Articles | Volume 2, issue 2
https://doi.org/10.5194/gi-2-305-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gi-2-305-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The surface temperatures of Earth: steps towards integrated understanding of variability and change
C. J. Merchant
Department of Meteorology, University of Reading, Reading, UK
School of GeoSciences, The University of Edinburgh, Edinburgh, UK
S. Matthiesen
School of GeoSciences, The University of Edinburgh, Edinburgh, UK
N. A. Rayner
Hadley Centre, MetOffice, Exeter, UK
J. J. Remedios
University of Leicester, Physics and Astronomy, Leicester, UK
P. D. Jones
Climatic Research Unit, University of East Anglia, Norwich, UK
Center of Excellence for Climate Change Research/Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
F. Olesen
Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
B. Trewin
National Climate Centre, Australian Bureau of Meteorology, Melbourne, Australia
P. W. Thorne
Nansen Environmental and Remote Sensing Center, Bergen, Norway
R. Auchmann
Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Switzerland
G. K. Corlett
University of Leicester, Physics and Astronomy, Leicester, UK
P. C. Guillevic
Cooperative Institute for Climate and Satellites (CICS), North Carolina State University, Asheville, NC, USA
National Oceanic and Atmospheric Administration (NOAA), National Climatic Data Center, Asheville, NC, USA
G. C. Hulley
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
Related authors
Laura Carrea, Christopher J. Merchant, Richard I. Woolway, and Niall McCarroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-2926, https://doi.org/10.5194/egusphere-2024-2926, 2024
Short summary
Short summary
Lakes in Greenland serve as sentinel of climate change. Satellites can be used to monitor water temperature and ice. Using 28 years measurements from satellite, we conclude that lakes are overall warmer than previously thought. The lakes connected to the ice sheet are cooler than the rest because of cold glacial meltwater inflow. Change in water temperature can impact light availability, nutrient cycling, and oxygen levels crucial for lake ecosystem but can also have influence on the ice sheet.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Paul Poli, Marc Lucas, Anne O'Carroll, Marc Le Menn, Arnaud David, Gary K. Corlett, Pierre Blouch, David Meldrum, Christopher J. Merchant, Mathieu Belbeoch, and Kai Herklotz
Ocean Sci., 15, 199–214, https://doi.org/10.5194/os-15-199-2019, https://doi.org/10.5194/os-15-199-2019, 2019
Short summary
Short summary
Earth observation satellites routinely monitor sea-surface temperature. However, they require in situ references for calibration and validation. To support this step, drifting buoys carrying sensors with improved calibration were deployed. This paper finds that sea state and immersion depth are important to better understand the buoy measurements. A new drifting buoy was designed as a result, in the framework of the European Union Copernicus program, with an accuracy found to be within 0.01 °C.
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018, https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Short summary
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
Aisling Layden, Stuart N. MacCallum, and Christopher J. Merchant
Geosci. Model Dev., 9, 2167–2189, https://doi.org/10.5194/gmd-9-2167-2016, https://doi.org/10.5194/gmd-9-2167-2016, 2016
Short summary
Short summary
With the availability of lake surface water temperature (LSWT) satellite data for 246 globally distributed large lakes, we tune a lake model, FLake, by varying 3 basic lake properties, shown to have the most influence over the modelled LSWTs. Tuning reduces the mean absolute difference (between model and satellite LSWTs) from an average of 3.38 ºC per day (untuned model) to 0.85 ºC per day (tuned model). The effect of several LSWT drivers, such as wind speed and lake depth are also demonstrated.
Laura Carrea, Christopher J. Merchant, Richard I. Woolway, and Niall McCarroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-2926, https://doi.org/10.5194/egusphere-2024-2926, 2024
Short summary
Short summary
Lakes in Greenland serve as sentinel of climate change. Satellites can be used to monitor water temperature and ice. Using 28 years measurements from satellite, we conclude that lakes are overall warmer than previously thought. The lakes connected to the ice sheet are cooler than the rest because of cold glacial meltwater inflow. Change in water temperature can impact light availability, nutrient cycling, and oxygen levels crucial for lake ecosystem but can also have influence on the ice sheet.
Chris Wilson, Brian J. Kerridge, Richard Siddans, David P. Moore, Lucy J. Ventress, Emily Dowd, Wuhu Feng, Martyn P. Chipperfield, and John J. Remedios
Atmos. Chem. Phys., 24, 10639–10653, https://doi.org/10.5194/acp-24-10639-2024, https://doi.org/10.5194/acp-24-10639-2024, 2024
Short summary
Short summary
The leaks from the Nord Stream gas pipelines in September 2022 released a large amount of methane (CH4) into the atmosphere. We provide observational data from a satellite instrument that shows a large CH4 plume over the North Sea off the coast of Scandinavia. We use this together with atmospheric models to quantify the CH4 leaked into the atmosphere from the pipelines. We find that 219–427 Gg CH4 was emitted, making this the largest individual fossil-fuel-related CH4 leak on record.
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Gilles Delaygue, Stefan Brönnimann, and Philip D. Jones
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-33, https://doi.org/10.5194/wcd-2022-33, 2022
Revised manuscript not accepted
Short summary
Short summary
We test whether any association between solar activity and meteorological conditions in the north Atlantic – European sector could be detected. We find associations consistent with those found by previous studies, with a slightly better statistical significance, and with less methodological biases which have impaired previous studies. Our study should help strengthen the recognition of meteorological impacts of solar activity.
