Zanandrea, A., Da Costa, J., Dutra, S., Trivedi, N., Kitamura, T., Yumoto, K., and Saotome, O.: Pc3-4 geomagnetic pulsations at very low latitude in Brazil, Planet. Space Sci., 52, 1209–1215, https://doi.org/10.1016/j.pss.2004.08.001, 2004b. a
Short summary
Based on a case study, we analyzed data from two pairs of conjugate stations to compare continuous Pc3 pulsations. Using Fourier and wavelet transform techniques, we identified similar pulsations at both locations; however, amplitudes were higher in the South Atlantic Magnetic Anomaly (SAMA) region. This enhancement may be linked to the unique conditions of the region, where energetic particles interact with both the magnetosphere and the ionosphere.
Based on a case study, we analyzed data from two pairs of conjugate stations to compare...