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022, https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
Short summary
The new China global Merged Surface Temperature CMST 2.0 is the updated version of CMST-Interim used in the IPCC's AR6. The updated dataset is described in this study, containing three versions: CMST2.0 – Nrec, CMST2.0 – Imax, and CMST2.0 – Imin. The reconstructed datasets significantly improve data coverage, especially in the high latitudes in the Northern Hemisphere, thus increasing the long-term trends at global, hemispheric, and regional scales since 1850.
Piera Raspollini, Enrico Arnone, Flavio Barbara, Massimo Bianchini, Bruno Carli, Simone Ceccherini, Martyn P. Chipperfield, Angelika Dehn, Stefano Della Fera, Bianca Maria Dinelli, Anu Dudhia, Jean-Marie Flaud, Marco Gai, Michael Kiefer, Manuel López-Puertas, David P. Moore, Alessandro Piro, John J. Remedios, Marco Ridolfi, Harjinder Sembhi, Luca Sgheri, and Nicola Zoppetti
Atmos. Meas. Tech., 15, 1871–1901, https://doi.org/10.5194/amt-15-1871-2022, https://doi.org/10.5194/amt-15-1871-2022, 2022
Short summary
Short summary
The MIPAS instrument onboard the ENVISAT satellite provided 10 years of measurements of the atmospheric emission al limb that allow for the retrieval of latitude- and altitude-resolved atmospheric composition. We describe the improvements implemented in the retrieval algorithm used for the full mission reanalysis, which allows for the generation of the global distributions of 21 atmospheric constituents plus temperature with increased accuracy with respect to previously generated data.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021, https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Short summary
The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry.
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data, 13, 2211–2226, https://doi.org/10.5194/essd-13-2211-2021, https://doi.org/10.5194/essd-13-2211-2021, 2021
Short summary
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series starting in 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change at the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
Paul Poli, Marc Lucas, Anne O'Carroll, Marc Le Menn, Arnaud David, Gary K. Corlett, Pierre Blouch, David Meldrum, Christopher J. Merchant, Mathieu Belbeoch, and Kai Herklotz
Ocean Sci., 15, 199–214, https://doi.org/10.5194/os-15-199-2019, https://doi.org/10.5194/os-15-199-2019, 2019
Short summary
Short summary
Earth observation satellites routinely monitor sea-surface temperature. However, they require in situ references for calibration and validation. To support this step, drifting buoys carrying sensors with improved calibration were deployed. This paper finds that sea state and immersion depth are important to better understand the buoy measurements. A new drifting buoy was designed as a result, in the framework of the European Union Copernicus program, with an accuracy found to be within 0.01 °C.
Zoë A. Thomas, Richard T. Jones, Chris J. Fogwill, Jackie Hatton, Alan N. Williams, Alan Hogg, Scott Mooney, Philip Jones, David Lister, Paul Mayewski, and Chris S. M. Turney
Clim. Past, 14, 1727–1738, https://doi.org/10.5194/cp-14-1727-2018, https://doi.org/10.5194/cp-14-1727-2018, 2018
Short summary
Short summary
We report a high-resolution study of a 5000-year-long peat record from the Falkland Islands. This area sensitive to the dynamics of the Amundsen Sea Low, which plays a major role in modulating the Southern Ocean climate. We find wetter, colder conditions between 5.0 and 2.5 ka due to enhanced southerly airflow, with the establishment of drier and warmer conditions from 2.5 ka to present. This implies more westerly airflow and the increased projection of the ASL onto the South Atlantic.
Linden Ashcroft, Joan Ramon Coll, Alba Gilabert, Peter Domonkos, Manola Brunet, Enric Aguilar, Mercè Castella, Javier Sigro, Ian Harris, Per Unden, and Phil Jones
Earth Syst. Sci. Data, 10, 1613–1635, https://doi.org/10.5194/essd-10-1613-2018, https://doi.org/10.5194/essd-10-1613-2018, 2018
Short summary
Short summary
We present a dataset of 8.8 million sub-daily weather observations for Europe and the southern Mediterranean, compiled and digitised from historical and modern sources. We describe the methods used to digitise and quality control the data, and show that 3.5 % of the observations required correction or removal, similar to other data rescue projects. These newly recovered records will help to improve weather simulations over Europe.
Alberto Troccoli, Clare Goodess, Phil Jones, Lesley Penny, Steve Dorling, Colin Harpham, Laurent Dubus, Sylvie Parey, Sandra Claudel, Duc-Huy Khong, Philip E. Bett, Hazel Thornton, Thierry Ranchin, Lucien Wald, Yves-Marie Saint-Drenan, Matteo De Felice, David Brayshaw, Emma Suckling, Barbara Percy, and Jon Blower
Adv. Sci. Res., 15, 191–205, https://doi.org/10.5194/asr-15-191-2018, https://doi.org/10.5194/asr-15-191-2018, 2018
Short summary
Short summary
The European Climatic Energy Mixes, an EU Copernicus Climate Change Service project, has produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, designed to enable the energy industry assess how well different energy supply mixes in Europe will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the role climate has on the mixes. Its concept, methodology and some results are presented here.
Paul I. Palmer, Simon O'Doherty, Grant Allen, Keith Bower, Hartmut Bösch, Martyn P. Chipperfield, Sarah Connors, Sandip Dhomse, Liang Feng, Douglas P. Finch, Martin W. Gallagher, Emanuel Gloor, Siegfried Gonzi, Neil R. P. Harris, Carole Helfter, Neil Humpage, Brian Kerridge, Diane Knappett, Roderic L. Jones, Michael Le Breton, Mark F. Lunt, Alistair J. Manning, Stephan Matthiesen, Jennifer B. A. Muller, Neil Mullinger, Eiko Nemitz, Sebastian O'Shea, Robert J. Parker, Carl J. Percival, Joseph Pitt, Stuart N. Riddick, Matthew Rigby, Harjinder Sembhi, Richard Siddans, Robert L. Skelton, Paul Smith, Hannah Sonderfeld, Kieran Stanley, Ann R. Stavert, Angelina Wenger, Emily White, Christopher Wilson, and Dickon Young
Atmos. Chem. Phys., 18, 11753–11777, https://doi.org/10.5194/acp-18-11753-2018, https://doi.org/10.5194/acp-18-11753-2018, 2018
Short summary
Short summary
This paper provides an overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) experiment. GAUGE was designed to quantify nationwide GHG emissions of the UK, bringing together measurements and atmospheric transport models. This novel experiment is the first of its kind. We anticipate it will inform the blueprint for countries that are building a measurement infrastructure in preparation for global stocktakes, which are a key part of the Paris Agreement.
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018, https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Short summary
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
Philip D. Jones, Colin Harpham, Alberto Troccoli, Benoit Gschwind, Thierry Ranchin, Lucien Wald, Clare M. Goodess, and Stephen Dorling
Earth Syst. Sci. Data, 9, 471–495, https://doi.org/10.5194/essd-9-471-2017, https://doi.org/10.5194/essd-9-471-2017, 2017
Short summary
Short summary
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity.The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S), and can be accessed at present from ftp://ecem.climate.copernicus.eu.
Le Kuai, John R. Worden, King-Fai Li, Glynn C. Hulley, Francesca M. Hopkins, Charles E. Miller, Simon J. Hook, Riley M. Duren, and Andrew D. Aubrey
Atmos. Meas. Tech., 9, 3165–3173, https://doi.org/10.5194/amt-9-3165-2016, https://doi.org/10.5194/amt-9-3165-2016, 2016
Short summary
Short summary
This paper describes the retrieval algorithm to estimate the lower tropospheric methane concentrations using Hyperspectral Thermal Emission Spectrometer (HyTES) airborne measurements. This project aims to map and detect methane plumes from the oil leaking or dairy emission. Our results demonstrate an example of the quantitative retrievals, imaged a big methane plume from storage tanks near Kern River Oil Field. The methane enhancement is well above the uncertainties of the estimates.
Philip Brohan, Gilbert P. Compo, Stefan Brönnimann, Robert J. Allan, Renate Auchmann, Yuri Brugnara, Prashant D. Sardeshmukh, and Jeffrey S. Whitaker
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-78, https://doi.org/10.5194/cp-2016-78, 2016
Preprint withdrawn
Short summary
Short summary
We have used modern weather forecasting tools to reconstruct the dreadful European weather of 200 years ago – 1816 was the ‘year without a summer’; harvests failed, and people starved. We can show that 1816’s extreme climate was caused by the eruption of the Tambora volcano the previous year. This means we have some chance of predicting such extreme summers if they occur in future, though this is still a challenge to today’s forecast models.
Aisling Layden, Stuart N. MacCallum, and Christopher J. Merchant
Geosci. Model Dev., 9, 2167–2189, https://doi.org/10.5194/gmd-9-2167-2016, https://doi.org/10.5194/gmd-9-2167-2016, 2016
Short summary
Short summary
With the availability of lake surface water temperature (LSWT) satellite data for 246 globally distributed large lakes, we tune a lake model, FLake, by varying 3 basic lake properties, shown to have the most influence over the modelled LSWTs. Tuning reduces the mean absolute difference (between model and satellite LSWTs) from an average of 3.38 ºC per day (untuned model) to 0.85 ºC per day (tuned model). The effect of several LSWT drivers, such as wind speed and lake depth are also demonstrated.
Glynn C. Hulley, Riley M. Duren, Francesca M. Hopkins, Simon J. Hook, Nick Vance, Pierre Guillevic, William R. Johnson, Bjorn T. Eng, Jonathan M. Mihaly, Veljko M. Jovanovic, Seth L. Chazanoff, Zak K. Staniszewski, Le Kuai, John Worden, Christian Frankenberg, Gerardo Rivera, Andrew D. Aubrey, Charles E. Miller, Nabin K. Malakar, Juan M. Sánchez Tomás, and Kendall T. Holmes
Atmos. Meas. Tech., 9, 2393–2408, https://doi.org/10.5194/amt-9-2393-2016, https://doi.org/10.5194/amt-9-2393-2016, 2016
Short summary
Short summary
Using data from a new airborne Hyperspectral Thermal Emission Spectrometer (HyTES) instrument, we present a technique for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution, that permits direct attribution to sources in complex environments.
Y. Brugnara, R. Auchmann, S. Brönnimann, R. J. Allan, I. Auer, M. Barriendos, H. Bergström, J. Bhend, R. Brázdil, G. P. Compo, R. C. Cornes, F. Dominguez-Castro, A. F. V. van Engelen, J. Filipiak, J. Holopainen, S. Jourdain, M. Kunz, J. Luterbacher, M. Maugeri, L. Mercalli, A. Moberg, C. J. Mock, G. Pichard, L. Řezníčková, G. van der Schrier, V. Slonosky, Z. Ustrnul, M. A. Valente, A. Wypych, and X. Yin
Clim. Past, 11, 1027–1047, https://doi.org/10.5194/cp-11-1027-2015, https://doi.org/10.5194/cp-11-1027-2015, 2015
Short summary
Short summary
A data set of instrumental pressure and temperature observations for the early instrumental period (before ca. 1850) is described. This is the result of a digitisation effort involving the period immediately after the eruption of Mount Tambora in 1815, combined with the collection of already available sub-daily time series. The highest data availability is therefore for the years 1815 to 1817. An analysis of pressure variability and of case studies in Europe is performed for that period.
K. M. Willett, R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr.
Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, https://doi.org/10.5194/cp-10-1983-2014, 2014
Short summary
Short summary
We have developed HadISDH, a new gridded global land monthly mean climate montitoring product for humidity and temperature from 1973 to then end of 2013 (updated annually) based entirely on in situ observations. Uncertainty estimates are provided. Over the period of record significant warming and increases in water vapour have taken place. The specific humidity trends have slowed since a peak in 1998 concurrent with decreasing relative humidity from 2000 onwards.
K. Willett, C. Williams, I. T. Jolliffe, R. Lund, L. V. Alexander, S. Brönnimann, L. A. Vincent, S. Easterbrook, V. K. C. Venema, D. Berry, R. E. Warren, G. Lopardo, R. Auchmann, E. Aguilar, M. J. Menne, C. Gallagher, Z. Hausfather, T. Thorarinsdottir, and P. W. Thorne
Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014, https://doi.org/10.5194/gi-3-187-2014, 2014
I. Mariani, A. Eichler, T. M. Jenk, S. Brönnimann, R. Auchmann, M. C. Leuenberger, and M. Schwikowski
Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, https://doi.org/10.5194/cp-10-1093-2014, 2014
S. M. Illingworth, G. Allen, S. Newman, A. Vance, F. Marenco, R. C. Harlow, J. Taylor, D. P. Moore, and J. J. Remedios
Atmos. Meas. Tech., 7, 1133–1150, https://doi.org/10.5194/amt-7-1133-2014, https://doi.org/10.5194/amt-7-1133-2014, 2014
T. J. Osborn and P. D. Jones
Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014, https://doi.org/10.5194/essd-6-61-2014, 2014
B. H. Kahn, F. W. Irion, V. T. Dang, E. M. Manning, S. L. Nasiri, C. M. Naud, J. M. Blaisdell, M. M. Schreier, Q. Yue, K. W. Bowman, E. J. Fetzer, G. C. Hulley, K. N. Liou, D. Lubin, S. C. Ou, J. Susskind, Y. Takano, B. Tian, and J. R. Worden
Atmos. Chem. Phys., 14, 399–426, https://doi.org/10.5194/acp-14-399-2014, https://doi.org/10.5194/acp-14-399-2014, 2014
P. Raspollini, B. Carli, M. Carlotti, S. Ceccherini, A. Dehn, B. M. Dinelli, A. Dudhia, J.-M. Flaud, M. López-Puertas, F. Niro, J. J. Remedios, M. Ridolfi, H. Sembhi, L. Sgheri, and T. von Clarmann
Atmos. Meas. Tech., 6, 2419–2439, https://doi.org/10.5194/amt-6-2419-2013, https://doi.org/10.5194/amt-6-2419-2013, 2013
S. Brönnimann, I. Mariani, M. Schwikowski, R. Auchmann, and A. Eichler
Clim. Past, 9, 2013–2022, https://doi.org/10.5194/cp-9-2013-2013, https://doi.org/10.5194/cp-9-2013-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
K. M. Willett, C. N. Williams Jr., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, P. D. Jones, and D. E. Parker
Clim. Past, 9, 657–677, https://doi.org/10.5194/cp-9-657-2013, https://doi.org/10.5194/cp-9-657-2013, 2013
Related subject area
Sensing
Shipborne Comparison of Infrared and Passive Microwave Radiometers for Sea Surface Temperature Observations
3D-printed Ag–AgCl electrodes for laboratory measurements of self-potential
Response time correction of slow-response sensor data by deconvolution of the growth-law equation
Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying
Using near-surface atmospheric measurements as a proxy for quantifying field-scale soil gas flux
A novel permanent gauge-cam station for surface-flow observations on the Tiber River
Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing
Guisella Gacitúa, Jacob L. Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-542, https://doi.org/10.5194/egusphere-2024-542, 2024
Short summary
Short summary
This study presents a shipborne intercomparison of sea surface temperature (SST) using thermal Infrared (TIR) and passive microwave (PMW) radiometers along the Denmark-Iceland route. Subskin SST was retrieved from PMW brightness temperatures. The investigation focuses on analyzing PMW data variability, quantifying uncertainty propagation, and comparing skin and subskin SSTs. The findings offer insights to optimize SST intercomparisons, enhancing the synergy between TIR and PMW observations.
Thomas S. L. Rowan, Vilelmini A. Karantoni, Adrian P. Butler, and Matthew D. Jackson
Geosci. Instrum. Method. Data Syst., 12, 259–270, https://doi.org/10.5194/gi-12-259-2023, https://doi.org/10.5194/gi-12-259-2023, 2023
Short summary
Short summary
This paper presents a design for a 3D-printed rechargeable electrode that measures self-potential (SP) in different types of laboratory experiments. It is small, cheap, robust, and stable, and it offers the same performance as custom-machined laboratory standards. The use of 3D printing technology makes the electrode more versatile and cost-effective than traditional laboratory standards. Examples of its use under both low and high pressure have been included, as have 3D-printable designs.
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Loughlin E. Tuck, Claire Samson, Jeremy Laliberté, and Michael Cunningham
Geosci. Instrum. Method. Data Syst., 10, 101–112, https://doi.org/10.5194/gi-10-101-2021, https://doi.org/10.5194/gi-10-101-2021, 2021
Short summary
Short summary
This paper presents a novel method for locating magnetic interference sources on unmanned aircraft systems (UAS) destined for aeromagnetic surveys. The technique is demonstrated in an indoor laboratory, whereas most magnetic mapping has previously been done outdoors, and is performed on four different types of UAS with their motors engaged. Sources are discussed on each UAS platform but can also be used as a point of reference for typical components that cause interference.
Andrew Barkwith, Stan E. Beaubien, Thomas Barlow, Karen Kirk, Thomas R. Lister, Maria C. Tartarello, and Helen Taylor-Curran
Geosci. Instrum. Method. Data Syst., 9, 483–490, https://doi.org/10.5194/gi-9-483-2020, https://doi.org/10.5194/gi-9-483-2020, 2020
Short summary
Short summary
Soil gas flux describes the movement of various gases either to or from the ground. Identifying changes in soil gas flux can lead to a better understanding and detection of leakage from carbon capture and storage (CCS) schemes, diffuse degassing in volcanic and geothermal areas, and greenhouse gas emissions. Traditional chamber-based techniques may require weeks of fieldwork to assess a site. We present a new method to speed up the assessment of diffuse leakage.
Flavia Tauro, Andrea Petroselli, Maurizio Porfiri, Lorenzo Giandomenico, Guido Bernardi, Francesco Mele, Domenico Spina, and Salvatore Grimaldi
Geosci. Instrum. Method. Data Syst., 5, 241–251, https://doi.org/10.5194/gi-5-241-2016, https://doi.org/10.5194/gi-5-241-2016, 2016
Short summary
Short summary
Flow monitoring of riverine environments is crucial for hydrology and hydraulic engineering practice. In this paper, we describe a novel permanent gauge-cam station for large-scale and continuous observation of surface flows, based on remote acquisition and calibration of video data. In a feasibility study, we demonstrate that accurate surface-flow velocity estimations can be obtained by analyzing experimental images via particle tracking velocimetry.
Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen
Geosci. Instrum. Method. Data Syst., 5, 151–162, https://doi.org/10.5194/gi-5-151-2016, https://doi.org/10.5194/gi-5-151-2016, 2016
Short summary
Short summary
Fibre optic distributed temperature sensing allows one to measure temperature patterns along a fibre optic cable with resolutions down to 25 cm. In geosciences, we sometimes wrap the cable to a coil to measure temperature at even smaller scales. We show that coils with narrow bends affect the measured temperatures. This also holds for the object to which the coil is attached, when heated by solar radiation. We therefore recommend the necessity to carefully design such distributed temperature probes.
Cited articles
Agam, N., Kustas, W. P., Anderson, M. C., Li, F., and Colaizzi, P. D.: Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions, Geophys. Res. Lett., 35, L02402, https://doi.org/10.1029/2007GL032195, 2008.
Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., and Wieringa, J.: Guidelines on climate metadata and homogenization: WCDMP-No. 53, WMO-TD No. 1186, WCDMP 53, World Meteorological Organization, Geneva, 2003.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
Anderson, M. C., Allen, R. G., Morse, A., and Kustas, W. P.: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources, Remote Sens. Environ., 122, 50–65, https://doi.org/10.1016/j.rse.2011.08.025, 2012.
Arnfield, J. A.: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island, Int. J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859, 2003.
Brandsma, T. and van der Meulen, J. P.: Thermometer screen intercomparison in De Bilt (the Netherlands)–Part II: description and modeling of mean temperature differences and extremes, Int. J. Climatol., 28, 389–400, https://doi.org/10.1002/joc.1524, 2008.
Brunet, M., Saladie, O., Jones, P. D., Sigro, J., Aguilar, E., Moberg, A., Lister, D., Walther, A., and Almarza, C.: A case study/guidance on the development of long-term daily adjusted temperature datasets: WCDMP-66/WMO-TD-1425, Tech. rep., World Meteorological Organization, Geneva, 2008.
Carlson, T.: Applications of remote sensing to urban problems, Remote Sensing of Environment, 86, 273–274, https://doi.org/10.1016/S0034-4257(03)00073-7, 2003.
Castro, S. L., Wick, G. A., and Emery, W. J.: Evaluation of the relative performance of sea surface temperature measurements from different types of drifting and moored buoys using satellite-derived reference products, J. Geophys. Res., 117, C02029, https://doi.org/10.1029/2011JC007472, 2012.
Dash, P., Ignatov, A., Martin, M., Donlon, C., Brasnett, B., Reynolds, R. W., Banzon, V., Beggs, H., Cayula, J.-F., Chao, Y., Grumbine, R., Maturi, E., Harris, A., Mittaz, J., Sapper, J., Chin, T. M., Vazquez-Cuervo, J., Armstrong, E. M., Gentemann, C., Cummings, J., Piollé, J.-F., Autret, E., Roberts-Jones, J., Ishizaki, S., Høyer, J. L., and Poulter, D.: Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons: Part 2. Near real time web-based level 4 SST Quality Monitor (L4-SQUAM), Deep Sea Res. II, 77-80, 31–43, https://doi.org/10.1016/j.dsr2.2012.04.002, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Borman, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Diamond, H. J., Karl, T. R., Palecki, M. A., Baker, B. C., Bell, J. E., Leeper, R. D., Easterling, D. R., Lawrimore, J. H., Meyers, T. P., Helfert, M. R., Goodge, G., and Thorne, P. W.: U.S. Climate Reference Network after One Decade of Operations: Status and Assessment, B. Am. Meteorol. Soc., 94, 485–498, https://doi.org/10.1175/BAMS-D-12-00170.1, 2013.
Donlon, C., Casey, K., Robinson, I., Gentemann, C., Reynolds, R., Barton, I., Arino, O., Stark, J., Rayner, N. A., LeBorgne, P., Poulter, D., Vazquez-Cuervo, J., Armstrong, E., Beggs, H., Llewellyn-Jones, D., Minnett, P. J., Merchant, C. J., and Evans, R.: The GODAE High-Resolution Sea Surface Temperature Pilot Project, Oceanography, 22, 34–45, https://doi.org/10.5670/oceanog.2009.64, 2009.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sensing of Environment, 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017, 2012.
Endlicher, W., Jendritzky, G., Fischer, J., and Redlich, J.-P.: HeatWaves, Urban Climate and Human Health, in: Urban Ecology, edited by: Marzluff, J. M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., and ZumBrunnen, C., 269–278, Springer US, Boston, MA, https://doi.org/10.1007/978-0-387-73412-5_16, 2008.
Ericksen, P., Thornton, P., Notenbaert, A., Cramer, L., Jones, P., and Herrero, M.: Mapping Hotspots of Climate Change and Food Insecurity in the Global Tropics, Tech. rep., CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, http://hdl.handle.net/10568/3826 (last access: June 2013), 2012.
Essa, W., Kwast, v. d. J., Verbeiren, B., and Batelaan, O.: Downscaling of thermal images over urban areas using the land surface temperature-impervious percentage relationship, International Journal of Applied Earth Observation and Geoinformation, 23, 95–108, https://doi.org/10.1016/j.jag.2012.12.007, 2013.
Freitas, S. C., Trigo, I. F., Bioucas-Dias, J. M., and Gottsche, F. M.: Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI/Meteosat, IEEE T. Geosci. Remote, 48, 523–534, https://doi.org/10.1109/TGRS.2009.2027697, 2010.
Ghent, D., Kaduk, J., Remedios, J., Ardö, J., and Balzter, H.: Assimilation of land surface temperature into the land surface model JULES with an ensemble Kalman filter, J. Geophys. Res.-Atmos, 115, D19112, https://doi.org/10.1029/2010JD014392, 2010.
Ghent, D., Kaduk, J., Remedios, J., and Balzter, H.: Data assimilation into land surface models: the implications for climate feedbacks, Int. J. Remote Sens., 32, 617–632, https://doi.org/10.1080/01431161.2010.517794, 2011.
Gleckler, P., Ferraro, R., and Waliser, D.: Improving use of satellite data in evaluating climate models, Eos, Transactions American Geophysical Union, 92, 172, https://doi.org/10.1029/2011EO200005, 2011.
Global Climate Observing System: GCOS Climate Monitoring Principles, http://www.wmo.int/pages/prog/gcos/index.php?name=ClimateMonitoringPrinciples, 2003.
Göttsche, F.-M. and Hulley, G. C.: Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region, Remote Sens. Environ., 124, 149–158, https://doi.org/10.1016/j.rse.2012.05.010, 2012.
Guillevic, P. C., Privette, J. L., Coudert, B., Palecki, M. A., Demarty, J., Ottlé, C., and Augustine, J. A.: Land Surface Temperature product validation using NOAAs surface climate observation networks – Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS), Remote Sens. Environ., 124, 282–298, https://doi.org/10.1016/j.rse.2012.05.004, 2012.
Guillevic, P. C., Bork-Unkelbach, A., Goettsche, F. M., Hulley, G., Gastellu-Etchegorry, J. P., Olesen, F., and Privette, J. L.: Directional viewing effects on satellite Land Surface Temperature products over sparse vegetation canopies – A multi-sensor analysis, IEEE Geosci. Remote Sens. Lett., 10, 1464–1468, https://doi.org/10.1109/LGRS.2013.2260319, 2013.
Hall, D., Box, J., Casey, K., Hook, S., Shuman, C., and Steffen, K.: Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland, Remote Sens. Environ., 112, 3739–3749, https://doi.org/10.1016/j.rse.2008.05.007, 2008.
Hand, E.: Citizen science: People power, Nature, 466, 685–687, https://doi.org/10.1038/466685a, 2010.
Høyer, J. L., Karagali, I., Dybkjær, G., and Tonboe, R.: Multi sensor validation and error characteristics of Arctic satellite sea surface temperature observations, Remote Sens. Environ., 121, 335–346, https://doi.org/10.1016/j.rse.2012.01.013, 2012.
Hulley, G. C. and Hook, S. J.: Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia, Remote Sens. Environ., 113, 1313–1318, https://doi.org/10.1016/j.rse.2009.02.018, 2009.
Hulley, G. C. and Hook, S. J.: Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research, IEEE T. Geosci. Remote, 49, 1304–1315, https://doi.org/10.1109/TGRS.2010.2063034, 2011.
Hulley, G. C., Hughes, C. G., and Hook, S. J.: Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data, J. Geophys. Res., 117, D23113, https://doi.org/10.1029/2012JD018506, 2012.
Jacob, F., Schmugge, T., Olioso, A., French, A., Courault, D., Ogawa, K., Petitcolin, F., Chehbouni, G., Pinheiro, A., and Privette, J.: Modeling and Inversion in Thermal Infrared Remote Sensing over Vegetated Land Surfaces, in: Advances in Land Remote Sensing, edited by: Liang, S., Springer Netherlands, https://doi.org/10.1007/978-1-4020-6450-0_10, 2008.
Jiménez-Muñoz, J. C. and Sobrino, J. A.: Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data, Int. J. Remote Sens., 27, 999–1014, https://doi.org/10.1080/01431160500075907, 2006.
Jin, M. and Dickinson, R. E.: Land surface skin temperature climatology: benefitting from the strengths of satellite observations, Environ. Res. Lett., 5, 044004, https://doi.org/10.1088/1748-9326/5/4/044004, 2010.
Jones, P. D. and Wigley, T.: Estimation of global temperature trends: what's important and what isn't, Climatic Change, 100, 59–69, https://doi.org/10.1007/s10584-010-9836-3, 2010.
Kalma, J. D., McVicar, T. R., and McCabe, M. F.: Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data, Surveys in Geophysics, 29, 421–469, https://doi.org/10.1007/s10712-008-9037-z, 2008.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M.: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties, J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218, 2011.
Kerr, Y. H., Lagouarde, J. P., Nerry, F., and Ottlé, C.: Land surface temperature retrieval: Techniques and applications: Case of the AVHRR, in: Thermal Remote Sensing in Land Surface Processes, edited by: Quattrochi, D. A. and Luwall, J. C., 33–109, CRC Press, 2004.
Lawrimore, J., Rennie, J., and Thorne, P.: Responding to the Need for Better Global Temperature Data, Eos, Transactions American Geophysical Union, 94, 61–62, https://doi.org/10.1002/2013EO060002, 2013.
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and Sobrino, J. A.: Satellite-derived land surface temperature: Current status and perspectives, Remote Sens. Environ., 131, 14–37, https://doi.org/10.1016/j.rse.2012.12.008, 2013.
MacCallum, S. N. and Merchant, C. J.: Surface water temperature observations of large lakes by optimal estimation, Canadian Journal of Remote Sensing, 38, 25–45, 2012.
MacCallum, S. N. and Merchant, C. J.: ARC-Lake: v2.0 (Dataset), http://hdl.handle.net/10283/88 (last access: June 2013), 2013.
Martin, M., Dash, P., Ignatov, A., Banzon, V., Beggs, H., Brasnett, B., Cayula, J.-F., Cummings, J., Donlon, C., Gentemann, C., Grumbine, R., Ishizaki, S., Maturi, E., Reynolds, R. W., and Roberts-Jones, J.: Group for high resolution sea surface temperature (GHRSST) analysis fields inter-comparisons: Part 1. A GHRSST multi-product ensemble (GMPE), Deep Sea Res. II, 77–80, 21–30, https://doi.org/10.1016/j.dsr2.2012.04.013, 2012.
Menne, M. J., Williams, C. N., and Vose, R. S.: The U.S. Historical Climatology Network Monthly Temperature Data, Version 2, B. Am. Meteorol. Soc., 90, 993–1007, https://doi.org/10.1175/2008BAMS2613.1, 2009.
Merchant, C. J., Embury, O., Rayner, N. A., Berry, D. I., Corlett, G. K., Lean, K., Veal, K. L., Kent, E. C., Llewellyn-Jones, D. T., Remedios, J. J., and Saunders, R.: A 20 year independent record of sea surface temperature for climate from Along-Track Scanning Radiometers, J. Geophys. Res., 117, C12013, https://doi.org/10.1029/2012JC008400, 2012.
Middleton, W. E.: A History of the Thermometer and its Use in Meteorology, The Johns Hopkins Press, Baltimore, 1966.
Midekisa, A., Senay, G., Henebry, G., Semuniguse, P., and Wimberly, M.: Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia, Malaria Journal, 11, 165, https://doi.org/10.1186/1475-2875-11-165, 2012.
Mirzaei, P. A. and Haghighat, F.: Approaches to study Urban Heat Island: Abilities and limitations, Building and Environment, 45, 2192–2201, https://doi.org/10.1016/j.buildenv.2010.04.001, 2010.
Moran, S. M.: Thermal infrared measurement as an indicator of plant ecosystem health, in: Thermal Remote Sensing in Land Surface Processes, edited by: Quattrochi, D. A. and Luvall, J., 257–282, Taylor & Francis, 2003.
Moulin, S., Bondeau, A., and Delecolle, R.: Combining agricultural crop models and satellite observations: From field to regional scales, Int. J. Remote Sens., 19, 1021–1036, https://doi.org/10.1080/014311698215586, 1998.
Niclòs, R., Galve, J. M., Valiente, J. A., Estrela, M. J., and Coll, C.: Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data, Remote Sens. Environ., 115, 2126–2140, https://doi.org/10.1016/j.rse.2011.04.017, 2011.
Parker, D. E.: Effects of changing exposure of thermometers at land stations, Int. J. Climatol., 14, 1–31, https://doi.org/10.1002/joc.3370140102, 1994.
Peterson, T. C. and Vose, R. S.: An overview of the global historical climatology network temperature database, B. Am. Meteorol. Soc., 87, 2837–2849, 1997.
Peterson, T. C., Easterling, D. R., Karl, T. R., Groisman, P., Nicholls, N., Plummer, N., Torok, S., Auer, I., Boehm, R., Gullett, D., Vincent, L., Heino, R., Tuomenvirta, H., Mestre, O., Szentimrey, T., Salinger, J., Førland, E. J., Hanssen-Bauer, I., Alexandersson, H., Jones, P., and Parker, D.: Homogeneity adjustments of in situ atmospheric climate data: a review, Int. J. Climatol., 18, 1493–1517, https://doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T, 1998.
Ramirez-Villegas, J. and Challinor, A.: Assessing relevant climate data for agricultural applications, Agr. Forest Meteorol., 161, 26–45, https://doi.org/10.1016/j.agrformet.2012.03.015, 2012.
Ramsey, M. S. and Harris, A. J. L.: Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?, Journal of Volcanology and Geothermal Research, 249, 217–233, https://doi.org/10.1016/j.jvolgeores.2012.05.011, 2013.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Reichle, R. H., Bosilovich, M. G., Crow, W. T., Koster, R. D., Kumar, S. V., and Mahanama, S. P.: Recent advances in land data assimilation at the NASA Global Modeling and Assimilation Office, in: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, edited by: Pard, S. K., 407–428, Springer Verlag, 2009.
Reichle, R. H., Kumar, S. V., Mahanama, S. P. P., Koster, R. D., and Liu, Q.: Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models, J. Hydrometeorol., 11, 1103–1122, https://doi.org/10.1175/2010JHM1262.1, 2010.
Reisen, W. K., Fang, Y., and Martinez, V. M.: Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae), Journal of Medical Entomology, 43, 309–317, 2006.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An Improved In Situ and Satellite SST Analysis for Climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Schneider, P. and Hook, S. J.: Space observations of inland water bodies show rapid surface warming since 1985, Geophys. Res. Lett., 37, L22405, https://doi.org/10.1029/2010GL045059, 2010.
Schneider, P., Hook, S. J., Radocinski, R. G., Corlett, G. K., Hulley, G. C., Schladow, S. G., and Steissberg, T. E.: Satellite observations indicate rapid warming trend for lakes in California and Nevada, Geophys. Res. Lett., 36, L22402, https://doi.org/10.1029/2009GL040846, 2009.
Simmons, A. J., Jones, P. D., da Costa Bechtold, V., Beljaars, A. C. M., Kållberg, P. W., Saarinen, S., Uppala, S. M., Viterbo, P., and Wedi, N.: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature, J. Geophys. Res., 109, D24115, https://doi.org/10.1029/2004JD005306, 2004.
Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W., and Dee, D. P.: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets, J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442, 2010.
Stark, J. D., Donlon, C. J., Martin, M. J., and McCulloch, M. E.: OSTIA: An operational, high-resolution, real time, global sea surface temperature analysis system, Tech. rep., MetOffice, http://ghrsst-pp.metoffice.com/pages/latest_analysis/docs/Stark_et_al_OSTIA_description_Oceans07.pdf (last access: June 2013), 2007.
Stathopoulou, M. and Cartalis, C.: Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation, Remote Sens. Environ., 113, 2592–2605, https://doi.org/10.1016/j.rse.2009.07.017, 2009.
Stefanov, W. L., Ramsey, M. S., and Christensen, P. R.: Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers, Remote Sens. Environ., 77, 173–185, https://doi.org/10.1016/S0034-4257(01)00204-8, 2001.
Strangeways, I.: Measuring Global Temperatures: Analysis and Interpretation, Cambridge University Press, Cambridge, 2009.
Thorne, P. W., Willett, K. M., Allan, R. J., Bojinski, S., Christy, J. R., Fox, N., Gilbert, S., Jolliffe, I., Kennedy, J. J., Kent, E., Klein Tank, A., Lawrimore, J., Parker, D. E., Rayner, N. A., Simmons, A., Song, L., Stott, P. A., and Trewin, B.: Guiding the Creation of A Comprehensive Surface Temperature Resource for Twenty-First-Century Climate Science, B. Am. Meteorol. Soc., 92, ES40–ES47, https://doi.org/10.1175/2011BAMS3124.1, 2011.
Tong, S., Wang, X. Y. Y., and Guo, Y.: Assessing the short-term effects of heatwaves on mortality and morbidity in Brisbane, Australia: comparison of case-crossover and time series analyses., PLoS ONE, 7, e37500, https://doi.org/10.1371/journal.pone.0037500, 2012.
Trewin, B.: Exposure, instrumentation, and observing practice effects on land temperature measurements, Wiley Interdisciplinary Reviews: Climate Change, 1, 490–506, https://doi.org/10.1002/wcc.46, 2010.
van der Meulen, J. P. and Brandsma, T.: Thermometer screen intercomparison in De Bilt (The Netherlands), Part I: Understanding the weather-dependent temperature differences), Int. J. Climatol., 28, 371–387, https://doi.org/10.1002/joc.1531, 2008.
Vaneckova, P., Neville, G., Tippett, V., Aitken, P., FitzGerald, G., and Tong, S.: Do Biometeorological Indices Improve Modeling Outcomes of Heat-Related Mortality?, J. Appl. Meteor. Climatol., 50, 1165–1176, https://doi.org/10.1175/2011JAMC2632.1, 2011.
Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and Brandsma, T.: Benchmarking homogenization algorithms for monthly data, Clim. Past, 8, 89–115, https://doi.org/10.5194/cp-8-89-2012, 2012.
Voogt, A. J. and Oke, R. T.: Thermal remote sensing of urban climates, Remote Sensing of Environment, 86, 370–384, https://doi.org/10.1016/S0034-4257(03)00079-8, 2003.
Williams, C. N., Menne, M. J., and Thorne, P. W.: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States, J. Geophys. Res., 117, D05116, https://doi.org/10.1029/2011JD016761, 2012.
Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Freeman, J. E., Berry, D. I., Brohan, P., Kent, E. C., Reynolds, R. W., Smith, S. R., and Wilkinson, C.: ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive, Int. J. Climatol., 31, 951–967, https://doi.org/10.1002/joc.2103, 2011.
World Meteorological Organization: WMO policy and practice for the exchange of meteorological and related data and products including guidelines on relationships in commercial meteorological activities, https://www.wmo.int/pages/about/Resolution40_en.html, 1995.
Worley, S. J., Woodruff, S. D., Reynolds, R. W., Lubker, S. J., and Lott, N.: ICOADS release 2.1 data and products, Int. J. Climatol., 25, 823–842, https://doi.org/10.1002/joc.1166, 2005.
Zanobetti, A., O'Neill, M. S., Gronlund, C. J., and Schwartz, J. D.: Summer temperature variability and long-term survival among elderly people with chronic disease, P. Natl. Acad. Sci. USA, 109, 6608–6613, https://doi.org/10.1073/pnas.1113070109, 2012.